Univerza v Ljubljani
Fakulteta za raCunalnistvo in informatiko

Skripta za vaje pri predmetih
Racunalniska grafika in Rac¢unalniska
grafika in tehnologija iger

Ziga Lesar
2025

WebGPU

WebGPU je spletni vmesnik za dostop do grafiChe strojne opreme. Kot naslednik
vmesnika WebGL je bolj zmogljiv, vsebuje vec funkcionalnosti in omogoca pisanje bolj
berljive kode brez raznovrstnih pasti, ki so Se kako prisotne v WebGL. WebGPU je v
zasnovi podoben sodobnim grafiCnim vmesnikom za razvoj namiznih aplikacij. V
primerjavi z WebGL se bistveno bolje prilagaja arhitekturi sodobnih graficnih kartic, zato
je ob spretni uporabi njegovo delovanje hitrejSe in bolj predvidljivo. WebGPU poleg
izrisa omogoca tudi sploSno raCunanje preko racunskih sencilnikov, kar je Se posebe;j
dobrodoslo v aplikacijah, ki se denimo zanasSajo na hitro izvajanje nevronskih mrez.

Postavitev okolja

Potrebovali bomo:

e Sodoben spletni brskalnik (trenutho Chromium in njegovi derivati (Chrome,
Opera, Edge) najbolje podpirajo standard WebGPU)

o Urejevalnik kode (priporo€amo Sublime Text ali Visual Studio Code)

e HTTP streznik (najenostavneje python -m http.server, sicer pa bo deloval
katerikoli streznik)

Ustvarimo direktorij koda.

V direktoriju koda ustvarimo datoteko index.html z vsebino

<IDOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Vaja 1</title>
<script type="module" src="main.js"></script>
</head>
<body>
<hl>Vaja 1</h1>
</body>
</html>

V direktoriju koda ustvarimo prazno datoteko main. js. V to datoteko bomo pisali
JavaScript kodo za dostop do WebGPU.

V direktoriju koda odpremo terminal in poZzenemo ukaz

python -m http.server 3000

Ukaz bo pognal HTTP streznik na lokalnem naslovu (1ocalhost) na vratih 3000, kamor
bo stregel vsebino direktorija, v katerem je bil ukaz pognan. Zdaj lahko spletni brskalnik
usmerimo na naslov localhost:3000 in prikaZze se spletna stran z napisom Vaja 1.
Odprimo Se razvojno orodje (bliznjica v Chromiumu je F12), kjer bi morali videti konzolo
brez napak.

Inicializacija vmeshnika

Adapter

Najprej bomo potrebovali adapter, ki v grobem predstavlja fizi€no napravo.

const adapter = await navigator.gpu.requestAdapter();

Pri izbiri adapterja lahko po potrebi prioritiziramo nizjo porabo energije ali hitrejSe
delovanje, Ce imamo na voljo vecC grafiCnih kartic (na primer integrirano in diskretno). V
zgornjem primeru funkciji ne podamo argumenta in s tem izbiro prepustimo brskalniku.

Izbira adapterja je lahko Casovno potratna operacija, zato je asinhrona. Na rezultat
asinhrone operacije v JavaScriptu poCakamo z operatorjem await.

Naprava

Po izbiri adapterja bomo zahtevali dostop do naprave (device), ki predstavlja glavno
vstopno to¢ko do funkcionalnosti WebGPU.

const device = await adapter.requestDevice();

Naprava je zadolzena za ustvarjanje in upravljanje z resursi. Pri izbiri naprave lahko
zahtevamo uporabo razsiritev ali viSjih numericnih limitov, toda s tem zmanjSamo nabor
naprav, na katerih bo nasa aplikacija delovala (v prvi vrsti odpadejo mobilne naprave).

Tudi izbira naprave je lahko Casovno potratna operacija, zato je asinhrona.

Platnho

V datoteki index.html izbriSimo element <h1> in dodajmo element canvas s fiksno
velikostjo 512x512 pikslov:

<canvas width="512" height="512"></canvas>

Element canvas je platno, na katerega bo WebGPU risal geometrijo. WebGPU lahko
uporabljamo tudi brez platna, Ce potrebujemo le njegove racunske sposobnosti. Za
risanje na platno moramo najprej konfigurirati povezavo med platnom in napravo. Na
posamezno platno je lahko v danem trenutku povezana le ena naprava, medtem ko ena
naprava lahko riSe na vec platen. Povezavo ustvarimo v main. js prek konteksta webgpu.
Pri tem moramo dolociti format barve, ki se bo uporabljal pri izrisu. ObiCajno je na vsaki
napravi en format Se posebej uCinkovit. Za kateri format gre, lahko vprasamo WebGPU.

const canvas = document.querySelector('canvas');

const context = canvas.getContext('webgpu');

const format = navigator.gpu.getPreferredCanvasFormat();
context.configure({ device, format });

Brisanje platna

Vse ukaze, vkljuéno z ukazi za upodabljanje, moramo napravi podati v razumljivi obliki.
To storimo z ukaznim kodirnikom (command encoder), ki Zelene ukaze zapiSe v
ukazni medpomnilnik (command buffer), tega pa oddamo napravi v izvedbo preko
ukazne vrste (command queue).

const commandEncoder = device.createCommandEncodex();
// here encode commands

const commandBuffer = commandEncoder.finish();
device.queue.submit([commandBuffer]);

Pred vsakim izrisom moramo platno najprej pobrisati. Brisanje platna je torej prva
operacija obhoda upodabljanja (render pass).

// encode commands
const renderPass = commandEncoder.beginRenderPass ({
colorAttachments: [{
view: context.getCurrentTexture(),
loadOp: 'clear',

clearValue: [0.7, 0.8, 0.9, 1],
storeOp: 'store',
H
}):

renderPass.end();

V zgornjem primeru obhod upodabljanja zaklju¢imo takoj po zaCetku, brez ukazov za
izris. Napravi povemo, da naj na zaCetku obhoda upodabljanja pobriSe platno (1oadop:
'clear') z doloCeno barvo (clearValue: [0.7, ©.8, 0.9, 1]), na koncu obhoda pa vse
rezultate upodabljanja shrani (storeOp: 'store').

V dolocenih primerih uporabe lahko na zacetku obhoda namesto brisanja naloZzimo
vrednosti iz prejSnjega obhoda upodabljanja (1oadop: 'load'), na koncu obhoda pa jih
lahko zavrZzemo (storeOp: 'discard'). Te primere uporabe bomo spoznali na kasnejSih
vajah.

Rdec trikotnik

Za izris trikotnika potrebujemo dva programa: prvi, sen€ilnik oglisS¢, doloc€i polozaj
ogliS¢ trikotnika na platnu, drugi, sencilnik fragmentov, pa doloci barvo pikslov
(natancneje fragmentov). V kaksni obliki podatki o oglis¢ih pridejo v obdelavo v
sencilnik ogliS¢ in v kak3ni obliki so zapisane barve na izhodu sencilnika fragmentov,
doloCa cevovod. Cevovod torej oba sencilnika poveze v skupno celoto in dolo€i format
podatkov na vhodu in izhodu. Zaradi u€inkovitosti je pomembno, da te informacije
grafini kartici podamo vnaprej.

Sendcilniki
Ustvarimo datoteko shader.wgs1, kamor bomo pisali izvorno kodo sencilnikov v jeziku

WGSL (WebGPU Shading Language).

Ustvarimo dve funkciji, vertex in fragment:

fn vertex() -> vecdf ({
return vec4f(o, 0, 0, 1);

}

fn fragment() -> vecdf {
return vec4f(1l, o, 0, 1);

}

Zgornja koda se bo sicer prevedla, toda za uporabo funkcij v vliogi sencilnika oglis¢ in
sencilnika fragmentov moramo upoStevati nekaj osnovnih pravil:

e Sencilnik ogliS¢ mora biti dekoriran z dekoratorjem @vertex

o Sencilnik fragmentov mora biti dekoriran z dekoratorjem @fragment

o Sencilnik ogliS¢ mora polozZaj posameznega ogliS€a zapisati v vgrajeno
spremenljivko position

o Sencilnik fragmentov mora barvo posameznega fragmenta zapisati v izhodno
sliko, doloeno z indeksom (seznam izhodnih slik bomo podali pri konfiguraciji
cevovoda)

Z dodanimi dekoratorji bo koda sencilnikov izgledala tako:

@vertex
fn vertex() -> @builtin(position) vec4df {
return vec4f(eo, 0, 0, 1);

@fragment
fn fragment() -> @location(@) vec4df {
return vec4f(1l, 0, 0, 1);

V datoteki main.js moramo kodo sencilnikov najprej pridobiti s streznika, za kar
uporabimo asinhrono funkcijo fetch, iz odgovora streznika pa izlus¢imo vsebino v obliki
besedila:

const code = await fetch('shader.wgsl').then(response => response.text());

