
Edgebreaker compression for arbitrary meshes

Žiga Leskovec, Matija Marolt, Žiga Lesar
University of Ljubljana, Faculty of Computer and Information Science

E-mail: zl5596@student.uni-lj.si, matija.marolt@fri.uni-lj.si, ziga.lesar@fri.uni-lj.si

Abstract
Edgebreaker is an algorithm for compressing vertex con-
nectivity of triangular meshes by traversing over the tri-
angles and employing a specialized encoding scheme to
represent their connectivity. Edgebreaker notably does not
support non-manifold and non-orientable meshes. This
work focuses on implementing and extending Edgebreaker
to support a wider range of topologies. We provide an im-
plementation capable of losslessly compressing OBJ files
that contain meshes with holes or handles, non-orientable
meshes and non-manifold meshes. The implementation is
capable of compressing roughly a million triangles per
second on commodity hardware.

1 Introduction
To represent a triangular meshes, we typically need a list
of vertices and their connectivity. Typically, we store po-
sitions as 3-tuples of floating numbers and connectivity
with 3-tuples of vertex indices which represent mesh faces
(triangles). While GPUs need these data in an uncom-
pressed form, such a representation is highly redundant
and meshes are usually compressed for storage and trans-
fer to decrease network traffic, speed up data transfers,
and reduce storage requirements.

In this paper, we focus on vertex connectivity com-
pression, more specifically on the Edgebreaker algorithm
described by Rossignac [6]. Edgebreaker is a well-studied
algorithm with numerous extensions and improvements
made over the years. Due to its simplicity, speed, and
efficiency, it has been included in one of the most popular
mesh compression formats, Draco.1 However, the original
formulation has a few limitations on topology, which we
address with an extension presented in this paper.

2 Related work
Triangular mesh compression has been extensively stud-
ied with numerous approaches focusing on connectivity
encoding and attribute quantization. The seminal Edge-
breaker algorithm by Rossignac [6] introduced a highly
efficient connectivity compression scheme for orientable
manifold meshes, achieving near-optimal compression ra-
tes through a clever traversal strategy that encodes the
mesh topology using a sequence of five operations (see

1https://google.github.io/draco/

Section 4). Subsequent improvements include the Wrap &
Zip algorithm by Rossignac and Szymczak [7] and the Cut-
Border machine by Gumhold et al. [2], which further opti-
mized the encoding process and extended the algorithm
to meshes with arbitrary genus. However, these methods
are fundamentally limited to orientable manifold surfaces,
which limits their applicability to practical meshes. Alter-
native approaches such as the valence-driven compression
by Alliez and Desbrun [1] and the spectral compression
scheme by Karni and Gotsman [4] have addressed dif-
ferent aspects of mesh compression but similarly assume
manifold topology. The extension of connectivity com-
pression to non-manifold surfaces was partially addressed
by Gurung et al. [3] using the SQuad data structure. As
highlighted by Maglo et al. [5] in their extensive survey
on mesh compression, even state-of-the-art techniques
still struggle with complex topological structures such as
non-orientable and non-manifold meshes.

Our work builds upon the foundational Edgebreaker
framework while addressing its topological limitations,
providing a unified approach that handles both non-ori-
entable and non-manifold triangular meshes without sacri-
ficing compression efficiency.

3 Half-edge data structure
Edgebreaker uses a half-edge data structure for mesh
traversal. A half-edge is an edge with orientation. The
half-edge that is currently being processed is called the
gate. Two triangles are connected when their shared edge
contains two half-edges with opposing orientation. Each
half-edge has the following fields (see also Figure 1):

• other: the opposite half-edge. When NULL, this
half edge lies on the mesh boundary.

• t_next: the next half-edge in a triangle – this
value can be computed on the fly.

• t_prev: the previous half-edge in a triangle – this
value can be computed on the fly.

• b_next: the next half-edge along the boundary.
• b_prev: the previous half-edge along the bound-

ary.
• v: the vertex in a triangle not contained in the half-

edge, opposite to the half-edge – this value can be
computed on the fly.

