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Abstract. This paper presents a comparative evaluation of two state-of-
the-art deep-learning-based generative methods, NeuralMaterial and Ma-
terial GAN, for material generation in 3D modeling application — Blender.
For comparison, we introduce a baseline method developed using only
tools available in Blender. A user study involving 20 participants, in-
cluding both experts and lay users, was conducted to assess usability
and effectiveness. Participants engaged in a material authoring task,
evaluating all developed approaches. Usability was evaluated using the
System Usability Scale (SUS) questionnaire, and material fidelity was
validated by comparing user-created materials to target scene renders
using Learned Perceptual Image Patch Similarity (LPIPS) metric. Users
are able to achieve the desired results with a similar level of precision
as with the existing tools but with higher editability. Results also show
preference differences between lay and expert users on which approaches
they prefer and why. Our research provides valuable insights into deep-
learning-based material generation integrated into everyday workflows. It
highlights the importance of considering user preferences and expertise
levels when designing such workflows. By comparing performance and
usability, we inform the development of more effective and accessible
material generation techniques within the field.

Keywords: Procedural materials - 3D modeling integration - generative
models - user study.

1 Introduction

Creating and editing materials in 3D modeling workflows poses significant chal-
lenges, as illustrated by several recent publications in the field. While numerous
papers have proposed methods to support material acquisition and editing, they
often overlook the crucial aspect of user experience. This paper investigates
how modern deep generative models can enhance existing pipelines for material
generation, focusing on improving usability in everyday 3D modeling workflows.
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Photorealistic rendering is essential in various industries, including film, video
games, and advertising, where convincing virtual scenes captivate audiences.
Traditionally, physically accurate rendering methods have been developed to
simulate light interactions with 3D models, ensuring realistic visual outcomes.
However, acquiring accurate optical representations of materials can be labor-
intensive and expensive, often requiring controlled photography setups or intricate
measurement devices. In such cases, the Physically Based Rendering (PBR) [28,23]
can be used to render the images (e.g., IKEA often uses such approach in their
catalogues [13]).

To address these challenges, simpler representations of PBR materials have
been introduced in 3D graphics software. Despite sharing a theoretical foundation,
these systems differ significantly in their user interfaces and workflows. This
research aims to bridge the gap between existing approaches and modern machine
learning techniques to enhance material generation and editing processes.

A very precise but complex method for extracting the optical properties
of materials needed for photorealistic rendering requires a large number of
deliberately taken photographs with predetermined positions of the object and
the camera in a controlled environment. There are datasets of carefully measured
Bidirectional Reflectance Distribution Functions (BRDF) of materials, such as
the MERL BRDF Database [21], which contains 100 different materials. Such
datasets can be acquired using methods similar to one presented by Dupuy and
Jakob [7], which uses a custom goniophotometer. This approach provides very
high precision results much faster, which is crucial for the deeper study of light
phenomena but is often meaningless for commercial applications. For this reason,
many 3D applications support simpler representations of PBR materials, very
often following Disney’s [22], NVIDIA’s [26] or Industrial Light & Magic’s [34]
implementations. Although many of these systems have a similar theoretical
basis, the user interfaces for setting their parameters and how they affect the
material properties can be very different.

In our research, we were interested in the shortcomings of the existing ap-
proaches and how they could be improved with the help of state-of-the-art
machine learning methods. We focused on the field of Spatially Varying Bidirec-
tional Reflectance Distribution Function (SVBRDF) capture, where researchers
proposed neural network models to extract material textures directly from flash
photos. To accurately compare two of the most promising machine learning
approaches Material GAN [11] and NeuralMaterial [12], we implemented them as
an add-on for Blender® and analyzed their usability through a user study. We
also implemented a baseline approach using only the Blender built-in tools [3].
All three implementations offer a form of procedural texture generation from
flash photos and a simple form of editing that requires no knowledge of PBR
principles.

To assess the usability of these approaches, we conducted an extensive user
study involving participants with varying levels of expertise in 3D modeling
software. The study utilized a survey to capture users’ prior knowledge and

3 https://www.blender.org


https://www.blender.org

Title Suppressed Due to Excessive Length 3

experience alongside the widely accepted SUS questionnaire [1,18]. Participants
were tasked with populating a given 3D scene with materials closely matching
reference materials in a target scene generated by each approach. User perfor-
mance, including task duration times, the accuracy of the results, and qualitative
observations, were recorded and analyzed.

By evaluating the user experience and effectiveness of different material
generation approaches, this research aims to advance the understanding of how
machine learning models can enhance usability and efficiency in everyday 3D
modeling workflows. The contributions presented in this paper are:

— New publicly available Blender add-on with a user-friendly interface for
supporting deep-learning-based material extraction and editing workflows
(see our GitHub repository?).

— Integration of two state-of-the-art generative material models in our add-on
with additional editing options and additional deep-learning-based support
tools (i.e., texture upscaling).

— A user study methodology for analyzing the usability of integrated approaches
on a material editing task and a comprehensive user study for evaluating the
usability of deep generative material models in practical applications.

2 Related Work

The problem of material acquisition is a small subset of the inverse rendering prob-
lem, which represents a 3D virtual scene in a way that allows to photo-realistically
re-render novel views. Recent advances in deep learning methods, as outlined
in a survey on intrinsic image decomposition [9], have demonstrated significant
progress with the use of neural networks as universal scene approximations and
as differentiable renderers. The latter is particularly noteworthy as it allows for
end-to-end inverse estimation for a wide range of scene parameters based on PBR
principles. This also leads to significant improvements in the material acquisition
from flash photos. To solve a more complex problem, Prakash et al. [30] have
recently presented an approach for estimating materials for the whole scene. To
estimate the material specularity Jin et al. [16] integrate reflectance guidance
and shadow /specular aware learning. Lately, scientists have tackled the complex-
ities of reconstructing scenes from images using Neural Radiance Fields (NeRF)
models [25,20]. These models have the capacity to modify different aspects of the
extracted scene, such as materials using the learned latent space. The significance
of these capabilities underscores the need for further investigation through user
studies, aligning with the methodologies we design in our work.

2.1 User Studies in Al-supported design problems

Assessing the usability of machine-learning-supported tools in practical appli-
cations is a complex endeavor, requiring the integration of a neural model that
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generates high-quality textures at satisfactory image resolutions and a user-
friendly graphical interface offering good functionalities. Some of the described
work briefly included user study assessments to support their findings, but these
assessments often received limited attention, resulting in an incomplete under-
standing of the applicability of Al-supported design tools. Our investigation
emphasizes evaluating deep generative material models in practical workflows to
show their most important practical contributions.

Considering work focused on high-level design problems, such as authoring
PBR materials, Shimizu et al. [33] created a framework for building parameterized
design tools in high-dimensional design spaces. The building blocks of their
framework are design adjectives, which are machine learning models of user
intent for a guided exploration of high-dimensional spaces. They evaluated the
usability of their framework with a user study, where users performed three
design tasks, two using their framework and one using a baseline configuration
with sliders. Results showed that adjectives support the exploratory design and
provide a better approach than the baseline approach. We partly followed their
design in our user study, where we similarly mimicked two machine-learning-
based approaches supported with a sequential gallery user interface. However,
because our research focused on both experienced and inexperienced users, we
had to adapt the baseline method with a slider interface to offer only simple
interpolations instead of full parameter control. The idea behind our sequential
gallery interface for latent space exploration is closely related to the proposed
novel user-in-the-loop optimization method presented by Koyama et al. [17].
Their approach uses sequential plane search based on Bayesian optimization,
where users can easily zoom into and out of the extracted latent space plane. It is
also worth mentioning that both methods, while highly applicable to established
parameter spaces, are not directly intended for the latent space exploration of
learned machine learning models.

Comparatively, our work builds from the established ideas in Al-supported
design interface tools. Unlike previous work, we comprehensively evaluate the
usefulness of state-of-the-art material models in practical applications.