Sencilnike prevedemo s klicem funkcije createShaderModule:

const module = device.createShaderModule({ code });

Cevovod

Sencilnike in obliko vhodnih in izhodnih podatkov dolo€imo v cevovodu. Ustvarjanje
cevovoda zahteva veliko dela od gonilnika, saj mora celotno konfiguracijo temeljito
validirati, da med izvajanjem ne pride do raznovrstnih napak. Cevovode zato vedno
ustvarimo vnaprej in ne v zadnjem trenutku pred prvo uporabo. Obstajata dve vrsti
cevovoda, graficni in raCunski. Na vajah bomo uporabljali le graficnega.

const pipeline = device.createRenderPipeline({
vertex: {
module,

b o
fragment: {

module,
targets: [{ format }],

I
layout: 'auto',

})s

V zgornjem primeru dolo€imo sencilniSki modul za obe stopnji cevovoda. Pri sencnilniku
fragmentov moramo dolociti tudi format izhodnih slik. Indeks O v dekoratorju
@location(@) se nanaSa na ta seznam. Zadnji podatek pri ustvarjanju cevovoda je
razpored cevovoda (pipeline layout), ki ga bomo obravnavali na kasnejSih vajah. Do
nadaljnjega bomo ustvarjanje razporeda cevovoda prepustili gonilniku, ki razpored
izlusCi iz same kode sencilnikov, toda to lahko privede do raznovrstnih tezav, zato je v
praksi priporocljivo ro€no ustvarjanje razporeda.

Obhod upodabljanja

V obhodu upodabljanja moramo dolociti cevovod in izstaviti klic izrisa (draw call):

renderPass.setPipeline(pipeline);
renderPass.draw(3);

V zgornjem izrisu smo dolocili tri oglis¢a, torej bomo izrisali en trikotnik.

Ce kodo pozenemo, bomo videli prazno platno. Sencilnik oglis¢ bo namre¢ vsem
oglis¢em dolocil enak polozZaj na platnu. Na nekakSen nac¢in moramo razlikovati med
ogli&€i in jim dolociti razlicne poloZaje. Najenostavneje to doseZzemo prek vgrajene
spremenljivke vertex_index, ki bo oglis¢em naSega trikotnika priredil indekse 0, 1 in 2.
Spremenljivko vertex_index lahko v kodo vklju€imo kot parameter funkcije vertex:

@vertex
fn vertex(@builtin(vertex_index) vertexIndex) -> @builtin(position) vec4f {
if (vertexIndex == 0) {
return vec4f(@, 0, 0, 1);
} else if (...) {

Kodo lahko Se malenkost poenostavimo z uporabo seznamov:

const positions = array(
vec2f(-0.5, -0.5),
vec2f(0.5, -0.5),
vec2f(0.0, 0.5),
)

@vertex
fn vertex(@builtin(vertex_index) vertexIndex) -> @builtin(position) vec4f {
return vec4f(positions[vertexIndex], @, 1);

Posodobljena koda bi morala na platnu izrisati rdec trikotnik.

Obarvan trikotnik

Trikotnik bi Zeleli obarvati tako, da obarvamo vsako oglis¢e s svojo barvo, v notranjosti
trikotnika pa bi se barve prelivale. Barve lahko ogliSs¢em dolo¢imo na podoben nacin kot
polozaje:

const colors = array(
vec4f(1, o0, 0, 1),
vec4f(o, 1, 0, 1),
vec4f(o, 0, 1, 1),
);

Za prelivanje barv v notranjosti trikotnika bomo uporabili eno izmed osnovnih operacij
graficne kartice, interpolacijo. Ker je interpolacija tako pogosta operacija v racunalniski
grafiki, je zaradi viSje uCinkovitosti na grafiCnih karticah obiCajno implementirana kar v
strojni opremi. Mi moramo le doloCiti spremeljivke, katerih vrednosti zelimo interpolirati.
Te spremenljivke imenujemo interpoliranke. Njihove vrednosti doloCimo v sencilniku
oglisc, graficna kartica pa jih interpolira med izrisom na platno. Interpolirane vrednosti
nato prevzame sencilnik fragmentov, ki jih lahko uporabi denimo pri izraCunu barve
fragmenta.

Ker funkcije v nasih sencilnikih ne morejo vrniti ve€ vrednosti, bomo morali strukturo
programa nekoliko spremeniti. DoloCili bomo Stiri strukture, ki bodo definirale vhode in
izhode sencilnikov:

struct VertexInput ({
@builtin(vertex_index) vertexIndex: u32,

struct VertexOutput {
@builtin(position) position: vec4f,
@location(@) color: vec4f, // value before interpolation

struct FragmentInput {
@location(@) color: vec4f, // value after interpolation

struct FragmentOutput {
@location(@) color: vec4f, // note, the output location is in no way relat

Posodobimo Se sencilnika, da bosta uporabljala zgornje strukture:

@vertex
fn vertex(input: VertexInput) -> VertexOutput {
var output: VertexOutput;

output.position = vec4f(positions[input.vertexIndex], 0, 1);
output.color = colors[input.vertexIndex];

return output;

@fragment

fn fragment(input: FragmentInput) -> FragmentOutput {
var output: FragmentOutput;

output.color = input.color;

return output;

Tako posodobljena koda bi morala brez sprememb v datoteki main. js izrisati trikotnik, v
katerem se barve gladko prelivajo med rdeco, zeleno in modro.

Naloge

1. Podatke o oglisCih spremeni in dopolni, tako da program izriSe kvadrat. Po potrebi
posodobi tudi obhod upodabljanja.

. Spremeni koordinate ogliS¢, tako da se bo kvadrat dotikal robov platna. Katere
vrednosti X in y doseZejo tako stanje?

. Spreminjaj koordinato z, dokler kvadrat ne izgine. Pri katerih vrednostih je kvadrat
prikazan na platnu?

. Spreminjaj koordinato w. Kaj se dogaja s kvadratom in zakaj?

. Z rotacijsko matriko zavrti kvadrat za kot 20 stopinj. Pomagaj si s funkcijami
mat4x4 (oz. mat4x4f), cos in sin.

Loceni atributi oglis¢

V prejsnji vaji smo podatke o ogliSCih (polozaje in barve) zapisali v sencilnik. Seveda tak
pristop ni skalabilen. Podatke bomo zato zapisali v graficni pomnilnik in jih v sencilnik
poslali v obhodu upodabljanja.

Sencilnik
Najprej v sencilniku ogliS¢ dopolnimo VertexInput z dvema novima spremenljivkama:

struct VertexInput ({
@location(@) position: vec2f,
@location(1) color: vec4f,

Posodobiti moramo tudi funkcijo vertex:

output.position = vec4(input.position, @, 1);
output.color = input.color;

Spremenljivke, ki opisujejo posamezno oglis€e, imenujemo atributi. Nas sencilnik bo
torej sprejel oglis€e z dvema atributoma: poloZajem na lokaciji O in barvo na lokaciji 1.
Te Stevilke bomo potrebovali pri ustvarjanju cevovoda.

V zgornji kodi opazimo, da smo izbrisali vhodno spremenljivko vertexIndex. Prav tako
lahko izbriSemo seznama poloZajev in barv, saj jih bomo prestavili v main. js. Sencilnik
se je s tem bistveno poenostavil.

Medpomnilniki

Najprej podatke o polozajih zapiSimo v glavni pomnilnik v main. js:

const positions = new Float32Array([

-0.5, -0.5,
0.5, -0.5,
0.0, 0.5,

1),

Vidimo, da iz kode ni razvidno, da gre za dvodimenzionalne vektorje. Ta informacija je
del formata podatkov, kar bomo napravi sporocili pri ustvarjanju cevovoda.

V naslednjem koraku ustvarimo medpomnilnik (buffer), ki predstavlja posamezno
alokacijo graficnega pomnilnika:

const positionBuffer = device.createBuffer({
size: positions.bytelLength,
usage: GPUBufferUsage.VERTEX | GPUBufferUsage.COPY_DST,

)

Pri ustvarjanju medpomnilnika moramo napravi sporociti njegovo velikost in uporabo.
Zastavica VERTEX napravi sporoca, da bodo podatki iz medpomnilnika uporabljeni v
sencilniku ogliS¢, za zapisovanje v medpomnilnik pa je dodatno potrebna zastavica
COPY_DST.

Ukaz za zapisovanje podatkov v medpomnilnik izstavimo v ukazno vrsto:

device.queue.writeBuffer(positionBuffer, @, positions);

V zgornji vrstici Stevilo 0 predstavlja odmik v Stevilu bajtov od zacetka medpomnilnika,
kjer bomo zaceli pisanje.