We construct the half-edge data structure by adding tri-

https://google.github.io/draco/


Figure 1: The half-edge data structure used in Edgebreaker.

angles one by one and keeping track of added half-edges
(see Algorithm 1).

input :Mesh triangles
output :Half-edges (structure of parallel arrays of

b next, b prev and other)

1 initialize set of added half edges She; initialize
parallel arrays for b next, b prev and other;

2 for each triangle do
3 add all edges as half-edges; connect them to

boundary loop using b next and b prev;
4 for each triangle half-edge h do
5 if opposite half-edge g exists in She then
6 connect boundary loops using b next

and b prev; link half-edges with
other;

7 else
8 add h to She;
9 end

10 end
11 end

Algorithm 1: Construction of half-edge data structure.

4 Manifold meshes
Edgebreaker maintains a stack of gates, which divide the
mesh into distinct parts. Each part is encoded as a se-
quence of operations that can be used to uniquely recon-
struct the mesh. There are 5 basic operations in Edge-
breaker: C, L, R, S and E, illustrated in Figure 2. These
operations describe the relation between a triangle and the
remaining boundary of the mesh as follows:

• C: The triangle is not contained in the boundary
(with the exception of the gate edge). Remove it
and continue with the rightmost edge.

• L: The triangle has a boundary on its left side. Re-
move the triangle and continue traversal with the
right edge.

• R: The triangle has a boundary on its right side.
Remove the triangle and continue traversal with the
left edge.

• S: Removing a triangle splits the mesh into two
parts. Remove the triangle, add the left edge to the
stack and continue traversal with the right edge.

• E: This is the only remaining triangle in this part of
the mesh. Remove the triangle and continue with
the edge on the top of the stack. The algorithm ends
when the stack is empty.

Figure 2: Basic Edgebreaker operations. Red lines represent the
boundary of the remaining mesh.

Figure 3: Compression process for a simple planar mesh. Red
lines represent the edge on top of the stack.

Algorithm 2 describes the compression steps. We
illustrate the compression logic for a simple planar mesh
in figure 3. The output of the compression process is a
sequence of operations and the permutation of vertices,
which uniquely defines the vertex indices produced by the
decompression process.

input :Half-edges (from algorithm 1)
output :EdgeBreaker structure (history, H/M

tables and list of duplicated vertices

1 initialize arrays of history, M table, H table
and duplicated vertices;

2 mark boundary edges by iterating the structure
using b next;

3 gate← arbitrary boundary edge;
4 push(stack, gate);
5 while edge← pop(stack) do
6 switch edge state do
7 handle cases C, L, R, S and E;
8 end
9 end

Algorithm 2: The Edgebreaker compression algorithm.

The decompression process is more involved. It starts
with a preprocessing phase in which we iterate through the
operation sequence and calculate the boundary length and
where the S operations split the boundary (see Figure 4).
Then, we iterate through the operation sequence again and
connect triangles to the boundary based on the operation
semantics. Figure 4 shows the decompression process for
the same planar mesh used for the compression example.

5 Meshes with holes
When the mesh contains a hole, we essentially have two
external boundaries, which produces a split operation that
does not actually split the mesh into two components, but
rather cuts the mesh by connecting the two boundaries (see
example in Figure 5). To address this situation, Rossignac
proposes a new operation, which we call H.

During compression, we mark the first encountered
boundary as external, and all the others as hole boundaries.
When we encounter a split containing a hole edge, we



Figure 4: Decompression process for a simple planar mesh. Blue
lines represent the boundary added in the preprocessing phase,
red lines represent the decompressed triangles.

Figure 5: H operation during compression. The blue boundary
is marked as a hole, while the red boundary is marked as an
external edge.

mark the operation as H and calculate the length of the
hole. We also mark the encountered hole as external, as
shown in Figure 5. We then store the hole length in a
so called H-table, which we use when decompressing to
determine the initial boundary.