Most importantly, we perform a comprehensive user study, tracking users
performance and satisfaction when using each integrated pipeline on a simple
material editing task. This has been only partially analyzed in some of the
mentioned material-editing approaches like [41,40] and some of the material
modeling papers [12,15], but without a proper comparison across different editing
models and without comprehensively analyzing differences in usability for both
novice and expert users.

7

3 Methodology

Our research aims to evaluate the practical user application of machine-learning
approaches for material generation. Often, these approaches lack proper analysis
in real-world scenarios, where user experience relies on seamless integration
into graphical user interfaces. To address this, we implemented interfaces for
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three material generation methods, two using deep generative models and a
baseline method. We designed these interfaces to minimize differences between
the methods, allowing us to focus on variations in functionality between two
machine-learning-supported approaches and the baseline approach. Our main
objective was to compare the benefits and drawbacks of machine learning pipelines
to a baseline. While designing the interface, we prioritized simplicity to observe
variations in user experience between two distinct groups: lay users with no
prior knowledge of PBR principles and industry experts. Our user study aims
to offer valuable insights into the practical requirements of material artists and
potentially uncover intriguing pathways for the future design of user experiences
incorporating machine learning.

3.1 Designing material add-on workflows

We decided to keep the baseline approach simple because introducing any addi-
tional complexity would prevent us from including lay users in our study. After
exploring some of the community-developed add-ons and tools, we found a fully
integrated approach by Pathik [27], which uses only the baseline shader node sys-
tems. His very simple pipeline can extract material textures like albedo, specular,
roughness, and others directly from photos with automatic image transformations
and mathematical operations. For the editing functionality, we selected eight
materials from different categories (wood, metal, etc.) designed by expert Blender
artists, which the user could use for blending with the extracted material. The
blending operation utilized the Miz node offered in Blender, which works as a
simple pixel interpolation of the extracted and selected material. This meant
that the user could modify an extracted material without understanding the
underlying shaders.

The first selected machine-learning-based approach used the Material GAN [11]
model and was shortly presented in the previous section. Again, the approach has
considerable practical limitations and produces textures with a resolution of only
256 x 256 pixels. At the time of conducting the user study, the approaches [39,14]
were not yet published, which is why we had to find an alternative to combat this
limitation. After performing additional testing, we decided to use an additional
resolution upscaling model [6], which focuses on preserving continuous details
present in the low-resolution input image. This meant that we could generate
higher-resolution textures with a reasonably low amount of artifacts between
different material parameters. A considerably more important decision was how
to utilize the learned latent space of the model for the editing options that
we wanted to provide. Researchers recommended interpolating the selected
material with its randomly sampled neighbors. This provided inconsistent results
for the iterative editing approach we were aiming for because it limited the
overall editing options present in the latent space. In light of that, Shen and
Zhou [32] presented an interesting unsupervised approach, which can be effectively
implemented on various models based on the Generative Adversarial Network
architectures (GAN) architecture. Their approach decomposes the learned GAN
weights in a method similar to principal component analysis and helps extract
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the most semantically relevant latent eigenvectors. We employ this approach to
provide editing capabilities by allowing the user to navigate through the learned
latent space of the model. This navigation occurs around the currently selected
material, with options to move in any of the eight directions corresponding to
the neighboring materials in the material gallery. The neighboring materials
are generated by shifting the current material latent vector by a small step in
the direction of one of the eight extracted vector directions. The step was fixed
and chosen empirically so as not to confuse lay users with additional complex
editing properties. It is important to note that the MaterialGAN model does
not adequately account for variations in rotation among the input flash photos.
Therefore, an additional preprocessing step is necessary to project the material in
the photo onto a plane parallel to the camera. In the research paper, the authors
addressed this issue by capturing flash photos using an A4 paper with a cutout
in the middle for the target material and fiducial marks surrounding the cutout,
which could then be used to compute the necessary projection matrix. Initially,
they utilized the AprilTags [36] fiducial markers, but we found the available
Python implementation to be subpar. As a result, we opted for the approach
presented by Garrido-Jurado et al. [10], which also uses fiducial markers.

For comparison, we implemented another machine learning approach Neu-
ralMaterial [12]. This model is based on a more general encoder and decoder
architecture and supports generalization across spatial positions of the material,
which means that it can generate textures of arbitrary resolution. More impor-
tantly, the authors present learned latent space interpolations examples, showing
more consistent color reproductions than the Material GAN model. Because the
model is learned by integrating a random infinite noise field, it can also generate
different variations of the same material using different seeds, which is another
editing option that we integrated into our workflow. At the time when the user
study was conducted, this proved to be one of the most versatile generative
models in material generation research.

3.2 Blender add-on implementation

We implemented the three approaches described above within Blender due to
its popularity and open-sourced nature. Our add-on was developed in Python
using Blender’s Python API [3], which allows for the seamless integration of
custom user interface components inside Blender. This grants access to most of
Blender’s functionalities through convenient function wrappers. Throughout the
development process, we adhered to the add-on development guidelines provided
by the Blender Community, which encompassed recommendations on code style,
utilization of the integrated Python environment, and add-on compatibility.
We created a unified interface (Figure 1 shows the Material GAN implementa-
tion) where the user can select the approach from a drop-down menu and is then
provided with the appropriate material extraction and editing options. Following
the ideas of papers on design interfaces [33,17], we decided to implement our it-
erative editing approaches as a sequential material gallery interface. The baseline
approach does not support a similar interpolation style. Blender Python API
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restricts executing the shader pipeline in a separate thread, preventing us from
creating eight neighboring materials in the add-on without blocking the program’s
user interface. Because of this limitation, we had to change the interface for the
baseline approach to a simple slider with a drop-down selection of interpolation
materials. For both of the machine learning approaches, the material is extracted
from a flash input photo, and the user can select a material from a gallery of
eight generated neighboring interpolated materials. On each traversal step, new
neighboring materials are generated, which offers the user infinite editing options,
regardless of the selected approach.

Fig. 1: User interface of the Blender add-on. On the left are the parameters of
the selected approach and the neighboring materials image gallery. On the right
is a scene the user should populate with generated materials which should be as
close to the target ones as possible with the selected approach.

3.3 User study methodology

Our study focused on evaluating the efficacy of machine learning techniques in
material extraction and editing tasks within real-world workflows compared to a
baseline approach. To achieve this, we conducted an extensive user study that
replicated practical material design scenarios. We also analyzed the correlation
between participants’ previous experience in physically-based computer graphics
tasks and their utilization of all three available workflows. The study consisted
of three material editing tasks in which participants used a specific workflow
in our Blender add-on to fill a Cornell box scene, seen in Figure 2, containing
four objects with materials that matched a target scene as closely as possible.
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Since material extraction varies from approach to approach and takes a long
time, we presented participants with a list of 20 pre-generated materials. Then
participants were asked to edit the scene using each implemented approach. We
measured task completion time and accuracy using LPIPS [38] and obtained
feedback on the usability of each approach using the SUS. We also gathered
participants’ demographic data and information about prior experience with 3D
computer graphics, material creation, and editing tasks. We formulated several
hypotheses to guide our research:

— H1: All of the implemented approaches will be suitable for use for material
design tasks (SUS score will be equal or better than “OK”).

— H2: Participants prefer machine learning approaches because of more editing
options.

— H3: Participants will rank the baseline approach with the highest usability.

Fig. 2: The provided initial Cornell’s Box scene with target objects without
materials.