Na enak nacin pripravimo podatke o barvah:

const colors = new Float32Array([

1),
const colorBuffer = device.createBuffer({

size: colors.bytelength,
usage: GPUBufferUsage.VERTEX | GPUBufferUsage.COPY_DST,

).

device.queue.writeBuffer(colorBuffer, @, colors);

Cevovod

Zdaj se lahko lotimo cevovoda. Pri tem moramo vnaprej sporociti napravi, kaksSne
medpomnilnike bomo uporabljali, kakSen bo format atributov in njihov razpored znotraj
medpomnilnikov ter na katere lokacije v sencilniku bodo podatki vezani.

Najprej ustvarimo opis prvega medpomnilnika, ki vsebuje polozaje ogliSc:

const positionBufferLayout = {
arrayStride: 8,
attributes: [{
shaderLocation: 0,
offset: 0,
format: 'float32x2',
1]
e

Z zgornjim opisom napravi sporoCimo, da je v tem medpomnilniku le en atribut, ki je
vezan na lokacijo 0 v sencilniku ogliS¢, njegovi podatki pa so v medpomnilniku zapisani
kot dvodimenzionalni vektorji 32-bitnih Stevil s plavajocCo vejico. PoloZaj prvega oglis¢a
je od zacCetka medpomnilnika zamaknjen za 0 bajtov, poloZaj vsakega naslednjega
ogliSCa pa je zamaknjen za nadaljnjih 8 bajtov.

Podoben opis potrebujemo za drugi medpomnilnik, ki vsebuje barve ogliSc:

const colorBufferLayout = {
arrayStride: 16,
attributes: [{
shaderLocation: 1,
offset: 0,
format: 'float32x4',
H
bE

Gre torej za medpomnilnik, ki vsebuje en atribut, vezan na lokacijo 1 v sencilniku ogliSc.
Njegovi podatki so v medpomnilniku zapisani kot Stiridimenzionalni vektorji 32-bitnih
Stevil s plavajoCo vejico. Barva prvega oglisCa je od zaCetka medpomnilnika
zamaknjena za 0 bajtov, barva vsakega naslednjega ogliSCa pa za nadaljnjih 16 bajtov.

Zgornja opisa medpomnilnikov napravi podamo ob ustvarjanju cevovoda:

const pipeline = device.createRenderPipeline({
vertex: {
module,
buffers: [positionBufferLayout, colorBufferLayout],
Ji -
fragment: {
module,
targets: [{ format }],
b o
layout: 'auto',
3

Obhod upodabljanja

V obhodu upodabljanja moramo po klicu setPipeline le Se povezati medpomnilnika s
cevovodom:

renderPass.setVertexBuffer(@, positionBuffer);
renderPass.setVertexBuffer(1l, colorBuffer);

Stevilke v zgornji kodi se nana3ajo na seznam medpomnilnikov v opisu cevovoda, ne
na lokacije atributov v sencilniku.

Tako popravljena koda bi se morala izvesti brez napak in na platno izrisati enak
trikotnik.

Prepleteni atributi oglis¢

V zgornjem primeru smo podatke za posamezno ogliSCe pridobili iz dveh loCenih
medpomnilnikov. Pri veCjem Stevilu oglisC je tak dostop do pomnilnika zelo potraten
zaradi slabega izkoristka predpomnilnika graficne kartice. BoljSo uCinkovitost dosezemo
s prepletanjem atributov, tako da so atributi posameznega oglis¢a tudi v pomnilniku
blizu skupaj.

V main.js bomo podatke o oglisCih zapisali v en seznam, imenovan vertices:

const vertices = new Float32Array([

// position // color

-0.5, -0.5, 1, o, 0, 1,
0.5, -0.5, 0, 1, o, 1,
0.0, 0.5, 0, 0, 1, 1,

1);

Podatke nato zapiSemo v medpomnilnik vertexBuffer:

const vertexBuffer = device.createBuffer({

size: vertices.bytelength,

usage: GPUBufferUsage.VERTEX | GPUBufferUsage.COPY_DST,
})

device.queue.writeBuffer(vertexBuffer, 0, vertices);

Ustvarimo primeren opis medpomnilnika:

const vertexBufferLayout = {
arrayStride: 24,
attributes: [

{
shaderLocation: 0,
offset: 0,
format: 'float32x2',
o
{
shaderLocation: 1,
offset: 8,
format: 'float32x4',
s

b

Tokrat sta v medpomnilniku shranjena dva atributa z razlicnima odmikoma od zacetka
medpomnilnika in razlicnima formatoma. Velikost ogliS¢a se je povecala na 24 bajtov.

Posodobimo Se konfiguracijo sencilnika ogliS¢ v cevovodu:
buffers: [vertexBufferlLayout],
Temu primerno spremenimo Se obhod upodabljanja:

renderPass.setVertexBuffer (@, vertexBuffer);

Vse sledove locenih medpomnilnikov lahko zdaj izbriSemo.

Indeksiranje

Se zadnja optimizacija bo indeksirano upodabljanje, ki nam omogo&a ponovno uporabo
ze definiranih ogliSC. Za demonstracijo koncepta bomo namesto trikotnika izrisali
kvadrat. Ker je kvadrat sestavljen iz 2 trikotnikov, potrebujemo 6 ogliS¢, od katerih sta 2
podvojeni:

const vertices = new Float32Array([
// 1st triangle
-0.5, -0.5, 1, 0, @
0.5, -0.5, e, 1, o0, 1,
-0.5, 0.5, 0, 0, 1

// 2nd triangle

-0.5, 0.5, 0, 0, 1, 1,
0.5, -0.5, o, 1, 0, 1,
0.5, 0.5, 1,1, 0,1

1)

V obhodu upodabljanja izriSemo 6 oglisc:

renderPass.draw(6) ;

Le s tema dvema popravkoma bi morala koda izrisati kvadrat.

Podvajanju ogliSC se lahko izognemo tako, da najprej vsako ogliSCe v medpomnilniku
0gliS¢ definiramo le enkrat:

const vertices = new Float32Array([

// position // color

-0.5, -0.5, 1, 0, 0, 1,
0.5, -0.5, o, 1, o0, 1,
-0.5, 0.5, 0, 0, 1, 1,
0.5, 0.5, 1, 1, 0, 1

’ ’ ’

1)

Nato zgradimo Se medpomnilnik indeksov:

const indices = new Uint32Array([
// 1lst triangle
o, 1, 2,
// 2nd triangle
2, 1, 3,
1),

const indexBuffer = device.createBuffer({
size: indices.bytelength,
usage: GPUBufferUsage.INDEX | GPUBufferUsage.COPY_DST,

)

device.queue.writeBuffer(indexBuffer, @, indices);

Pri tem smo uporabili 32-bitna nepredznacena cela Stevila (Uint32Array) in napravi
sporocili, da bo medpomnilnik uporabljen kot medpomnilnik indeksov (INDEX).

Posodobiti moramo Se obhod upodabljanja, tako da nastavimo medpomnilnik indeksov
z dolo€enim podatkovnim tipom (uint32) in namesto funkcije draw klicemo funkcijo

drawIndexed, ki ji podamo Stevilo indeksov:

renderPass.setIndexBuffer(indexBuffer, 'uint32');
renderPass.drawIndexed(indices.length);

Na platnu bi morali videti obarvan kvadrat.

V opisanem primeru gre za nepotrebno optimizacijo, saj je koli¢ina podatkov zelo
majhna. Prakticni 3D modeli pa posamezno oglis¢e lahko uporabijo tudi v 6 ali vec
trikotnikih, zato je taka optimizacija kriticnega pomena. Vsi modeli, ki jih bomo
uporabljali na vajah, bodo indeksirani.

Animacija

Ce zelimo kvadrat programsko animirati, moramo najti na¢in za prenos podatkov o
njegovi transformaciji v sencilnik. Podatki o transformaciji so skupni vsem oglis¢em in
vsem fragmentom, zato v sencilniku delujejo podobno kot konstante. Imenujemo jih
uniforme. V nasprotju s pravimi konstantami lahko uniforme med zaporednimi Klici
izrisa spreminjamo in s tem ustvarimo animacijo.

Uniforme in drugi zunaniji viri so organizirani v skupine, znotraj skupine pa ima vsak vir
svojo Stevilko vezave. Vse vire v posamezni skupini v sencilnik poveZzemo z enim
samim funkcijskim klicem.

Sencilnik

Denimo, da zelimo kvadratu dodati translacijo, ki jo predstavimo z 2D vektorjem. Najprej
jo dodamo v sencilnik oglisc:

@group (@) @binding(®) var<uniform> translation: vec2f;
Translacijo priStejemo polozaju ogliSca:
output.position = vec4(input.position + translation, 0, 1);

Translacijo smo v zgornji kodi dodelili skupini O in ji dolocili Stevilko vezave 0. Te Stevilke
bodo pomembne pri ustvarjanju skupine vezav.