6 Meshes with handles
Similarly to meshes with holes, meshes with handles also
break the S operation, because they produce loops in mesh
topology, and cause splits to merge prematurely (see figure
6). An incomplete solution to this problem is already
proposed by Rossignac [6], where for compression and
preprocessing phase of decompression there exists only
a rough description of how to tackle the problem. Here
we provide a complete description of compression and
decompression technique that was implemented to support
meshes with handles.

During compression, when we encounter a split, we
mark the left loop with a reference to the gate that the loop
belongs to (the gate we push to stack for later evaluation).
When we later encounter a vertex marked with the left
loop, we mark the edges as external and merge the two
loops into one and add operation M (as in merge) to the
operation sequence. We also compute sub-loop length, the
stack position of the S operation that caused the loop, and
the offset where the merge happened. We store these three
values in the so called M-table.

During decompression in preprocessing phase we use
the M-table’s S stack position and offset values to com-
pute correct S triangle indices. Algorithm 3 describes this
process (notation taken from [6]). The code for triangle de-
compression in the original paper is correct and therefore
omitted.

7 Non-orientable and non-manifold meshes
When constructing a half-edge data structure for a non-
orientable mesh (e.g., a Möbius strip), we encounter neigh-
bouring triangles with incompatible orientations. This
causes the shared edge to be split into two half-edges with
the same orientation, instead of the opposite, and prevents
us from linking the aforementioned half-edges with field

1 case M do
2 (position, , length)← next(mTable);
3 e← e− 1;
4 d← d− 1;
5 (e′, s′)← remove(stack, position);
6 offsets[s′]← −e′ − length;
7 end

Algorithm 3: Preprocessing of the M operation.

Figure 6: In meshes homeomorphic to a torus, S operation
splits boundary into two loops, which are later merged, as mesh
traversal takes the green path.

other and connecting their boundary loops with b next
and b prev.

We handle this case by keeping other set to NULL
and marking the edge as collided. Later, when we search
for the initial boundary and holes and encounter a col-
lided edge, we duplicate its vertices, effectively cutting
the mesh, and continue with algorithm normally. The po-
sitions and indices of duplicated vertices are stored in a
separate table, allowing us to reverse the cutting at the end
of the decompression algorithm.

When dealing with non-manifold meshes, we encounter
a similar problem, but with multiple collisions on the same
edge. Instead of just marking the edge as collided, we
count the number of collisions and duplicate vertices for
every collision.

When duplicating vertices, the mesh can be split into
multiple parts. To account for this in the compression
algorithm, we check for any unprocessed half-edges and
continue execution. When decompressing, we have to be
careful in the preprocessing phase, since now we have
multiple boundaries. They can be detected by matching
each S with an E operation and starting a new boundary
when the number of E operations exceeds the number of
S operations while traversing the operation history.

8 Extended OBJ format
To store compressed meshes in a file, the OBJ file specifi-
cation was extended to support 3 additional fields:

• ebh [base64] [padding]: the base64-encod-
ed operation sequence.

• ebt s/l s/p/o/l ...: H and M tables with
values s appended, which encodes which S opera-
tions are actually H or M operations.

• ebd pos/idx ...: the list of duplicated ver-
tices.



Name Specifics Triangles Size C. time D. time EB LZMA Deflate EB+LZMA EB+Deflate
bunny-min.obj contains holes 4968 167.4 kB 3 ms < 1 ms 1.8 4.5 3.2 6.1 4.8
bunny.obj triangle count 144046 4.5 MB 121 ms 7 ms 2.6 8.0 4.7 12.4 9.5
igea.obj triangle count 268686 9.5 MB 223 ms 12 ms 2.3 8.5 5.0 12.6 10.0
capsule.obj no boundaries 540 12.2 kB < 1 ms < 1 ms 2.2 5.3 4.0 10.7 10.9
klein-bottle.obj non-orientable 5760 175.1 kB 3 ms < 1 ms 2.0 4.9 3.3 6.7 5.3
suzanne.obj multiple components 967 27.2 kB < 1 ms < 1 ms 1.9 5.8 4.3 9.7 9.6

Table 1: Compression (C) and decompression (D) efficiency and speed of Edgebreaker (EB) combined with LZMA and Deflate on
test models.