Participants We recruited a diverse group of 20 participants with varying
experience levels in 3D computer graphics and material design tasks. The group
consisted of 17 male and 3 female participants. Of the 20 participants, 10 were
between 18 and 24 years old, 2 were between 25 and 34 years old, 4 were
between 35 and 44 years old, and 4 were between 45 and 54 years old. The
participants also had different levels of education: 10 participants had graduated
from high school, 3 participants had completed professional higher education,
2 participants had a bachelor’s degree, 1 participant had a master’s degree,
and 4 participants had a doctoral degree. Participants’ educational backgrounds
included various qualifications, working in higher education, game development,
and graphical design studios, which ensured a well-rounded perspective during
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the study. Concerning prior knowledge of PBR principles and experience with
material design tasks, 10 participants were classified as experienced users and 10
as inexperienced.

Task Implementation We performed our user study during quarantine and
held online sessions with individual participants. Both the moderator and the
participant connected to a remote computer with a pre-prepared environment.
To better understand users’ workflow, we used screen recording during each
online session. First, participants had to fill out a short list of questions regarding
their demographic background, completed level of education, prior experience
with 3D computer graphics, and material design tasks. We prepared the target
scenes for the material editing tasks by utilizing only the tools offered by each of
our implemented approaches to ensure that the participants could achieve the
provided target.

After completing the initial survey, participants proceeded to the three design
tasks. Each required them to watch a brief video demonstration showcasing the
processing options. This video aimed to give participants a visual understanding
of the available functionalities and parameters and how they could be used.
Afterward, participants were asked to provide feedback on the demonstration’s
clarity and task instructions. The order of tested workflows was selected at
random.

Fig. 3: List of pre-generated materials and target scene for the baseline method.

Next, they started working on processing materials for the empty scene. They
had an image of the target scene they were trying to recreate and a list of
pre-made materials they could choose from, shown in Figure 3.

During editing, the 3D scene was updated in real-time as participants applied
and edited new materials. In the case of the machine learning approaches, partic-
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ipants were also offered previews of each selected material in the material gallery
as renders of flat exemplars under flat flash lighting.

After completing the given design task, participants were asked to complete
a SUS questionnaire to measure the suitability and usefulness of the provided
workflow. After completing all three tasks, participants were also asked to rate
the usability and to provide additional comments for each approach. A detailed
User Study Plan and the instructions provided to the participant can be found
in the Supplemental material.

A moderator was present throughout the user study to assist participants
with further questions. In addition, because the study sessions were conducted
online and with each participant individually, participants were asked to think
aloud while completing the tasks, which gave us additional insight into their
experience.

3.4 User study design

The independent variable in the user study was the implemented approach used
for the task. The three tested approaches described in Section 3.1 were the baseline
approach Algorithmic, and the machine learning approaches, Material GAN and
NeuralMaterial.

The measured dependent variables were: task completion time, task accuracy
measured as the perceptual similarity between the target and edited scene
rendering, and the SUS score on a scale from 0 — 100.

Completion time was measured as the time required to complete each
design task, from the point at which the user opened the Blender program to the
point at which the scene was saved. In a few cases, functional errors occurred,
which we accounted for by subtracting the time it took to restart the program
from the recorded screen captures.

Task accuracy was measured using LPIPS [38], a measure of the perceptual
difference between two images that focuses on the similarity relevant to humans.
Existing metrics that compare pixels, such as Euclidean distance and Peak Signal-
to-Noise Ratio (PSNR) [37], assume pixel independence and cannot capture
important structural features in images (i.e. blurring causes big Euclidean, but
small perceptual difference). Researchers found the learned internal representation
of convolutional neural models can represent the best approximation of human
perceptual loss. Following this, we used a perceptual loss (LPIPS) as the main
metric for comparing the user-produced rendered image of the scene to the
rendered image of the target scene.

Usability, the most important aspect in our study, was measured using
SUS score, which relies on the verified translation of the original SUS question-
naire [4,18] to Slovene language [2]. Despite being first introduced in 1986 by John
Brooke, it is still widely used due to its simplicity. It consists of 10 questions on
a b-point Likert scale, which alternate between positive and negative sentiment.
Later, researchers presented an extended plausible analysis of the SUS question-
naire results [19]. They identified four key dimensions of usability related to the
SUS questionnaire: perceived complexity, ease of use, consistency, confidence in
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use, and learnability, which could be analyzed by comparing averages of specific
statements to the expected averages given the final score of a system. With this
we could analyze the deviation of each system along the four identified dimensions
gaining further insights into differences in usability between the approaches.

Lastly, we added a set of general questions to obtain participants’ demographic
information and information on their prior experience with PBR material systems.
For each approach, we also added two short questions where users could give
feedback on the clarity of the provided video demonstration and task instructions.
At the end of the session, the participants had to rate all three workflows based
on ease of use and could give any additional comments and feedback. The full
questionnaire is presented in the Supplemental material.

4 Results

We analyzed the user study results from several aspects presented in the following
subsections. Firstly, we checked users’ prior knowledge. Secondly, we evaluated
performance and usability. Thirdly, we analyzed user observations and feedback.
Finally, we analyzed the times it took users to complete the tasks for each
workflow.

4.1 Questionnaire on prior experience and task clarity

Table 1 shows responses to questions about experience and background knowledge,
measured on a 5-point Likert scale. The participants were divided into two groups:
experienced and lay users, based on their scores in the table. To determine the
separation between the two groups, we used a combination of cutoff scores,
particularly focusing on the questions of prior experience in creating and editing
materials, familiarity with PBR principles, and understanding of essential material
parameters. In the second statement, 8 participants completely agreed to have
previously worked on material design tasks, with two partially agreeing and the
rest disagreeing to varying degrees. An even clearer distinction can be seen in
the third statement, where 10 participants completely agreed to be familiar with
the PBR principles, similarly, for the fourth statement, where the number was
even a little bit higher (11).

By analyzing the results, we discovered the most important statements sepa-
rating experienced users from lay users. As seen in Table 1, two visible peaks
are especially visible in the third and fourth statements, which explicitly refer to
their prior knowledge and understanding. Based on a combined cutoff value of 9
for these two statements, we could already divide the participants into groups
of experienced and lay users, each containing 10 participants. Even though we
lowered the focus on prior experience with 3D computer graphics compared to
understanding material design, only 2 participants showed a large difference,
with one having a lot of prior experience but little specific knowledge and the
other having a lot of prior knowledge with little experience. We decided to keep
the first participant with the lay users and the second one with the experienced
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users, as we considered the understanding of material design to be a much more
important aspect of our study.

Table 1: Responses to questions about experience and background knowledge on
a b-point Likert scale.

Statement 1 2 3 4 5

I have worked with one of the 3D computer graphics programs 12
(Blender, Maya, 3ds, etc.) 3 3 3 1 10{

I have used one of the mentioned programs for creating and editing 12
materials 6. 2 2 2 18 {

T am familiar with established PBR principles in computer graphics

I know and understand material parameters such as normals, 12
roughness, specular, and albedo 1 2 4 2 11{

I have created textures for materials from images or photographs Fz

Additionally, after viewing the video demonstration and before beginning
each task, participants were asked to rate the clarity of the task instructions and
video demonstration. Most participants fully agreed that the task instructions
and video demonstration were understandable: 19 for NeuralMaterial, 19 for
Material GAN, and 18 for Algorithmic approach. The rest of the participants felt
that the video demonstration and task instructions were clear enough.

4.2 Performance and usability evaluation

We used a general linear model to assess the possible statistically significant dif-
ferences between the implemented workflows using Analysis of variance (ANOVA)
in terms of the previously defined dependent variables. We calculate average
values (AVG), standard deviations (STD), minimal (MIN), and maximal (MAX)
values for each workflow over responses from all users.

All three workflows yielded a very similar SUS score (p = 0.79669) and
very similar minimum and maximum scores, as can be seen in Table 2 and the
corresponding error plots shown in Figure 4a. This is also true when looking
at the differences between experienced (p = 0.50210) and inexperienced (p =
0.67335) users, with the differences between approaches proving just slightly
more significant in the experienced group. We computed the SUS questionnaire
scores for each user for each workflow based on the presented methodology [1,18].
The interpretation of the SUS score results is based on the guidelines provided in
the methodology.