Medpomnilnik

Vrednosti uniform sencilnik pridobi iz medpomnilnika. Ustvarimo medpomnilnik, ki naj
bo vsaj tako velik, da lahko hrani dve Stevili s plavajoco vejico:

const uniformBuffer = device.createBuffer({

size: 8,

usage: GPUBufferUsage.UNIFORM | GPUBufferUsage.COPY_DST,
)

Pri tem smo napravi sporocili, da bo medpomnilnik uporabljen kot uniforma.

Skupina vezav

Za vezavo medpomnilnika v sencilnik moramo ustvariti Se skupino vezav:

const bindGroup = device.createBindGroup({
layout: pipeline.getBindGrouplLayout(Q),
entries: [
{ binding: @, resource: uniformBuffer },

)

Razpored uniform v posamezni skupini in njihove tipe dolo¢a razpored skupine (bind
group layout), razpored vseh skupin v celotnem cevovodu pa doloca razpored
cevovoda. Stvarjenje slednjega smo v prvi vaji prepustili gonilniku (layout: 'auto'),
tako da lahko razpored skupine pridobimo kar prek funkcije
pipeline.getBindGroupLayout, Ki ji podamo Stevilko skupine. Tako ustvarjena skupina
vezav bo posledi¢no veljavna le v tem cevovodu.

Nazadnje v obhodu upodabljanja skupino povezemo s sencilnikom:

renderPass.setBindGroup (@, bindGroup);

Animacija

Do tega trenutka je naSa aplikacija izris izvedla le enkrat, za animacijo pa bo treba
napisati zanko, ki bo najprej posodobila transformacijo kvadrata, nato pa izrisala
posodobljeno sceno. Potrebujemo torej dve funkciji, update za posodabljanje in render
za izris, ki ju bomo Klicali veCkrat (obi¢ajno 60-krat) na sekundo:

function update() {
// user input, animations, AI ...

function render() {
// clear the canvas, render

function frame() {
update();
render();
requestAnimationFrame(frame);

requestAnimationFrame(frame);

Za implementacijo zanke smo uporabili v brskalnik vgrajeno funkcijo
requestAnimationFrame, ki podano funkcijo (frame) izvede pred naslednjim
osvezevanjem zaslona.

Ce 7elimo, da se kvadrat premika po kroznici, lahko animacijo napiSemo tako:

function update() {
const time = performance.now() / 1000;
const radius = 0.5;
const frequency = 0.5;
const x = radius * Math.cos(frequency * time * 2 * Math.PI);
const y = radius * Math.sin(frequency * time * 2 * Math.PI);

device.queue.writeBuffer(uniformBuffer, @, new Float32Array([x, yl));

Transformacije z matrikami

Transformacije lahko posploSimo z uporabo matrik. V racunalniski grafiki se
najpogosteje uporabljajo realne matrike velikosti 4x4, saj lahko z njimi predstavimo
poljubne afine in celo perspektivne transformacije. Poleg tega lahko vec transformacij
zdruzimo v eno samo matriko in s tem Se pospeSimo izracun.

Najprej v sencilniku zamenjajmo spremenljivko translation tipa vec2f z matriko matrix
tipa mat4x4f:

@group(@) @binding (@) var<uniform> matrix: mat4x4f;

Matriko pomnozimo s poloZajem oglis¢a:
output.position = matrix * vec4(input.position, 0, 1);
Zdaj lahko translacijo v funkciji update nadomestimo z matriko:

device.queue.writeBuffer(uniformBuffer, @, new Float32Array([
1, o, o0, 0,
0, 1, 0, 0
0, 0, 1, 0,
X, Yy, 0,1
1),

Ne pozabimo Se povecati velikosti medpomnilnika, ki mora biti zdaj velik vsaj 64 bajtov.

Matrike so na grafiCni kartici zapisane po stolpcih, zato matrika v zgornjem zapisu
izgleda transponirana.

Naloge

1. Napisi funkcijo, ki ustvari model kroga. Model naj bo indeksiran in sestavljen iz
trikotnikov, ki se stikajo v sredis¢u kroga. Stevilo 0gli$¢ na obodu kroga naj bo
podano kot parameter funkcije. Barva vseh ogli5€ je lahko enaka.

2. Napisi funkcijo, ki ustvari regularno mrezo. Locljivost mreZe v smeri X in y naj bo
podana s parametroma funkcije. Model naj bo indeksiran. Koliko graficnega
pomnilnika porabi indeksiran model? Kaj pa neindeksiran?

3. Kodo posodobi tako, da bo izrisala vse modele, podane s seznamom. Vsak model
naj ima svoj medpomnilnik oglis€¢, medpomnilnik indeksov, medpomnilnik uniform
in skupino vezave.

Kocka

V tej vaji bomo kvadrat nadgradili v kocko. V ta namen bomo posodobili podatke,
cevovod in sencilnik. Poskrbeli bomo Se za postavitev kamere v sceno in vse potrebne
transformacije.

Podatki

Oglis¢a kocke bomo postavili na koordinate +1. PoloZzajem bomo dodali Se homogeno
koordinato, tako da jih bomo laZje obdelovali v sencilniku. Vsako oglis¢e bo imelo tudi
svojo barvo, ki bo odraZala polozaj ogliS€a. Kocka ima 6 kvadratnih ploskev, vsaka je

predstavljena z 2 trikotnikoma, kar skupaj znese 36 indeksov.

const vertices = new Float32Array([

// positions // colors // index
-1, -1, -1, 1, o, o, o0, 1, /10
-1, -1, 1, 1, o, o, 1, 1, /71
-1, 1, -1, 1, o, 1, o, 1, /12
-1, 1, 1, 1, o, 1, 1, 1, /73
1, -1, -1, 1, 1, o, o, 1, /1 4
1, -1, 1, 1, 1, o, 1, 1, // 5
1, 1, -1, 1, 1, 1, o, 1, /16
1, 1, 1, 1 1, 1, 1, 1 /17

~

’

~

1)

const indices = new Uint32Array ([

0, 1, 2, 2, 1, 3,
4, 0, 6, 6, 0, 2,
5, 4, 7, 7, 4, 6,
1, 5, 3, 3y 9y 7y
6, 2, 7, 7, 2, 3,
1, 0, 5 5, 0, 4

1)

Format podatkov

Nova ogliS¢a so velika 32 bajtov, pri Cemer prvih 16 bajtov zaseda polozaj, drugih 16
bajtov pa barva oglisca.

const vertexBufferLayout = {
arrayStride: 32,
attributes: [

{

shaderlLocation: 0,
offset: 0,
format: 'float32x4',

bo

{
shaderLocation: 1,
offset: 16,
format: 'float32x4',

bo

1,
};
Sencilnik

Sencilnik posodobimo tako, da bo atribut position odrazal zgornje spremembe:
@location(@) position: vec4f,

V glavni funkciji polozaju ni vec treba dodati dveh fiksnih komponent, saj jih v sencilnik
prinesemo ze z atributom:

output.position = matrix * input.position;

Sencilnik in podatki so zdaj pripravljeni za delo v treh dimenzijah.

Transformacije

Knjiznica glMatrix

Transformacije 3D modelov bomo izvajali s pomocjo 4x4 matrik. Pisanje lastnih funkcij
za delo z matrikami in vektorji je dobra vaja za programiranje, mi pa bomo uporabili kar
obstojeco knjiznico glMatrix, ki je optimizirana za €im hitrejSe izvajanje.

Knjiznico dobimo na naslovu https://raw.githubusercontent.com/UL-FRI-LGM/webgpu-
examples/master/lib/gim.js.

V skripto main. js uvozimo kodo za delo s 4x4 matrikami:

import { mat4 } from './glm.js';

https://raw.githubusercontent.com/UL-FRI-LGM/webgpu-examples/master/lib/glm.js
https://raw.githubusercontent.com/UL-FRI-LGM/webgpu-examples/master/lib/glm.js

Postavitev scene

Potrebujemo tri matrike: transformacijsko matriko modela, ki model iz lokalnega
prostora postavi v globalni prostor, transformacijsko matriko pogleda, ki model iz
globalnega prostora postavi v glediS¢ni prostor, in projekcijsko matriko, ki model iz
glediSCnega prostora postavi v rezalni prostor. Grafi¢na kartica bo po rezanju izvedla Se
perspektivno deljenje, rezultat katerega bodo tocke v normaliziranem prostoru zaslona.
Temu sledita le Se zaslonska preslikava in rasterizacija.

Glede koordinatnih sistemov bomo sledili zgledu, ki ga postavljajo vsi vecji graficni
pogoni: koordinatni sistemi bodo desnosucni, pogled kamere je usmerjen vzdolz
negativne smeri lokalne osi z.

