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Abstract

This work introduces a 3D point cloud segmentation method
by integrating Neural Laplacian Operators (NeLo) with

the Mapper algorithm. We replace Mapper’s manual fil-

ter functions with NeLo’s learned spectral embeddings to

automate the selection of the filter function. Evaluated on

ShapeNet objects, our approach produces finer segmen-

tations than spectral clustering and manual Laplacian

baselines, especially for geometrically distinct features.

1 Introduction

3D point clouds appear increasingly often as a data repre-
sentation in various domains, including autonomous navi-
gation, robotics, urban mapping, and biomedical imaging.
Despite their popularity, the usage of point clouds comes
with multiple challenges due to noise, irregular sampling,
and the lack of explicit connectivity of the sampled object.
Traditional approaches for processing 3D point clouds rely
on triangulation-based methods or handcrafted features to
first construct a mesh from the points, which often intro-
duce inconsistency when dealing with thin structures or
sharp features of the clouds. These limitations make tasks
such as segmentation, shape analysis, and object recog-
nition challenging for objects that exhibit the unwanted
properties.

Recent advances in deep learning have taken steps to-
wards overcoming these challenges. In particular, NeLo [6]
provides a new solution by learning the Laplacian oper-
ator directly from point cloud data. NeLo constructs a
k-nearest neighbor (kNN) graph from the raw data and
uses a Graph Neural Network (GNN) to learn appropri-
ate edge weights, used for approximating the continuous
Laplacian operator. The spectral embeddings we get from
NeLo provide us with intrinsic geometric features, making
them well-suited for various downstream applications.

Similarly, the Mapper algorithm, a tool from topolog-
ical data analysis, has been used to generate simplified
representations of high-dimensional data. The mapper
works by clustering data based on a chosen filter function
and building a nerve (graph) that reflects the global topo-
logical structure. However, the quality of Mapper’s output
is highly sensitive to the choice of filter function, which
is typically selected manually. This manual selection can
lead to inconsistent results and limits the method’s appli-
cability.

The goal of our project is to integrate NeLo with Map-
per for 3D point clouds, by using the spectral embeddings
from NeLo as the filter function in Mapper. This substi-
tution transforms the Mapper pipeline into an end-to-end
framework that uses learned geometric features instead
of relying on handcrafted choices. We test our approach
on one of the most basic use-cases, that is 3D point cloud
segmentation, a critical step for many downstream tasks.

2 Related Work

The field of 3D data analysis and neural operator learning
has evolved in recent years. Our work builds upon several
key contributions listed below.

Laplacian for Geometry Processing: Laplacian opera-
tors play a central role in many geometry processing tasks.
Botsch et al. [1] provide an overview of Laplacian-based
methods in their book Polygon Mesh Processing. They
detail how the Laplacian can be used for mesh smoothing,
parameterization, and other use cases.

Neural Laplacian Operators: Pang et al. [6] intro-
duced the Neural Laplacian Operator for 3D point clouds.
Their method uses a GNN to learn edge weights on a k-
nearest neighbour graph, producing spectral embeddings
that robustly capture intrinsic geometric features even
in the presence of noise and sparsity. This data-driven
approach has set a new benchmark for point cloud pro-
cessing. The authors get promising results for tasks such
as head diffusion, smoothing, and others.

Topological Data Analysis and Mapper: Singh et
al. [12] introduce a topological method for high-dimensional
data analysis with the development of the Mapper algo-
rithm. Mapper creates a simplified graph representation
by clustering data based on a continuous filter function.
Although Mapper has proven effective in revealing global
structures, its reliance on manually chosen filters often
presents the biggest challenge.

Neural Operator Learning: Li et al. [5] developed
the Fourier neural operator, which uses frequency-domain
techniques to achieve discretization-independent learning.
This highlights the effectiveness of spectral methods in
capturing global features, a concept that motivates our use
of NeLo’s spectral embeddings as a filter in Mapper.

Point Cloud Segmentation: PointNet, introduced by Qi
et al. [7], was among the first architectures to directly pro-
cess point cloud data for segmentation and classification.



Although PointNet achieves competitive performance, it
relies on engineered features. In contrast, our approach
utilizes learned spectral embeddings to drive segmenta-
tion, providing a more robust and natural grouping of
points. Soon after, the same authors introduced an im-
provement called PointNet++ [8] by enabling multiscale
feature learning, which allows the network to capture lo-
cal structures and relationships within point clouds more
effectively, thereby enhancing segmentation accuracy and
performance across diverse 3D geometries.