The task completion time for each task (p = 0.00181) was determined as
the time from the start of the task (starting the prepared Blender environment)
and the end of the task (saving the final scene). The results in Table 3 and the
corresponding error plots in Figure 4b show the baseline approach was consistently
faster than the machine learning-based approaches, with MaterialGAN being the
second fastest and NeuralMaterial the slowest. Differences in task completion
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Table 2: Results showing the average (AVG), minimum (MIN), maximum (MAX)
SUS score for all workflows, their grade, and their standard deviations (STD).

‘Workflow 1 AVG STD MIN MAX 1 Grade
Algoritmic (Baseline) 80.00 16.72 45.0 97.5 A-
Material GAN 80.16 15.09 47.5 100 A-
NeuralMaterial 83.00 15.80 40.0 100 A
Exp. Algoritmic 7725 18.46 48.0 98 A-
Exp. Material GAN 83.50 18.34 48.0 100 A
Exp. NeuralMaterial 86.00 13.60 58.0 100 A+
Lay Algoritmic 82.75 15.25 45.0 98 A
Lay Material GAN 76.75 10.93 63.0 100 A-
Lay NeuralMaterial 80.00 17.95 30.0 100 A-

times between the three approaches remain significant among lay users (p =
0.00164). This is not true for experienced users (p = 0.19600), where there are
no significant differences between the provided approaches.

Table 3: Results showing average (AVG), minimum (MIN), maximum (MAX)
task completion times for all workflows, and their standard deviations (STD).

Workflow J AVG (s) STD (s) MIN (s) MAX (s)
Algoritmic (Baseline) 947.45 399.53 304 1532
Material GAN 1126.3 390.46 584 1938
NeuralMaterial 1430.5 440.65 857 2568
Exp. Algoritmic 901.2 469.09 304 1532
Exp. Material GAN 926.2 277.33 584 1449
Exp. NeuralMaterial 1165.4 267.41 857 1660
Lay Algoritmic 993.7 334.95 555 1466
Lay Material GAN 1326.4 394.93 683 1938
Lay NeuralMaterial 1695.6 426.90 1157 2568

Task completion accuracy (p = 0.05618) was measured as the LPIPS between
the rendered target scene and rendered user scene for each task and each user.
The target scene that the users had to create in each instance was produced with
the corresponding implemented workflow. The results presented in Table 4 and
the corresponding error plots in Figure 4c proved to be very similar between all
three approaches, with the difference being slightly more pronounced in the lay
user group (p = 0.00676) and slightly less pronounced in the experienced user
group (p = 0.54353).

By utilizing the calculated averages for each statement in the SUS question-
naire, we have observed disparities between experienced and lay users regarding
the usability dimensions mentioned earlier: perceived complexity, ease of use,
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Table 4: Results showing average (AVG), minimum (MIN), and maximum (MAX)
LPIPS values for all workflows.

‘Workflow } AVG STD MIN MAX
Algorithmic (Baseline) 0.05374 0.00762 0.04108 0.07365
Material GAN 0.05065 0.01138 0.03060 0.07790
NeuralMaterial 0.05896 0.01273 0.03301 0.09167
Exp. Algorithmic 0.05440 0.00909 0.04246 0.07365
Exp. Material GAN 0.05518 0.01274 0.03060 0.07790
Exp. NeuralMaterial 0.06047 0.01671 0.03301 0.09167
Lay Algorithmic 0.05308 0.00626 0.04108 0.06239
Lay Material GAN 0.04610 0.00808 0.03696 0.06362
Lay NeuralMaterial 0.05745 0.00761 0.04342 0.06599
2500
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(a) Distributions of SUS (b) Distributions of task (c) Distributions of task
scores for each workflow. completion times for each completion accuracy for
workflow. each workflow.

Fig. 4: Error plots for SUS score in 4a, task completion times 4b, and LPIPS
values for all workflows 4c.

consistency, confidence in use, and learnability. This metric provides a basis for
comparing which usability dimensions a particular system ranked lower or higher
than expected based on its final SUS score. In the case of experienced users,
their ratings for the Algorithmic approach were lower than the overall average
of 77.25 in terms of perceived ease of use (68), consistency (68), and confidence
in use (68), with only perceived learnability (80) and complexity (80) being
closer to the average. However, for lay users, their rankings for the Algorithmic
approach aligned with the SUS score of 82.75 in most areas, except for confidence
in use, which was slightly lower (68). For the Material GAN approach, the most
notable discrepancies between lay and experienced users were observed regarding
perceived consistency, ease of use, and confidence in use. Lay users consistently
ranked the system lower (68) than expected in all three dimensions, whereas
experienced users rated it in line (80) with the computed SUS score of 83.5. As for
the NeuralMaterial workflow, both groups ranked the approach lower (68) than
expected in terms of perceived consistency, despite a SUS score of 83.00. Also, lay
users rated the system lower in learnability (68) than anticipated. Experienced
users ranked NeuralMaterial more in line with the computed average SUS score
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of 86.00 in all of the remaining dimensions of usability. A detailed overview of
the calculated thresholds for each statement can be found in the Supplemental
material.

4.3 User observation and feedback

We carried out our user study in private online sessions and analyzed participants’
comments as they worked on study tasks to gain a deeper understanding of their
user experience.

When using the first baseline approach, several users (6) believed that the
options for material editing were extremely limited, but some (3) praised its
simple and fast editing. Two users also commented that they relied heavily on
the provided names of each material when solving the provided task.

While the iterative editing approach in Material GAN received positive feed-
back from many users (8), some (5) raised concerns about the ambiguous editing
directions. Additionally, three users found Material GAN to be more precise but
also more challenging to use than the baseline approach. A few users (3) also
mentioned that they would be more inclined to use this approach if they had more
control over the granularity of the interpolation step. Furthermore, a few users (4)
expressed dissatisfaction with the generated previews displayed in the sequential
gallery, as they believed they didn’t effectively aid in envisioning the material’s
appearance in a new scene. Two participants noted that a faster generation of
new interpolations after each editing step would be necessary for practical use in
an industrial environment.

Concerning the third approach, several participants (7) preferred the enhanced
level of detail provided in the materials. However, several participants (5) preferred
the editing options available in the sequential gallery using the Material GAN
workflow. Additionally, several participants (7) positively commented on the
inclusion of the ability to resize the material’s level of detail according to the
resolution, as well as the option to generate many variations of the same material.
Oun the other hand, some participants (5) remarked that the editing process was
too slow, hindering an efficient iterative workflow.

During the evaluation phase, participants were actively engaged in providing
valuable suggestions aimed at enhancing the workflows and improving the imple-
mented user interface. A prevailing consensus among participants was the desire
for reduced processing times between each editing step, as generating new mate-
rials in the sequential gallery proved to be quite time-consuming. Furthermore,
a commonly shared suggestion involved incorporating the ability to interpolate
established PBR parameters, including roughness, albedo, and specularity, within
the sequential gallery interface. Additionally, participants expressed a need for
finer control and granularity in the scale of interpolation carried out during each
editing step within the sequential gallery.
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4.4 Time analysis of each workflow

We felt it was important to assess task completion times in our study. However,
these correlated strongly with the actual runtime performance of each imple-
mented approach. For this reason, we decided to measure the time for material
creation and the time required for a processing step with each of the implemented
approaches. We measured performance on the computer system on which the
user study was remotely conducted. The system had an AMD EPYC 7v12 CPU,
56 GB RAM, and an Nvidia Tesla T4 GPU with 16 GB of VRAM.

Our measured results are showcased in Table 5, illustrating the average
duration of 10 measured iterations for each step in the material workflows. In the
case of machine learning-based workflows, we assessed the extraction time for a
single input exemplar, employing 1000 epochs of optimization on each integrated
model. Additionally, when measuring the duration of resolution upscaling or
material reseeding with NeuralMaterial, we conducted a comparison targeting a
resolution of 1024 x 1024 pixels.