Matrika pogleda in projekcijska matrika naj bosta za zdaj fiksni, matriko modela pa
bomo spreminjali v funkciji update. Kocko bomo postavili v izhodis¢e, kamero pa bomo
premaknili za 5 enot nazaj, tako da bo vidna celotna kocka. Najprej ustvarimo matriko
pogleda, ki je inverzna transformacijski matriki kamere:

const viewMatrix = mat4.fromTranslation(mat4.create(), [0, @, -5]);
Tudi projekcijska matrika naj bo fiksna, z vertikalnim zornim kotom 1 radian, razmerjem
med viSino in Sirino zaslona 1 (platno je namre¢ kvadratno), ter sprednjo in zadnjo

rezalno ravnino na razdalji 0.01 in 1000 enot:

const projectionMatrix = mat4.perspectiveZO(mat4.create(), 1, 1, 0.01, 1000);

. 4

Ustvarimo Se matriko modela:

const modelMatrix = matéd.create();

Kocko animiramo v funkciji update:

const time = performance.now() / 1000;
modelMatrix.identity().rotateX(time * 0.6).rotateY(time * 0.7);

Zgornja koda matriko modela najprej ponastavi, sicer bi se ohranjala skozi zaporedne
slike animacije.

Prenos transformacije v sencilnik

Sencilnik sprejema le eno matriko, ki predstavlja zdruZzeno transformacijo modela,
pogleda in projekcije. V funkciji render jih zmnozZimo in pri tem pazimo na vrstni red
mnozenja:

const matrix = mat4.create()
.multiply(projectionMatrix)
.multiply(viewMatrix)
.multiply(modelMatrix);

Rezultat zapiSemo v medpomnilnik:
device.queue.writeBuffer(uniformBuffer, @, matrix);

Na platnu bi morala biti vidna vrteCa se kocka.

Globinska slika

Nenavadno prekrivanje ploskev kocke je posledica odsotnosti globinskega testa. Za
pravilno delovanje moramo ustvariti globinsko sliko, vkljuciti globinski test in globinsko
sliko podistiti pred vsakim izrisom.

Ustvarimo globinsko sliko v velikosti platna in s primernim globinskim formatom:

const depthTexture = device.createTexture({
size: [canvas.width, canvas.height],
format: 'depth24plus',
usage: GPUTextureUsage.RENDER_ATTACHMENT,

3
Vklju€imo globinski test v cevovodu:

depthStencil: {
depthWriteEnabled: true,
depthCompare: 'less',
format: 'depth24plus',

Globinski sliko pripnemo na cevovod v obhodu upodabljanja:

depthStencilAttachment: {
view: depthTexture,
depthClearValue: 1,
depthLoadOp: 'clear’,
depthStoreOp: 'discard',

S tem bi moralo nepravilno prekrivanje ploskev izginiti.

Komponentni sistem

Trenutno je v datoteki main. js zdruzeno veliko funkcionalnosti, ki bi jo bilo bolje locCiti na
vec delov, ki jih bomo lahko ponovno uporabili. Refaktorizacijo bomo pricCeli pri
transformacijah. Ustvarili bomo dva razreda, Transform in Camera, ki bosta zadolzena za
ustvarjanje transformacijskih matrik preko intuitivnih parametrov. Nato bomo ustvarili Se
razred Node, ki bo predstavljal posamezno vozliS€e v grafu scene in vseboval seznam
pripetih komponent.

Komponenti Transform in Camera

Zacnimo z razredom Transform, ki ga zapiSimo v datoteko Transform.js:

import { mat4 } from './glm.js';
export class Transform {

constructor({
rotation = [0, @, 0, 1],
translation = [0, 0, O],
scale = [1, 1, 1],

= A{r) A
this.rotation = rotation;
this.translation = translation;
this.scale = scale;

get matrix() {
return mat4.fromRotationTranslationScale(mat4.create(),
this.rotation, this.translation, this.scale);

Razred je napisan tako, da ga lahko enostavno instanciramo in pri tem opcijsko
dodamo parametre vrtenja, premika in raztega. Vrtenje je, kot v vecini sodobnih
grafi¢nih pogonov, predstavljeno s kvaternionom.

Dodajmo Se razred Camera za predstavitev perspektivne kamere in ga zapiSimo v
datoteko Camera. js:

import { mat4 } from './glm.js';
export class Camera {

constructor({

aspect = 1,
fovy = 1,
near = 0.01,
far = 1000,
F=EAH A

this.aspect = aspect;
this.fovy = fovy;
this.near = near;
this.far = far;

get matrix() {
const { fovy, aspect, near, far } = this;
return mat4.perspectiveZO(mat4.create(), fovy, aspect, near, far);

Graf scene

Ustvarjeni komponenti bomo pripeli na objekte v sceni, ki jih bomo predstavili z grafom.
Bolj natan¢no, ustvarili bomo razred Node, ki bo predstavljal objekte v grafu scene. Vsak
objekt ima lahko vec€ otrok in kve€jemu enega starsa.

Razred Node zapiSimo v datoteko Node. js.

export class Node {

constructor() {
this.parent = null;
this.children = [];
this.components = [];

addChild(node) {
node.parent?.removeChild(node);
node.parent = this;
this.children.push(node);

removeChild(node) {
const index = this.children.indexOf (node) ;
if (index >= 0) {
this.children.splice(index, 1);
node.parent = null;

traverse(before, after) {
before?. (this);
for (const child of this.children) {
child.traverse(before, after);

}
aftexr?. (this);

linearize() {
const array = [],;
this.traverse(node => array.push(node));
return array,

filter(predicate) {
return this.linearize().filter(predicate);

find(predicate) {
return this.linearize().find(predicate);

map (transform) {
return this.linearize().map(transform);

addComponent (component) {
this.components.push(component);

removeComponent (component) {
this.components = this.components.filter(c => c !== component);

removeComponentsOfType(type) {
this.components = this.components.filter(component => !(components ins

getComponentOfType(type) {
return this.components.find(component => component instanceof type);

getComponentsOfType(type) {
return this.components.filter(component => component instanceof type);

Razred Node vsebuje osnovne metode za delo z grafom scene in za upravljanje s
komponentami.

Ce Zelimo v sceno dodati objekt z dolo&eno transformacijo, lahko to zdaj enostavno
storimo z uporabo zgornjih razredov:

const object = new Node();

object.addComponent(new Transform({
translation: [1, 2, 3]

}))

const scene = new Node();
scene.addChild(object);

Ker lahko na posamezen objekt dodamo poljubno koli¢ino komponent (vklju€ujoC
transformacije), je pridobivanje transformacijskih matrik nekoliko bolj tezavno. Poleg
tega moramo uposStevati Se celoten graf scene in s tem povezano zdruzZevanje
transformacijskih matrik. Za enostavnejSe delo s transformacijami ustvarimo Se
datoteko SceneUtils.js, kamor bomo zapisali funkcije za zdruzevanje matrik:

import { mat4 } from './glm.js';

import { Transform } from './Transform.js';
./Camera.js';

1

import { Camera } from

export function getLocalModelMatrix(node) {
const matrix = mat4.create();
for (const transform of node.getComponentsOfType(Transform)) {
matrix.multiply(transform.matrix);

}

return matrix;

export function getGlobalModelMatrix(node) {
if (node.parent) {
const parentMatrix = getGlobalModelMatrix(node.parent);
const modelMatrix = getlLocalModelMatrix(node);
return parentMatrix.multiply(modelMatrix);

} else {
return getlLocalModelMatrix(node);

export function getlLocalViewMatrix(node) {
return getlLocalModelMatrix(node).invert();

export function getGlobalViewMatrix(node) {
return getGlobalModelMatrix(node).invert();

export function getProjectionMatrix(node) {
return node.getComponentOfType(Camera)?.matrix ?? mat4d.create();

Uporaba komponentnega sistema

Zdaj lahko veliko funkcionalnosti naSe aplikacije poenostavimo z uporabo
komponentnega sistema. Najprej v datoteko main. js uvozimo vse potrebne razrede in
funkcije:

import { quat, mat4 } from './glm.js';
import { Transform } from './Transform.js';
import { Camera } from './Camera.js';
import { Node } from './Node.js';
import {
getGlobalModelMatrix,
getGlobalViewMatrix,
getProjectionMatrix,
} from './SceneUtils.js';

Nato ustvarimo sceno:

const model = new Node();
model .addComponent (new Transform());

const camera = new Node();

camera.addComponent (new Camera());
camera.addComponent (new Transform({
translation: [0, @, 5]

1))

const scene = new Node();
scene.addChild(model) ;
scene.addChild(camera);

Posamezne transformacijske matrike lahko izbriSemo.