9 Results
We implemented the described algorithm (single-threaded)
in Rust. The source code has been made publicly available
on Github.2 Both compression and decompression pro-
cesses are implemented with support for handles, holes,
non-orientable edges and non-manifold edges.

We collected a set of test 3D models in OBJ format
to be used for testing (see Table 1). The models con-
tained topological features that the original Edgebreaker
is not able to process. Some of the models contained a
large amount of triangles to test how our implementation
handles such cases. Figure 7 shows a subset of the test
3D models side by side, indicating no loss of data after
decompression.

We measured compression and decompression times
and compression ratios for each test model, using a com-
modity laptop with an AMD Ryzen 5 4500U CPU. The
measurements are collected in Table 1. In addition to the
compression ratio achieved by using only Edgebreaker
and the storage format described in Section 8, we tested
how stream compression algorithms compare to and com-
bine with Edgebreaker. To do so, we used a POSIX
port of 7zip3 with LZMA (flag -mm=LZMA) and Deflate
(flag -mm=deflate). Table 1 lists compression ratios
achieved with five different combinations of Edgebreaker,
LZMA and Deflate, showing that Edgebreaker effectively
complements stream compression algorithms to achieve
even better compression.

10 Conclusion
This work successfully extends the Edgebreaker algorithm
to handle arbitrary triangular meshes, including those with
holes, handles, non-orientable surfaces, and non-manifold
structures, thereby addressing the significant topological
limitations of the original formulation. Through the intro-
duction of H and M operations, we maintain linear time
complexity while achieving compression ratios between
1.8 and 2.6 across test meshes, and reaching compression
ratio of 12.6 when combined with LZMA algorithm. Our
implementation demonstrates practical viability with pro-
cessing speeds of approximately one million triangles per
second on commodity hardware, making it suitable for
real-world applications. While the current implementation
focuses exclusively on vertex connectivity compression
and ignores other vertex attributes such as normals and
texture coordinates, the foundation established here pro-

2https://github.com/siggsy/edge-breaker
3https://p7zip.sourceforge.net/

Figure 7: Screenshot of original and decompressed files loaded
in Blender. From top to bottom: suzanne.obj, klein-bottle.obj,
bunny.obj.

vides a robust platform for future extensions to complete
mesh compression.

References
[1] P. Alliez and M. Desbrun. Valence-driven connectivity en-

coding for 3d meshes. Computer Graphics Forum, 20:480–
489, 2001.

[2] S. Gumhold, S. Guthe, and W. Strasser. Tetrahedral mesh
compression with the cut-border machine. In Proceedings
Visualization ’99, pages 51–509. IEEE, 1999.

[3] T. Gurung, D. Laney, P. Lindstrom, and J. Rossignac. Squad:
Compact representation for triangle meshes. Computer
Graphics Forum, 30:355–364, 2011.

[4] Z. Karni and C. Gotsman. Spectral compression of mesh
geometry. In Proceedings of the 27th annual conference on
Computer graphics and interactive techniques - SIGGRAPH
’00, pages 279–286. ACM Press, 2000.

[5] A. Maglo, G. Lavoué, F. Dupont, and C. Hudelot. 3d mesh
compression. ACM Computing Surveys, 47:1–41, 2015.

[6] J. Rossignac. Edgebreaker: connectivity compression for
triangle meshes. IEEE Transactions on Visualization and
Computer Graphics, 5(1):47–61, 1999.

[7] J. Rossignac and A. Szymczak. Wrap&zip decompression
of the connectivity of triangle meshes compressed with edge-
breaker. Computational Geometry, 14:119–135, 1999.

https://github.com/siggsy/edge-breaker
https://p7zip.sourceforge.net/

	Introduction
	Related work
	Half-edge data structure
	Manifold meshes
	Meshes with holes
	Meshes with handles
	Non-orientable and non-manifold meshes
	Extended OBJ format
	Results
	Conclusion