The duration of individual workflow steps is crucial for its usability and was
also pointed out by several participants in the user study. This step, however,
will be faster with newer hardware and will hopefully positively affect usability.

Table 5: Measurements of average time performance for each step in each of the
implemented workflows (n.a. stands for not applicable).

Image Material Material upscaling or

Workflow formatting (s) extraction (s) editing (s) reseeding (s)

Algorithmic (Baseline) n.a. 28.013 <1.00 n.a.
Material GAN 34.706 383.459 10.430 15.584
NeuralMaterial n.a. 392.525 32.073 7.369

5 Discussion

The study results show that modern deep-learning-supported material extraction
and editing approaches can be integrated into the existing 3D modeling tools
as workflows with high acceptance and usability. Users can achieve the desired
results with similar precision as with the existing tools. This study shows that
there are slight preference differences between lay and expert users on which
approaches they prefer and why.

The study results have confirmed our hypotheses. All the implemented ap-
proaches are suitable for achieving the desired tasks achieving 80.00 (A-) SUS
score on average for the worst performing workflow (Algorithmic), ranking our
implementations as an “above-average system” (confirming H1). The users
prefer the deep-learning-based approaches over the baseline, which not only
results in their higher SUS scores but also their comments, where they praised
the material editing options provided in the sequential gallery and the inclusion of
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the ability to resize the material’s level of detail by the NeuralMaterial approach,
(confirming H2). The users, on average, rated NeuralMaterial with the highest
SUS score — 86.00. This rejects our hypothesis H3. However, while examining
results within lay and expert users, the lay users graded the baseline workflow
Algorithmic with the highest SUS score — 82.75 (partially confirming H3).
Additionally, we observed that preference of the workflow differs between lay
and expert users, the former favoring the baseline approach (Algorithmic), and
the latter favoring the deep-learning-based one (NeuralMaterial). This finding is
something we did not anticipate before conducting the study.

There are still some limitations to our work. Integration of several material
extraction/editing approaches into existing tools limited their functionality to a
set of features that could be directly compared and allowed integration within
comparable workflows. While we took extreme care to make most of their func-
tionalities available, there were still some that could not be implemented. One
such limitation concerns the Algorithmic approach, where the sequential gallery
option could not be implemented due to limitations of the Blender Python API.
Another limitation of the add-on was the lack of ability to offer previews in the
sequential gallery that would better match the given Blender scene. The differen-
tiable renderer included in both machine learning approaches provides the ability
to change lighting settings but cannot account for more complex geometries.
Therefore, we had to design the material preview to only show materials rendered
on a plane, which some users found problematic when trying to envision the
appearance of the material on an object in the user study scene.

The presented study shows that integrating modern deep-learning-based
material extraction/editing approaches into the existing 3D modeling workflows
is possible and meaningful. With further development of technology, optimization
of deep model inference speeds, and explainability of their results, integrating
such approaches will be even more meaningful and welcome to ease and accelerate
the 3D modeling pipelines.

While previous studies compare the results with other selected studies, they
mostly, if at all, only perform user study that explores the usability of the
presented approach as a stand-alone tool and compare it with a certain baseline
method. To the best of our knowledge, this is the first user study that compares
the integration of workflows implementing state-of-the-art deep-learning-based
material extraction and editing approaches as an add-on for a popular and broadly
used open-source 3D modeling software, Blender, and compares them with a
baseline implementation which only uses the functionalities already available in
Blender. This presents a significant novelty and demonstrates how a comparison
of new material acquisition/editing approaches should be made.

6 Conclusion

In conclusion, this paper presents a comparative evaluation of deep-learning-based
generative methods for material extraction and editing in everyday 3D modeling
workflows. The research contributions include the development of a user-friendly
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Blender add-on that integrates two state-of-the-art generative material models
and additional editing options, the development of a baseline approach using
Blender functionalities, and a user study for evaluating their usability.

Through a user study involving experts and lay users, the usability and effec-
tiveness of the implemented approaches were assessed using the SUS questionnaire
extended with additional questions. The results indicate that all implemented
approaches are suitable for achieving the desired tasks, with one of the deep
learning-based approaches (NeuralMaterial) ranking the best. The findings demon-
strate the feasibility and usability of integrating deep learning-based material
generation into 3D modeling workflows. The study emphasizes the importance
of considering user preferences and expertise levels in designing and implement-
ing these approaches. The results provide valuable insights for future research
and development in the field of material generation, paving the way for more
user-friendly and efficient workflows in 3D modeling software.

Similar studies should also be performed to evaluate the option of integrating
deep-learning approaches in other steps of the 3D modeling pipeline, such as
mesh generation from images or NeRFs [35,31], texture generation from text
Text2Tex [5] or even model mesh generation from text, such as Text2Mesh [24],
Text-2-3D [29], or Get3D [§].
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1 Additional related work

1.1 Generative models for material acquisition

Most machine learning methods for material acquisition are designed to predict
a Spatially Varying Bidirectional Reflectance Distribution Function (SVBRDF)
for an exemplar in a set of images. Because of the ill-posed nature of the
problem, due to many different reflectances leading to the same observed image,
researchers focused on introducing a strong prior assumption about the space of
plausible solutions. Many such solutions focused not on a general or semantically
meaningful prior but on using a strong prior learned on synthetic data with
additional optimization for each exemplar [1,2]. These methods often proved
reasonably successful in extracting material textures from a photo but were
poorly applicable to further utilize the learned material latent space for editing.
Furthermore, researchers commented on problematic residual artifacts that appear
in the predicted maps with sharp and saturated highlights in the input flash
photos. Initially, they were also often limited by the resolution of the textures
that the model could learn to output, but this was improved in the follow-up
work [4].

In contrast to the previous models, the Material GAN [8] uses Generative
Adversarial Network architectures (GAN) model based on the StyleGAN2 [15]
and is designed with the latent space optimization in mind. Researchers show
their latent space proves to be more robust and semantically meaningful, offer-
ing interpolations of materials that could benefit established material editing
workflows. The assumption of flat exemplars leads to limitations of the gen-
eral SVBRDF' estimation problem, where flat samples will produce blurring
and ghosting effects in the extracted textures. It also limits output textures to
256 x 256 pixels, but this is also true of the previously described approaches,
which is often an accepted trade-off due to the under-constrained nature of the
problem. Regardless of its limitations the model offers reliable interpolation of
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materials, so we choose to assess it in our study. Limitations of low resolution
and the problem of seamless materials of Material GAN were later addressed by
Friihstiick et al.in the TileGAN [3] model, which combines outputs of GANs
to synthesize plausible large-scale high-resolution texture maps with no visible
boundary artifacts. However, their approach required the model to be trained
separately for different material categories (i.e., brick). Further advancements of
the tileable seamless texture map generation are presented in [21,24].

A later study [9] managed to greatly progress the SVBRDF extraction from
flash photos, presenting an encoder-decoder-based model. For generalization
across the material’s spatial positions, the decoder adds a random noise image as
input, which means the model can generate different variations of the same mate-
rial. The learned latent space also provides a more consistent color reproduction
during interpolation and can output arbitrary-resolution textures. A recent work
by Rodriguez-Pardo et al.presented the UMat [20], which showed the limitations
of the previous model in generating strongly regular patterns (i.e., bathroom
tiles). At the time of our conducted user study, the previous model was still the
most versatile for material acquisition and generation research while showing
significant conceptual differences and editing options to the Material GAN model,
which is why we chose to include it.