V funkciji render poenostavimo pridobivanje transformacijskih matrik:

const modelMatrix = getGlobalModelMatrix(model);
const viewMatrix = getGlobalViewMatrix(camera);
const projectionMatrix = getProjectionMatrix(camera);

V funkciji update lahko posodobimo vse komponente vseh objektov v sceni hkrati, tako
da poklicemo njihove lastne funkcije update, ¢e so na voljo:

scene.traverse(node => {
for (const component of node.components) {
component.update?. ();

)

S tem lahko animacijo kocke izlo€imo iz glavne funkcije update in jo dodamo kot
komponento:

model.addComponent ({
update() {
const time = performance.now() / 1000;
const transform = model.getComponentOfType(Transform);
const rotation = transform.rotation;

quat.identity(rotation);

quat.rotateX(rotation, rotation, time * 0.6);
quat.rotateY(rotation, rotation, time * 0.7);

)

Naloge

1. NapiSi komponento, ki objekt zvezno premika med dvema toCkama v prostoru.

2. NapiSi komponento Model, ki naj v konstruktorju prejme seznam ogliS€ in seznam
indeksov. Program naj se pred izrisom sprehodi po grafu scene in prenese
podatke modelov na graficno kartico. Za vsak model ustvari medpomnilnik uniform
za hranjenje transformacije ter pripadajoco skupino vezav. Tako pripravljene
podatke uporabi pri izrisu grafa scene.

Teksturiranje

V tej vaji bomo na 3D model nalepili 2D teksturo. Teksture so lahko razlicnih
razseznosti in formatov ter lahko vsebujejo vec nivojev piramide slik (mipmap level).
Podatki v teksturi so zapisani s teksli, katerih vrednosti vzor€imo (sample) z
vzor€evalnikom (sampler) na podanih teksturnih koordinatah (texture coordinates,
UV coordinates), ki doloCajo tocko v teksturnem prostoru (texture space).

Prenos s streznika

V prvem koraku izberemo sliko in jo shranimo v direktorij aplikacije pod imenom
image.png. Slika naj ne bo prevelika, tako v smislu locljivosti kot velikosti datoteke. Za
vecino primerov uporabe bo dovolj slika locljivosti 512x512 pikslov. Locljivost je lahko
poljubna, zaradi ucinkovitosti pomnilniSkih dostopov pa se je najbolje drzati potenc
Stevila 2.

V datoteki main. js sliko najprej prenesemo s streznika:

const imageBitmap = await fetch('image.png')
.then(response => response.blob())
.then(blob => createImageBitmap(blob));

V zgornji kodi iz streznikovega odgovora izluS€imo vsebino v binarni obliki in jo nato
dekodiramo s funkcijo createImageBitmap, ki datoteko izbranega slikovnega formata
pretvori v nestisnjeno obliko, ki je primerna za prenos na graficno kartico.

Ustvarjanje teksture

Sliko po prenosu s streznika prenesemo na graficno kartico. V ta namen moramo
najprej ustvariti teksturo primerne velikosti in primernega formata, pri tem pa sporociti
Se njeno uporabo:

const texture = device.createTexture({
size: [imageBitmap.width, imageBitmap.height],
format: 'rgba8unorm',
usage:
GPUTextureUsage. TEXTURE_BINDING |
GPUTextureUsage.RENDER_ATTACHMENT |
GPUTextureUsage.COPY_DST,
3

https://www.w3.org/TR/webgpu/#gputexture
https://www.w3.org/TR/webgpu/#enumdef-gputexturedimension
https://www.w3.org/TR/webgpu/#enumdef-gputextureformat
https://www.w3.org/TR/webgpu/#mipmap-level

V zgornji kodi velikost teksture preberemo kar iz slike, ki smo jo prenesli s streznika. Za
format smo izbrali rgbasunorm, ki teksturi dodeli &tiri barvne kanale, pri Cemer vsakega
od njih predstavimo z 8-bitnim nepredznacenim celim Stevilom. Pripona norm bo
pomembna v sencilniku, kjer bodo razpon izbranega podatkovnega tipa preslikan v
enotski interval v obliki Stevila s plavajoCo vejico. Ker bomo teksturo uporabljali v
sencilniku, moramo sporociti uporabo TEXTURE_BINDING. Za prenos slike iz glavnega
pomnilnika sta potrebni Se zastavici RENDER_ATTACHMENT in COPY_DST, Ki ju potrebuje
funkcija copyExternalImageToTexture, uporabljena v nadaljevanju.

V naslednjem koraku sliko prenesemo iz glavhega pomnilnika v teksturo v graficnem
pomnilniku:

device.queue.copyExternalImageToTexture (
{ source: imageBitmap },
{ texture },
[imageBitmap.width, imageBitmap.height]);

Trije parametri zgornjega ukaza predstavljajo izvor in ponor podatkov ter velikost
obmocja slike, ki ga Zelimo prenesti. Pri tem imamo natan€en nadzor nad obmodji
izvora in ponora ter morebitnimi barvnimi pretvorbami, ki jih po potrebi izvede brskalnik
pri prenosu podatkov. V zgornji kodi se v veliki meri zanaSamo na privzete nastavitve, ki
so prilagojene za prenos 2D barvnih slik.

Vzorcevalnik

Teksturo bomo uporabili v sencilniku fragmentov, kjer bomo iz nje vzorcili barvo.
VzorcCenje teksture je prilagodljivo prek vzorCevalnika, ki doloCa vzorCenje na robovih
teksture in interpolacijo podatkov.

Ustvarimo vzorcevalnik s privzetimi nastavitvami:

const sampler = device.createSampler();

Povezava s sencilnikom

V sencilniku dodamo teksturo in vzor€evalnik kot zunanja vira, tako da jima dodelimo
skupino in Stevilko vezave:

@group(@) @binding(1l) var baseTexture: texture_2d<f32>;
@group (@) @binding(2) var baseSampler: sampler;

Uporabili smo kar isto skupino kot za uniformo iz ene od prejSnjih vaj. Tip teksture
(texture_2d<f32>) odraza njeno razseznost in podatkovni tip, medtem ko za navadne
vzorcevalnike obstaja le en tip (sampler).

Teksturo in vzorCevalnik nato vklju¢imo Se v skupino vezav in pri tem uporabimo
pripadajocCe Stevilke vezav:

{ binding: 1, resource: texture },
{ binding: 2, resource: sampler },

V sencilniku fragmentov namesto interpolirane barve zdaj lahko uporabimo barvo, ki jo
vzorcimo iz teksture s funkcijo textureSample:

output.color = textureSample(baseTexture, baseSampler, vec2(0, 0));

Pri tem sporocimo teksturo, ki jo Zelimo vzorciti, vzorCevalnik, ki ga Zelimo pri tem
uporabiti, in teksturne koordinate, ki doloCajo poloZaj vzorca v teksturnem prostoru.
Teksturni prostor je normaliziran, tako da je izhodiSCe v levem zgornjem kotu teksture,
desni spodnji kot pa lezi na tocki (1, 1).

S temi spremembami bi se morala na zaslonu izrisati enobarvna kocka.
Teksturne koordinate

Teksturne koordinate bo sencilnik fragmentov prejel iz sencilnika ogliS¢, kamor jih bomo
poslali prek atributa. V ta namen bomo nadomestili atribut barve s teksturnimi
koordinatami. Najprej spremenimo podatke ogliS¢:

const vertices = new Float32Array([

// positions // texcoords
-1, -1, -1, 1, o, 0,
-1, -1, 1, 1, o, 1,
-1, 1, -1, 1, 1, o,
-1, 1, 1, 1, 1, 1,
1, -1, -1, 1, 0, 0,
1, -1, 1, 1, o, 1,
i, 1, -1, 1, 1, 0o,
1, 1, 1, 1 1, 1

!

1)

V skladu s spremembo podatkov posodobimo razpored podatkov:

const vertexBufferLayout = {
arrayStride: 24,
attributes: [

{
shaderLocation: 0,
offset: 0,
format: 'float32x4',
i
{
shaderLocation: 1,
offset: 16,
format: 'float32x2',
s

Posodobimo tudi sencilnik, kjer teksturnim koordinatam dodelimo Stevilko atributa 1 in
Stevilko interpoliranke 1 ter tip vec2f:

struct VertexInput ({
@location(@) position: vec4f,
@location(1) texcoords: vec2f,

struct VertexOutput {
@builtin(position) position: vec4f,
@location(1l) texcoords: vec2f,

struct FragmentInput {
@location(1l) texcoords: vec2f,

V sencilniku ogliS€¢ spremenimo interpolacijo barv v interpolacijo teksturnih koordinat:

output.texcoords = input.texcoords;

Interpolirane teksturne koordinate nato lahko uporabimo v sencilniku fragmentov pri
vzorcenju teksture:

output.color = textureSample(baseTexture, baseSampler, input.texcoords);

Z zgornjimi spremembami bi morala biti na zaslonu izrisana teksturirana kocka. Na Stirih
stranskih ploskvah je del teksture raztegnjen preko celotne ploskve, kar je posledica
slabo nastavljenih teksturnih koordinat. Podatke kocke bi lahko popravili, toda to bi
zahtevalo dodajanje novih ogliS¢ in novih indeksov, saj morajo v tem primeru razlicne
ploskve, ki si delijo posamezno oglis¢e, v tem ogliS¢u uporabljati razlicne teksturne
koordinate. To pa lahko doseZemo le tako, da ustvarimo vec€ ogliS¢ z enakim poloZzajem
in razlicnimi teksturnimi koordinatami. Ker bomo v nadaljevanju podatke o oglis€ih
pridobivali iz zunanjih datotek, se s tem popravkom na tem mestu ne bomo ukvarijali.