PointNeXt [9] builds on the foundations of Point-
Net++ by introducing design principles for constructing
improved point-based backbones. It simplifies the ar-
chitecture while preserving or improving accuracy, us-
ing residual blocks, local aggregation, and normalization
strategies. PointNeXt achieves state-of-the-art results on
several segmentation benchmarks while maintaining com-
putational efficiency. Although effective, PointNeXt, like
its predecessors, relies on local geometric structures and
handcrafted inductive biases, whereas our method lever-
ages global spectral embeddings learned through a neural
Laplacian operator.

These contributions have individually advanced the
fields of geometric deep learning and topological data
analysis. Our project aims to combine parts of different
approaches for a specific use case of 3D point cloud seg-
mentation.

3 Method

In this section, we describe how we compute the end
segmentation of a 3D point cloud. In Section 3.1 we show
the process of extracting the Laplacian matrix from the
NeLo framework. In Sections 3.2 and 3.3 we describe
the two methods we use for segmentation. Lastly, we
describe the manually computed Laplacian matrix we use
for comparison in Section 3.4.

3.1 Learned Laplacian Extraction

NeLo framework output is not a Laplacian operator in its
matrix form, but is represented as a graph with weighted
edges. Therefore, we first need to extract the correspond-
ing matrix representation to use it in our segmentation.

Given an input 3D point cloud, we construct a mesh-
like graph by treating each 3D point as a vertex and estab-
lishing edges based on spatial proximity. In practice, we
employ a k-nearest neighbor (KNN) search in Euclidean
space to connect each point with its nearest neighbors,
resulting in an undirected graph. This procedure is analo-
gous to forming the 1-skeleton of a mesh: the connectivity
encodes local neighborhood relationships without requir-
ing explicit surface reconstruction. The pre-trained NeLo
model then predicts an edge weight w;; for every edge
(,7) in this graph. We assemble these weights into a
sparse adjacency matrix, from which the corresponding
Laplacian operator can be derived:

Ay = 5 (wij +wji),

and then form the degree matrix D with D;; = > y Ajj.

Finally, the Laplacian matrix is computed as
Lxero = D — A7
which we can then use for downstream applications.

3.2 Spectral Clustering

The first segmentation method takes the spectral embed-
ding of the Laplacian matrix and then obtains clusters
directly from that. To segment the 3D point cloud into &
parts, we use Lner, and compute its k£ + 1 smallest eigen-
pairs ({(Xo, %0); (A1, 01), .-, (Ak, dx)} using SciPy!’s
eigsh function. We discard the trivial constant eigenvec-
tor ¢, and embed each vertex ¢ as:

(61(3), ¢2(i), ..., ¢1(i)) € RE.

K-means clustering is then applied in this k-dimensional
space to obtain cluster labels for each point.

3.3 Mapper-Based Segmentation

The second segmentation method leverages the Mapper
algorithm in the following way:

1. We use the first m nontrivial eigenvectors of Lyero
as a filter function in the KeplerMapper pipeline.
Let 41, ..., be these eigenvectors; we stack
them into an N X m matrix called “filter matrix”.

2. With cover parameters {n_cubes, perc_overlap}
and the DBSCAN [11] clustering algorithm, Map-
per partitions the filter space into overlapping bins
and clusters within each.

3. The resulting nerve graph nodes induce an assign-
ment of each original point to one or more Map-
per clusters; we resolve overlaps by assigning each
point to the node it appears in most frequently.

3.4 Manual Laplacian Baseline

In order to compare and evaluate our results, we construct
a standard Gaussian-kernel Laplacian on the same mesh
vertices. We compute a full adjacency matrix

Wij = exp(—|lzi — z;]*/(20%)),

zeroed on the diagonal, form D;; = > j Wij, and let
LGauss = D — W. We then perform both spectral cluster-
ing and Mapper segmentation exactly as above, but using
the manually computed Lgayuss in place of Lyero-

4 Results

We test out our approach on objects from the ShapeNet [3]
database. Our focus is on the qualitative/visual results,
as meaningful quantitative metrics are hard to come by
without the ground truth segmentations, which we do not
have. Despite that, we can compare some metrics that
measure the quality of clustering. The chosen metrics are:

"https://scipy.org
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Table 1: Clustering-quality metrics (Silhouette, Davies-Bouldin index (DBI), and Calinski-Harabasz index (CHI) / #Clusters) for our

three examples

Method Chair Plane Desk
Silhuette DBI CHI #Clusters | Silhuette DBI CHI #Clusters | Silhuette DBI CHI #Clusters
Spectral + k-means 0.689 0.559 5363.990 5 0.641 0.461 3179.109 5 0.390 0.893 3963.550 5
Mapper (NeLo) 0.193 0.784 15945.960 94 -0.249 4577 118.624 79 -0.295 1.373 34.891 396
Mapper (Gauss) 0.033 0.800 8212.560 78 -0.202 3.746  152.137 51 -0.306 1.832 47.114 352

Figure 1: Different segmentation methods for chair (top row), desk (middle row), and plane (bottom row) for NeLo + Mapper (left
column), Manual Mapper (middle column), and Spectral + k-means (right column).

* Silhouette [10] — quantifies how well each point lies
within its cluster compared to other clusters. In
the context of 3D point clouds, it gives an idea of
how distinct and well-separated the resulting seg-
ments are. It does not require ground truth labels,
captures both intra-cluster compactness and inter-
cluster separation, and is applicable to both spectral
and Mapper-based segmentation results.

Davies-Bouldin index (DBI) [4] — quantifies the
compactness and separation of clusters. In the con-
text of 3D point cloud segmentation, it provides a
way to measure how well the points are grouped into
segments. It does not require truth labels, balances
both compactness and separation, and is simple to
compute.

Calinski-Harabasz index (CHI) [2] — also known
as the Variance Ratio Criterion. It is a metric for
evaluating clustering quality. It measures how well-
separated and compact clusters are, similar to the
Silhouette and DBI, but it uses a variance-based

formulation.

We showcase three informative examples, which help
demonstrate the approach’s strengths and weaknesses.

We set & = 5 clusters for spectral clustering. For
Mapper, we used m = 4 filter functions for the plane
and desk, and m = 3 for the chair, with n_cubes = 10,
perc_overlap = 0.3, and DBSCAN parameters ¢ =
0.05 and min_samples = 10.

The quantitative results are presented in Table 1, and
the qualitative results are shown in Figure 1. We first no-
tice that the number of clusters produced with the Mapper
method is very large, even if it might not seem like it in
the figures. This happens because Mapper clusters each
filter hyperspace separately instead of clustering the whole
filter space at once. This is not always bad, as it allows for
finding finer segmentations as demonstrated in the plane
example, where it distinguishes between the plane’s mo-
tors and hull and even identifies different parts of the rear
wing in the case of NeLo Laplacian. We also notice that
the metrics for Mapper methods are significantly worse
than the k-means method. This is a consequence of the



phenomena described above. The huge number of clus-
ters significantly worsens the metrics, although the visual
results are not so bad.

When we compare NeLLo and Manual Mapper meth-
ods, we see that the NeLo method is capable of producing
a finer segmentation than Manual Mapper. We see this in
the chair example where it differentiates between the back-
rest and the seat. Lastly, we notice that the method does
not work well on objects that have no distinct features
that would be distinguishable with the Laplacian operator.
This can be seen in the desk example, where the Mapper
methods find clusters with no meaning. When comparing
quantitative measures, we see that they perform relatively
similarly, with one performing better than the other in
some metrics and vice versa.

5 Conclusion

In this work, we presented a novel approach to 3D point
cloud segmentation by combining NeLo with the Mapper
algorithm. By leveraging NeLo’s learned spectral embed-
dings as filter functions, we transformed Mapper into an
end-to-end framework that eliminates the need for manual
filter selection. Our experiments on ShapeNet [3] showed
finer segmentations compared to spectral clustering and
manual Laplacian baselines, especially for objects with
distinct geometric features. Limitations remain for objects
with less pronounced structure and in Mapper’s tendency
to over-segment. The code and experiments are available
on GitHub 2.

Future work includes adaptive parameter tuning, smarter
cluster merging, and extending evaluation with supervised
baselines such as PointNet++ [8] and PoinNeXt [9], which
would provide a stronger reference point against state-of-
the-art methods.
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