A recent noteworthy improvement is presented by Zhou et al. [26] with
PhotoMat, a model trained exclusively on real photos of material samples. During
training, researchers did not rely on supervision but instead trained a neural
material representation model. Because of this, their final model can fit any
analytical material model, which is also tileable by using techniques similar
to TileGAN. A considerable limitation of all described approaches is that we
cannot extract materials from outdoor surfaces lit only by natural lighting. To
address this, Martin et al. [19] propose a hybrid method for extracting SVBRDF
textures from photos lit only by natural light. They accept the trade-off of poor
reproduction of specular material such as metal.

1.2 Procedural material modeling

Procedural material modeling has gained significant interest in most commercial
3D graphics programs, largely due to its flexibility, compactness, and semantically
meaningful editing options. For this reason, much of the state-of-the-art research
has focused on solving the differentiable rendering [16] problem concerning
estimating the procedural material parameters from photographs.

The problem was initially approached as a model optimization, as was shown
for fabrics rendering [25,18]. Guo et al. [7] propose a more general solution
using a Bayesian framework, precisely defining the posterior distribution of the
parameters given the captured data but using only a small subset of authored
procedural graphs. While this offers better editability, it requires the user to select
an appropriate initial graph. A similar approach was extended with automatic
graph selection by Hu et al. [11]. A more extensive approach by Shi et al.uses
a differentiable procedural material method MATch [23], built on top of a new
model library named DiffMat, which can reproduce the compositing graph system
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with auto-differentiation support. The approach provides an automatic material
selection model that identifies procedural graphs that best represent the input
photo from a given set of 88 graphs. Focusing on the limited set of graphs in
previous approaches Guerro et al.present MatFormer [6], which produces simpler
graphs created from scratch with unconditional material generation and offers
light-guided authoring from initially selected nodes.

Several methods showed the benefits of developing a semi-procedural approach,
which partially relies on data-driven SVBRDF texture extraction in combination
with a simpler generated procedural graph. Guehl et al.present a semi-automatic
approach [5] that defines a generic Point Process Texture Basis Function (PPTBF)
designed to encapsulate a large span of common spatial stochastic structures.
While this approach does not support a complete material extraction from
flash photos, it offers many editing options, such as cross-material interpolating
structural patterns. Zhou et al. [12] introduce a semi-procedural generation model
resembling classical generative methods more closely. It combines procedural
properties from input noise and patterns with learnable convolutional filters,
making it exceptionally fast and robust for material optimization. Although it
lacks fine-grained procedural graph editing, it supports easy adjustments to input
noises and guide maps for material properties with minimal fine-tuning.

1.3 Material Editability

Modern material authoring workflows can be improved with machine learning
models on the material editability level. Procedural models can inherently offer
easier editability as long as the generated graphs can be easily understood.
Utilizing the ideas of Guehl et al. [5], Hu et al. [14] present a pipeline for inverse
procedural modeling of SVBRDF maps. They add a system for decomposing
SVBRDF maps into multiple easily editable sub-materials, which rely on PPTBF
masks and show better results than the MATch approach. They still cause some
failure cases with semantically meaningful structures (i.e., bathroom tiles).

Zsolnai-Fehér et al.consider editability with a user learning-based system [27]
for rapid-scale material synthesis. Learning is implemented using the Gaussian
Process Regression (GPR), which leverages scores the user assigns to each
material in a gallery user interface. Additionally, users can fine-tune a material
with latent space variant generation. A short user study showed big improvements
in the time required for both novice and expert users to select and generate 100
materials. Hu et al.present DeepBRDF [10], a deep-learning-based representation
of measured Bidirectional Reflectance Distribution Functions (BRDF')s with high
recovery. The authors designed another deep neural network to automatically
estimate BRDF parameters from an input image. Like the previous approach,
DeepBRDF allows exploring a low-dimensional manifold with a smooth transition
of the BRDF's defined by its parameters.

The previous methods rely on iterative design steps, but image editing tech-
niques can inspire a more efficient approach to material editing. Zsolnai-Fehér et
al.introduce a material editing technique [28] using intuitive image transforms,
such as colorization and image in-painting. This method improves editing times
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for both novice and expert users but shows limitations with strongly localized
edits and limited integration with popular SVBRDF extraction methods.

Recently Hu et al. [12] proposed an interesting extension of the unconditional
procedural graph generation model MatFormer. It retains unconditional graph
generation but allows generation conditioned by text or image prompts. This
would be particularly useful for novice users with less experience in visual design
by relying on material naming conventions during the generation process.

The tileable version of the MaterialGAN, TileGAN, was a great inspiration
for Hu et al.to adapt the model for additional editing options [13]. Their approach
supports transferring the micro and mesoscale texture details from two target
materials to the input material. Because of the unconstrained nature of possible
edits, the appearance transfer may fail when used on materials with very different
parameters (i.e., gray rock and shiny metal).

Editing options developed for our Blender add-on have the most in common
with the last by-example editing approach. We wanted to examine different
generative material models, so we offered a common user interface for both
integrated pipelines as a sequential gallery editing interface. The two previous
papers on material editing are either not directly applicable [27] to our approach
or too complex for novice users [28].

1.4 Representing material appearance

Building material appearance similarity measures is crucial for efficiently train-
ing deep learning models for material properties and defining meaningful and
user-friendly editing. Lagunas et al. [17] trained a model for measuring mate-
rial similarity on a large crowd-sourced experiment to extract human material
similarity judgments. This learned feature space correlates strongly with the
perceived appearance similarity, which offers many applications such as clustering
materials or providing material suggestions for the output of SVBRDF extraction
models. This was further analyzed by Serrano et al. [22], who collected a large
dataset of perceptual ratings of appearance attributes and not only their direct
similarity. The participants had to rate attributes such as glossiness, sharpness
of reflections, contrast of reflections, metallicness, lightness, and anisotropy on
each image, focusing on the main object. Both papers offer important insights
into understanding different components contributing to human understanding of
material appearance. Most importantly, they show inherent differences between
popular established parameters of Physically Based Rendering (PBR) models
and their correlations with our visual understanding of materials.

1.5 User Studies in Al-supported design problems

Assessing the usability of machine-learning-supported tools in practical appli-
cations is a complex endeavor, requiring the integration of a neural model that
generates high-quality textures at satisfactory image resolutions and a user-
friendly graphical interface offering good functionalities. Some of the described
work briefly included user study assessments to support their findings, but these
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assessments often received limited attention, resulting in an incomplete under-
standing of the applicability of Al-supported design tools. Our investigation
emphasizes evaluating deep generative material models in practical workflows to
show their most important practical contributions.

2 Additional results for the computed thresholds of the

SUS questionnaire

Table 1: Computed thresholds for each statement of the SUS questionnaire.

Statement

Exp.

Exp.

Exp.

Lay

Lay

Lay

A

AN Neural

al Algori

AN N

Thresholds for an

Thresholds for an

above average system (80) average system (68)

I think that I would
like to use this sys-
tem frequently.

3.30

3.80

3.90

>3.80

>3.39

I found the
unnecessarily com-
plex

stem

1.80

<185

<2.44

I thought the sys-
tem was easy to
use

4.20

>3.67

I think that T would
need the support of
a technical person
to be able to use
this system.

1.70

1.80

1.60

1.30

I found the various
functions in this
system were well in-
tegrated.

3.90

4.50

4.20

3.90

3.80

>3.96

I thought there was
too much inconsis
tency in this sys-
tem.

2.00

1.80

2.00

2.00

<2.20

I would imagine
that most people
would learn to use
this system very
quickly.

4.30

4.40

4.40

4.10

>4.19

I found the sys-
tem very cumber-
some to use.

<1.66

1 felt very confident
using the system.

3.80

4.30

4.00

3.90

4.30

>4.25

>3.72

I needed to learn a
lot of things before
1 could get going
with this system.