Tezave z vzorcenjem

Odvisno od locljivosti teksture in njene vsebine lahko na zaslonu opazimo utripanje
barv. Tovrstni artefakti so posledica podvzorcenja, ki ga lahko obvladamo le z
odstranitvijo visokih frekvenc iz teksture. Visoke frekvence ustrezajo hitrim
spremembam v teksturi, kar lahko opazimo na vsaki meji med teksli.

Tezavo lahko do doloCene mere reSimo z uporabo linearnega filtra:

const sampler = device.createSampler({
minFilter: 'linear',
magFilter: 'linear’',

).

Opazimo, da se barve tekslov zdaj prelivajo med seboj, utripanje barv pa ni povsem
reSeno. PodvzorCenje je namrecC posledica transformacij in predvsem perspektivne
projekcije, s katero lahko dosezemo poljubno visoke frekvence pri izrisu na zaslon.
Tezavo resimo s piramido slik postopoma nizjih locljivosti, ki vsebujejo postopoma man;
podrobnosti in s tem nizje frekvence.

Piramido slik lahko zgradimo rocno ali samodejno. Ro¢no pomeni, da posamezen nivo
piramide izdelamo z zunanjim programom in ga prenesemo na graficno kartico,
samodejno pa pomeni, da nivoje piramide izdelamo kar neposredno na graficni kartici z
uporabo sencilnika. Skripta za samodejno generiranje piramide slik je na voljo na tej
povezavi. Uporaba je v teh navodilih izpuSCena, vsekakor pa je uporaba piramide slik
mocno priporocljiva.

https://github.com/greggman/webgpu-utils/blob/dev/src/generate-mipmap.ts
https://github.com/greggman/webgpu-utils/blob/dev/src/generate-mipmap.ts

Naloge

1. Popravi podatke ogliSC tako, da bo tekstura pravilno preslikana na vsako ploskev
kocke.

2. Napisi funkcijo, ki ustvari teksturo z nakljucnimi barvami. Locljivost teksture naj bo
podana kot argument funkcije.

3. Program spremeni tako, da bo hkrati uporabljal tako teksture kot barve oglis¢. V
sencilniku fragmentov naj se barvi zmnozita.

4. Program dopolni tako, da bo pri izrisu uporabljal dve teksturi. V sencilniku
fragmentov barvi tekstur povpreci.

Ogrodje

Za lazji razvoj bomo v tej vaji uporabili ogrodje iz repozitorija webgpu-examples.
Aplikacijo bomo napisali od zaCetka, zato datotek s prejSnjih vaj ne potrebujemo.
Ogrodje je na voljo v direktoriju engine, ki ga skopiramo v svojo aplikacijo, prav tako
direktorij models. Skopiramo tudi direktorij 1ib, ki vsebuje knjiznice.

Priprava aplikacije

Zdaj ustvarimo glavni datoteki aplikacije. Najprej index.html:

<IDOCTYPE html>

<html>

<head>
<meta charset="utf-8">
<title>Vaja 5</title>

{
"imports": {
"engine/": "./engine/",
"dat": "./lib/dat.js",
"glm": "./lib/glm.js"
}
}
</script>

<link rel="stylesheet" href="engine/style.css">
<script type="module" src="main.js"></script>
</head>
<body>
<div class="fullscreen no-touch pixelated">
<canvas></canvas>
</div>
</body>
</html>

Tako zgrajen HTML bo poskrbel tudi za razteg platna ¢ez celoten zaslon in za pravilno
uvazanje modulov.

Nato ustvarimo Se main. js, kjer postavimo osnovno ogrodije aplikacije in uvozimo vse
potrebne razrede:

import { ResizeSystem } from 'engine/systems/ResizeSystem.js';
import { UpdateSystem } from 'engine/systems/UpdateSystem.js';

https://github.com/UL-FRI-LGM/webgpu-examples

import {
Camera,
Model,
Node,
Transform,
} from 'engine/core.js';

const canvas = document.querySelector('canvas');
function update(time, dt) {}
function render() {}

function resize({ displaySize: { width, height }}) {}

new ResizeSystem({ canvas, resize }).start();
new UpdateSystem({ update, render }).start();

Branje scene iz datoteke

Prebrali bomo sceno iz datoteke . /models/monkey/monkey.gltf. Scena je opisana v
formatu gITF, ki vsebuje vse informacije o grafu scene, materialih, teksturah in modelih.
V aplikaciji jo lahko preberemo z uporabo razreda GLTFLoader, ki ga najprej vklju¢imo v
aplikacijo:

import { GLTFLoader } from 'engine/loaders/GLTFLoader.js';
Nato preberemo privzeto sceno in v njej najdemo kamero:

const gltfLoader = new GLTFLoader();
await gltflLoader.load('./models/monkey/monkey.gltf');

const scene = gltfLoader.loadScene(gltflLoader.defaultScene);
const camera = scene.find(node => node.getComponentOfType(Camera));

V funkciji resize poskrbimo za posodabljanje kamere glede na razmerje med Sirimo in
viSino zaslona:

function resize({ displaySize: { width, height }}) {
camera.getComponentOfType(Camera).aspect = width / height;

Upodabljalnik

Sceno lahko izriSemo z uporabo upodabljalnika UnlitRenderer. Najprej ga vklju€imo v
aplikacijo:

import { UnlitRenderer } from 'engine/renderers/UnlitRenderer.js';
Nato ustvarimo upodabljalnik in ga inicializiramo:

const renderer = new UnlitRenderer(canvas);
await renderer.initialize();

V funkciji render poklicemo istoimensko funkcijo upodabljalnika, ki kot parametra
sprejema sceno in kamero:

function render() {
renderer.render(scene, camera);

Na zaslonu se izriSe neosvetljen, toda teksturiran 3D model opicje glave.

Interakcija in animacija

Kot zanimivost dodajmo Se interakcijo s kamero ter animacijo modela. Za prvo bomo
uporabili OrbitController, za slednjo pa RotateAnimator:

import { OrbitController } from 'engine/controllers/OrbitController.js';
import { RotateAnimator } from 'engine/animators/RotateAnimator.js';

Razreda instanciramo in objekta pripnemo kot komponenti ustreznim vozliSCem:

camera.addComponent (new OrbitController(camera, document.body, {
distance: 8,

1)

const model = scene.find(node => node.getComponentOfType(Model));
model.addComponent(new RotateAnimator(model, {

startRotation: [0, @, @, 1],

endRotation: [0.7071, @, ©.7071, @],

duration: 5,

loop: true,
}))s

Za pravilno delovanje moramo klicati ustrezne funkcije update:

function update(time, dt) {
scene.traverse(node => {
for (const component of node.components) {
component.update?. (time, dt);

Osvetljevanje

Upodabljalnik bomo razsirili z Lambertovim osvetlitvenim modelom. Za osnovo bomo
uporabili upodabljalnik unlitRenderer, ki ga skopiramo v korenski direktorij aplikacije v
datoteko MyRenderer. js in nato razred preimenujemo v MyRenderer. Potrebujemo tudi
sencilnik, ki ga skopiramo iz UnlitRenderer.wgsl v korenski direktorij po imenom
MyRenderer.wgsl. Popravimo poti uvozov in pri tem popravimo Se URL, ki ga MyRenderer
uporablja za dostop do sencilnika.