1.30

1.30

<1.65

<2.09
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3 User Study Plan

Exploring the usability of different implemented
approaches for creating and editing materials in
Blender

Overview

In the following document, We will summarise the plan to conduct the research user study
on the usability of different approaches for creating and manipulating physically-based
materials in Blender. In it, we want to investigate whether new methods for creating materials
based on flash photos ease the established design workflows and discover what advantages
and disadvantages they bring to the creation pipeline of new materials.

The methodology

At least 7 users are expected to participate in the study, and the testing will take the form of
web conferences with each user individually. The moderator and the user will be connected
to a remote computer on which the necessary software will be available. Information will be
collected on the testing process, and user satisfaction during use, and users will also provide
demographic information, educational level, and previous experience of working with 3D
modeling software before starting to solve the user study tasks.

Participants

We will select a small group of participants between 7 and 25. We want to include users with
different levels of prior experience working with 3D graphics software. The interface and
tasks in the study are designed in a way that does not require in-depth knowledge of using
Blender.

Testing procedure

The user study will be conducted in the form of a web conference, where a moderator and a
user will connect to a remote computer with a prepared Blender instance with the installed
material add-on. The user will be able to consult the moderator in case of confusion about
the task or problems with the software.

The moderator will record comments and observe the user's work as the testing
progresses.

The testing process will be recorded using screen capture. The user will be made
aware that the following recordings will not be made public and will only be used to facilitate
analysis of the testing results. Before testing, the user will therefore be asked to sign a
document agreeing to the screen recording.

Before starting the tasks, each participant will complete a short questionnaire
covering demographic questions and questions on background and previous experience



working in 3D modeling software (Blender, Maya, etc.). The task sets will be defined for the
individual approach presented in the addon. On the remote computer's desktop, a PDF
document will contain the task descriptions for each set and pre-prepared photographs and
some materials in separate folders for each approach.

Testing will consist of three sets for each of the implemented approaches, with the
user familiarising themselves with each approach through a short 2-minute video before
starting to solve the provided task. With the moderator, the user will have 3 minutes to read
the instruction for the prepared task. Testing will then begin, where the individual will face
one longer task utilizing the provided approach. We will track the task completion times for
future analysis. The order of tested approaches will be selected at random.

At the end of each session, the participant will also complete a short questionnaire
concerning their observations and satisfaction with using each tested approach. This
questionnaire will be a standardized System usability scale questionnaire. After completing
all three tasks, a final questionnaire will be administered to the participants on the overall
process of testing and using the Blender add-on.

Roles

User

Participates in a user study according to the moderator’s instructions. While completing the
provided tasks, they try to give feedback through a ‘think aloud’ approach. After the testing is
completed, they are encouraged to express any comments about the usage of a given
workflow. They are interested in computer graphics but do not require prior knowledge of 3D
computer graphics programs.

Moderator

Before starting, the moderator explains the purpose and objectives of the user study to the
participant. Before each set of tasks, they review the instructions with the user and clarify
any potential uncertainties. During the testing process, they record the user's work and
comments and assist to a reasonable extent in case of major difficulties.

Tasks

The testing will be divided into three sets for each approach (Material GAN, Algorithmic, and
NeuralMaterial). The user will be tasked with selecting and editing materials in a given
Cornell’'s box scene.

Each of the three sets is expected to cover a task lasting up to 20 minutes. The task
instructions will be provided in a desktop file available on the remote computer, where the
testing will take place. In the tasks, the user will attempt to fill a scene of 4 objects without
materials (default white material): torus, block, sphere, and Suzanne (the signature Blender
model of monkey head) with materials as close as possible to the target depiction of the
scene. The time taken to complete each task will be recorded. The tasks will have an
estimated completion time, but the user will be allowed to exceed it if necessary. The
moderator will compare the user's work at the end of the testing by comparing the 3D scene
renderings on which the user worked with the depiction of the target scene provided in each



set. One of the formal approaches for image comparison (e.g., PSNR, SSIM, LPIPS) will be
used to analyze the accuracy of the user's work.

After each set is completed, the user will complete the System Usability Scale (SUS)
questionnaire, which provides a simple way to evaluate the usability of user interfaces. It
consists of ten statements where the user marks the degree of agreement on a 5-point Likert
scale.

After the testing is completed, the participant will be able to share any additional
comments on the usage of different workflows and provide possible recommendations to the
addon user interface.

Metrics

The following metrics will be used to assess the performance of individual workflows:
e Accuracy of the user’s reproduced scene compared to the target depiction.
e Duration of completing individual tasks.
e User's rating of usability and appropriateness of the interface.

Addressing critical implementation failures

During the problem-solving process, various issues related to the use of the developed
add-on for Blender may arise. These issues will be recorded and addressed based on the
following factors:
e Frequency of occurrence of issues:
e High: more than 30% of users have encountered the issue,
o Medium: 11%-29% of users have encountered the issue,
e Low: 10% or fewer users have encountered the issue.

e Consequences of critical issues:
Based on their impact on task resolution and interface usage:
e High: The user was unable to complete the task due to the problem.
e Medium: The user's work was significantly slowed down by the error.
e [ow: Task resolution was not hindered by the issue.

Review of results

The research paper will include a detailed record and analysis of the research results. It will
encompass a comprehensive review of the surveys as well as the participants' performance
in solving tasks. In addition to the obtained research conclusions, opinions on the
advantages and disadvantages of the approaches, as well as recommendations for
improving the interface implementation, will be expressed. Furthermore, a part of the
reflection will be devoted to new emerging approaches in the field.
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4 User Study Instructions

Instructions for User Study of
Physically Based Material Systems

Introduction

In our research, we focused on comparing various established approaches for creating and
editing physically based rendering (PBR) materials. For the purpose of the research, we also
developed an add-on for the Blender program that includes three different approaches for
working with PBR materials. Two approaches rely on machine learning and allow users to
extract textures required for physically-based rendering from flash photos. The add-on also
provides an alternative approach to material editing, where users can choose materials from
a gallery with different sets of parameters instead of manually changing textures or adjusting
parameters. The third approach is based on a simple algorithm for extracting textures from
photographs and interpolating them with certain materials in Blender.

Before starting the tasks, please fill out the first page of the attached questionnaire, which
includes some demographic questions and questions related to your prior experience with
3D computer graphics programs.

In the following tasks, you will be using 20 pre-prepared materials. You can see their
appearance in the image below, arranged in alphabetical order corresponding to the folders
in which they are located on the computer.






Algorithmic Workflow

To begin, you will watch a short video demonstrating all the steps for working with the
Algorithmic approach. The video is located in the Algorithmic folder on the desktop. After
watching it, please read the instructions of the task and a summary of workflow steps below,
and answer the questions in the survey section titled Pre-Testing. Once you have
completed the task, please fill out the survey questions in the Post-Testing section.

Summary of workflow steps:

1. Select an object in the scene using the camera view on the right side of the screen.

2. Choose the Algorithmic generation approach from the Material System Select
dropdown menu in the addon interface on the left.

3. Open the browser by clicking on the icon and navigate to the
D:\materials\Algorithmic folder.

4. Select one of the pre-prepared materials from the folder by clicking on the preview
image in the browser on the Select folder with data.

5. Below the Generate button, you can choose from 8 different materials to mix with the
currently selected material by adjusting the value in the Mix value field.



Task Instructions

On the desktop, you will find a folder named Algorithmic. Inside it, there is a Blender file
with a prepared environment. Open the file to start working. The goal of the task is to use the
selected approach to try to recreate the scene shown in the image above by selecting and
editing the provided materials. Finally, save the changes in the same Blender file.



Material GAN Workflow

To begin, you will watch a short video demonstrating all the steps for working with the
Algorithmic approach. The video is located in the Material GAN folder on the desktop. After
watching it, please read the instructions of the task and a summary of workflow steps below,
and answer the questions in the survey section titled Pre-Testing. Once you have
completed the task, please fill out the survey questions in the Post-Testing section.

Summary of workflow steps:

1.
2.

3.

Select an object in the scene using the camera view on the right side of the screen.
Choose the MaterialGAN + LIIF generation approach from the Material System
Select dropdown menu in the addon interface on the left.

Open the browser by clicking on the icon and navigate to the
D:\materials\Material GAN folder.

Select one of the pre-prepared materials from the folder by clicking on the preview
image in the browser on the Select folder with data.

To start editing, click the Get interpolations button to generate a gallery of materials.
The generation process takes approximately 15 seconds.

You can then select one of the 8 materials from the gallery interface to replace the
current one by clicking the button just below the desired material. These materials
are generated as interpolations in the material space. You can change the desired
interpolation direction by clicking the Toggle direction button. When selecting a new
material, the generation process will again take approximately 15 seconds.



7. After finishing the editing, you are encouraged to increase the texture resolution by
entering your desired values in the Height resolution and Width resolution fields
and clicking the Upscale material button. Depending on the chosen resolution, the
process will take between 15 to 90 seconds. The recommended resolution is already
selected by default.

Task Instructions

On the desktop, you will find a folder named MaterialGAN. Inside it, there is a Blender file
with a prepared environment. Open the file to start working. The goal of the task is to use the
selected approach to try to recreate the scene shown in the image above by selecting and
editing the provided materials. Finally, save the changes in the same Blender file.



NeuralMaterial Workflow

To begin, you will watch a short video demonstrating all the steps for working with the
NeuralMaterial approach. The video is located in the NeuralMaterial folder on the desktop.
After watching it, please read the instructions of the task and a summary of workflow steps
below, and answer the questions in the survey section titled Pre-Testing. Once you have
completed the task, please fill out the survey questions in the Post-Testing section.

Summary of workflow steps:

1.
2.

3.

Select an object in the scene using the camera view on the right side of the screen.
Choose the NeuralMaterial generation approach from the Material System Select
dropdown menu in the addon interface on the left.

Open the browser by clicking on the icon and navigate to the
D:\materials\NeuralMaterial folder.

. To start editing, click the Get interpolations button, which will generate a gallery of

materials. The generation process takes approximately 30 seconds.

. You can then select one of the 8 materials from the gallery interface to replace the

current one by clicking the button just below the desired material. These materials
are generated as interpolations in the material space with 8 manually selected
directions. You can change the desired interpolation direction by clicking the Toggle



direction button. When selecting a new material, the generation process will again
take approximately 30 seconds.

6. During editing, you can also generate variations of the current material at various
resolutions by pressing the Upscale material button.

7. After finishing the editing, you may also change the texture resolution and detail
scale in the material by entering your desired values in the Height resolution and
Width resolution fields and clicking the previously mentioned Upscale material
button. Depending on the chosen resolution, the process will take between 15 to 90
seconds. The recommended resolution is already selected by default.

Task Instructions

On the desktop, you will find a folder named NeuralMaterial. Inside it, there is a Blender file
with a prepared environment. Open the file to start working. The goal of the task is to use the
selected approach to try to recreate the scene shown in the image above by selecting and
editing the provided materials. Finally, save the changes in the same Blender file.
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5 Full Questionnaire

Study of Physically Based Material Systems

*Required

I.  Terms of agreement*

| have read and agree with the use of screen recording and video conferencing software for the purpose of later
analysis of my own interactions with the developed user interface.

Mark only one oval.

| agree.

| disagree.

2. Gender*
Mark only one oval.

male
female

nonbinary

3. Age”
Mark only one oval.

18-24
25-34
35-44
45-54
55-64

more than 65



4. Level of education achieved

Mark only one oval.

@ trade school

@ high school

@ professional higher education
@ bachelor's degree

Q master's degree

Q doctoral degree

( Other:

5. Knowledge and experience *

For each statement, indicate your level of agreement on a scale from | - 'strongly disagree' to 5 - 'strongly agree,' where 3
represents 'neither agree nor disagree'.

Mark only one oval per row.

| have worked with

one of the 3D

computer graphics Q O D D O
programs (Blender,

Maya, 3ds, etc.)

| have used one of the
previously mentioned

programs for creating O O O O O

and editing materials.

| am familiar with

established
physically-based
rendering principles

in computer graphics.
O O O O O

I know and understand

material parameters such

as normal, roughness, O O O @ O

specular, and albedo.

| have previously

created textures for Q D D Q D
materials from images

or photographs.




Pre-Testing: Algortihmic
6. General questions about the prepared approach *

For each statement, please indicate your level of agreement on a scale from | - "strongly disagree" to 5 - "strongly agree,"
where 3 - "neither agree nor disagree.

Mark only one oval per row.

| am familiar with the
concept of tasks that

| will need to solve. O O O D D

| had enough time to

prepare for the use of
o o o O O

the approach.




Post-Testing: Algorithmic
7. SUS Questionnaire *

For each statement, please indicate your level of agreement on a scale from | - "strongly disagree" to 5 - "strongly
agree," where 3 - "neither agree nor disagree."

Mark only one oval per row.

| think that | would
like to use this system
frequently.

| found the system
unnecessarily complex.

| thought the system
was easy to use.

| think that | would
need the support of a
technical person to be
able to use this system.

| found the various
functions in this system
were well integrated.

| thought there was
too much
inconsistency in this
system.

| would imagine that
most people would
learn to use this system
very quickly.

| found the system very
cumbersome to use.

| felt very confident
using the system.

| needed to learn a lot of
things before | could get
going with this system.



Pre-Testing: Material GAN

8. General questions about the prepared approach *

For each statement, please indicate your level of agreement on a scale from | - "strongly disagree" to 5 - "strongly
agree," where 3 - "neither agree nor disagree.”

Mark only one oval per row.

| am familiar with the
concept of tasks that

| will need to solve. Q @ Q O O

| had enough time to

prepare for the use of
o o O o O

the approach.




Post-Testing: Material GAN

9. SUS Questionnaire *

For each statement, please indicate your level of agreement on a scale from | - "strongly disagree" to 5 - "strongly
agree," where 3 - "neither agree nor disagree.”

Mark only one oval per row.

| think that | would
like to use this system
frequently.

| found the system

unnecessarily complex.

| thought the system
was easy to use.

| think that | would
need the support of a
technical person to be
able to use this system.

| found the various
functions in this system
were well integrated.

| thought there was
too much
inconsistency in this
system.

| would imagine that
most people would
learn to use this system
very quickly.

| found the system very
cumbersome to use.

| felt very confident
using the system.

| needed to learn a lot of
things before | could get
going with this system.



Pre-Testing: NeuralMaterial

10. General questions about the prepared approach *

For each statement, please indicate your level of agreement on a scale from | - "strongly disagree" to 5 - "strongly agree,"
where 3 - "neither agree nor disagree.”

Mark only one oval per row.

| am familiar with the
concept of tasks that

| will need to solve. Q O O O O

| had enough time to

prepare for the use of the
o o o o O

approach.




Post-Testing: NeuralMaterial

I'l.  SUS Questionnaire *

For each statement, please indicate your level of agreement on a scale from | - "strongly disagree" to 5 - "strongly

agree," where 3 - "neither agree nor disagree.”

Mark only one oval per row.

| think that | would
like to use this system
frequently.

| found the system
unnecessarily complex.

| thought the system
was easy to use.

| think that | would
need the support of a
technical person to be
able to use this system.

| found the various
functions in this system
were well integrated.

| thought there was
too much
inconsistency in this
system.

| would imagine that
most people would
learn to use this system
very quickly.

| found the system very
cumbersome to use.

| felt very confident
using the system.

| needed to learn a lot of
things before | could get
going with this system.



Additional
feedback

The testing is over, but you can now provide additional feedback and recommendations.

12.  Comments and recommendations

If you encountered any ideas during the testing on how the implemented approaches could be adjusted for even greater
ease of use, you can write your notes and comments in the field below.

This content is neither created nor endorsed by Google.

Google Forms
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