V datoteki main. js uvozimo nov upodabljalnik:

import { MyRenderer } from './MyRenderer.js';

Nato ga instanciramo namesto UnlitRenderer:
const renderer = new MyRenderer(canvas);

Zdaj lahko upodabljalnik spreminjamo in dopolnjujemo. Najprej bomo dodali
osvetljevanje po Lambertovem modelu s konstantno smerjo svetlobe. Lambertov model
povrSino osvetli sorazmerno s kosinusom vpadnega kota svetlobe. Kosinus vpadnega
kota lahko enostavno izracunamo s skalarnim produktom, ¢e imamo dostop do normale
povrSine. Normalo dodamo kot atribut ogliSC v razporedu, doloCenem v MyRenderer. js:

name: 'normal',
shaderlLocation: 2,
offset: 20,

format: 'float32x3',
Do

Pri tem ne pozabimo spremeniti Se velikosti ogliSCa:

arrayStride: 32,

Atribut dodamo v sencilnik na lokacijo 2 in poleg tega ustvarimo Se interpoliranko na
lokaciji 2:

struct VertexInput ({
@location(@) position: vec3f,
@location(1l) texcoords: vec2f,
@location(2) normal: vec3f,

struct VertexOutput {
@builtin(position) position: vec4f,
@location(1) texcoords: vec2f,
@location(2) normal: vec3f,

struct FragmentInput {
@location(1) texcoords: vec2f,
@location(2) normal: vec3f,

struct FragmentOutput {
@location(@) color: vec4f,

V sencilniku ogliS€ normalo transformiramo z normalno matriko (inverz transponirane
matrike modela), ki je Ze na voljo v strukturi ModelUniforms:

output.normal = model.normalMatrix * input.normal;

V sencilniku fragmentov interpolirano normalo pred uporabo normaliziramo, saj je pri
linearni interpolaciji priSlo do neizogibne spremembe dolZine vektorja:

let N = normalize(input.normal);

DoloCimo Se vektor luci, ki naj bo za zdaj konstanten:

let L = normalize(vec3f(@, 1, 0));

Normalizacija tu sicer ni potrebna, ampak nham omogoca prosto spreminjanje
komponent vektorja brez ozira na njegovo dolzino.

S temi informacijami lahko izraCunamo Lambertov osvetlitveni faktor:
let lambert = max(dot(N, L), 0);
S funkcijo max se izognemo tezavam z negativnim osvetlitvenim faktorjem v primerih, ko

vektor Iuci in normala oklepata topi kot. Z dobljenim osvetlitvenim faktorjem pomnozimo
barvne (RGB) komponente izhodne barve:

let materialColor = textureSample(baseTexture, baseSampler, input.texcoords) *
let lambertFactor = vec4(vec3(lambert), 1);
output.color = materialColor * lambertFactor;

. 4

Na zaslonu se izriSe osvetljen model.
Tockast svetlobni vir

Usmerjeni svetlobni vir lahko nadomestimo s to¢kastim, s katerim lazje nadzorujemo
videz scene. V sencilniku fragmentov bomo potrebovali polozZaj fragmenta na povrsini
modela, ki ga lahko zopet pridobimo z interpolacijo, tako da dodamo ustrezno
interpoliranko na lokacijo 0 in preimenujemo obstojeco izhodno spremenljivko position
V clipPosition (preimenujemo jo tudi v sencilniku oglis¢):

struct VertexInput ({
@location(@) position: vec3f,
@location(1l) texcoords: vec2f,
@location(2) normal: vec3f,

struct VertexOutput {
@builtin(position) clipPosition: vec4f,
@location(@) position: vec3f,
@location(1l) texcoords: vec2f,
@location(2) normal: vec3f,

struct FragmentInput {
@location(@) position: vec3f,

@location(1l) texcoords: vec2f,
@location(2) normal: vec3f,

PoloZaj v globalnih koordinatah izraCunamo z mnozenjem z matriko modela:
output.position = (model.modelMatrix * vec4(input.position, 1)).xyz;
Posodobimo izraCun vektorja L za toCkast svetlobni vir:

let L = normalize(lightPosition - input.position);

Ambientna osvetlitev

Ker je model po dodani osvetlitvi zelo temen, ga lahko dodatno osvetlimo z ambientnim
svetlobnim virom. Obicajno v raCunalniski grafiki simuliramo ambientno osvetlitev tako,
da osvetlitvenemu faktorju priStejemo ambientni Clen:

let ambient = 0.3;
let ambientFactor = vec4(vec3(ambient), 1);

output.color = materialColor * (lambertFactor + ambientFactor);

S tem je izris precej svetlejSi in na videz bolj prijeten.

Na tej toCki bi lahko dodali Se ve€ parametrov Iuci, denimo barvo, slabljenje z razdaljo,
zrcalne odboje ipd., toda te funkcionalnosti prepustimo kot dodatno vajo.

Komponenta luci

Konstantne parametre v sencilniku bi radi zamenijali z zunanjimi, ki jih lahko
enostavneje nadzorujemo, zato bomo ustvarili komponento Iuci in jo pripeli na novo
vozliSCe v sceni.

Najprej ustvarimo komponento luci v datoteki Light. js:

export class Light {

constructor({
ambient: 0,

P= AP A

this.ambient = ambient;

Polozaja lu€i ni treba zapisovati v komponento, saj je temu namenjena Ze komponenta
Transform. Zdaj lahko dodamo Iu€ v sceno:

const light = new Node();
light.addComponent(new Transform({
translation: [3, 3, 3],

})).
light.addComponent(new Light({
ambient: 0.3,

).
scene.addChild(light);

Da bo zgornja koda delovala, uvozimo razred Light.

Luc lahko upodabljalnik sam poiSce v sceni ob klicu funkcije render. 1z lu¢i moramo
nato izlusciti polozaj v sceni in prebrati parameter ambientne osvetlitve:

const light = scene.find(node => node.getComponentOfType(Light));
const lightComponent = light.getComponentOfType(Light);

const lightMatrix = getGlobalModelMatrix(light);

const lightPosition = mat4.getTranslation(vec3.create(), lightMatrix);

Parametre osvetlitve bomo sencilniku podali prek uniforme, ki vsebuje polozaj in
ambientni faktor:

struct LightUniforms {
position: vec3f,
ambient: f32,

Uniformo dodamo kot zunanji vir in ji dodelimo skupino 3 in Stevilko vezave O:

@group(3) @binding (@) var<uniform> light: LightUniforms;

Konstantne faktorje lahko zdaj zamenjamo z uniformo:

let L = normalize(light.position - input.position);
let ambientFactor = vec4(vec3(light.ambient), 1);

V upodabljalniku moramo lugi prirediti skupino vezav in medpomnilnik uniform, kar
lahko storimo v novi funkciji prepareLight:

prepareLight(light) {
if (this.gpuObjects.has(light)) {
return this.gpuObjects.get(light);

const lightUniformBuffer = this.device.createBuffer({

size: 16,

usage: GPUBufferUsage.UNIFORM | GPUBufferUsage.COPY_DST,
3.

const lightBindGroup = this.device.createBindGroup({
layout: this.pipeline.getBindGrouplLayout(3),
entries: [
{ binding: @, resource: lightUniformBuffer },
1,
1)

const gpuObjects = { lightUniformBuffer, lightBindGroup };
this.gpuObjects.set(light, gpuObjects);
return gpuObjects;

Funkcijo klicemo v funkciji render, kjer zapiSemo prej pridobljene parametre v
medpomnilnik uniform:

const { lightUniformBuffer, 1lightBindGroup } = this.preparelLight(lightComponen
this.device.queue.writeBuffer(lightUniformBuffer, 0, lightPosition);
this.device.queue.writeBuffer(lightUniformBuffer, 12,

new Float32Array([lightComponent.ambient]));
this.renderPass.setBindGroup(3, lightBindGroup);

w »
Animacija luci

Kot zanimivost lahko lu¢ tudi animiramo, saj gre za objekt tipa Node, ki vsebuje
komponento Transform. Dodamo ji lahko denimo linearno gibanje preko komponente
LinearAnimator. Najprej jo uvozimo:

import { LinearAnimator } from 'engine/animators/LinearAnimator.js';

Nato komponento dodamo Iuci:

light.addComponent(new LinearAnimator(light, {
startPosition: [3, 3, 3],
endPosition: [-3, -3, -3],
duration: 1,
loop: true,

1)

Vidimo, da se poloZaj lu€i spreminja in da se gibanje odraza tudi pri izrisu.

Naloge

1. Program dopolni tako, da bo lu¢ imela tudi barvo.

2. Lambertov osvetlitveni model dopolni s Phongovim modelom za upodabljanje
zrcalnih odbojev svetlobe. Poleg polozaja IuCi bo sencilnik potreboval Se polozaj
kamere. Za zrcalni odboj svetlobe si lahko pomagas s funkcijo reflect.

3. ToCkasto luc€ spremeni v reflektorsko, tako da ji dodas zorni kot. Smer luci je
doloCena z njeno lokalno transformacijo. Sencilnik fragmentov naj glede na zorni
kot lucCi preveri, ali je fragment osvetljen ali ne.

4. Sencilnik posodobi tako, da bo sprejemal 4 Iu€i (uporabi array). Upodabljalnik naj
v grafu scene poisce 4 luci oz. uniforme manjkajocCih luci nastavi tako, da ne
vplivajo na osvetlitev.

