Real-time volumetric cloud rendering for games and simulations

Mark Loboda, Ciril Bohak, Matija Marolt, Ziga Lesar

University of Ljubljana, Faculty of Computer and Information Science
E-mail: ml7363 @student.uni-lj.si, {ciril.bohak, matija.marolt, ziga.lesar} @fri.uni-lj.si

Abstract

We present a real-time volumetric cloud rendering sys-
tem combining procedural 3D noise, a weather map for
large-scale control, and a physically-based lighting model.
Our system supports dynamic parameter tuning, simulates
wind through texture scrolling, and maintains high visual
fidelity at interactive frame rates. It is implemented using
WebGPU API, it is scalable, configurable, and capable of
rendering world-scale cloudscapes efficiently.

1 Introduction

Rendering visually pleasing clouds in video games is a
significant challenge in computer graphics. The challenge
is typically tackled with semi-transparent billboards [4],
resulting in a flat appearance, especially when moving
the camera through the scene. Recently, GPUs have be-
come powerful enough to simulate basic volumetric light
interactions in real time [1], unlocking the potential for
rendering much more realistic and immersive cloudscapes.
Although general volume rendering is not yet feasible in
real time, it is possible to take advantage of the character-
istics specific to clouds — a wide and shallow volume with
highly random shapes and a high albedo.

In this paper, we present a real-time volumetric cloud
renderer based on ray marching and procedural noise tech-
niques. It generates dynamic, three-dimensional cloud-
scapes by evaluating cloud density and lighting at various
points in space. The system is highly configurable, en-
abling users to create custom cloud formations, simulate
realistic atmospheric lighting effects, and interactively
tune rendering parameters in real time. The novelty of
our approach lies in enabling the low-cost rendering of
large, dynamic cloudscapes with configurable types and
densities, from rain clouds to barely visible formations,
controlled through input parameters. While not yet capa-
ble of rendering cloudscapes at a global scale, the system
was developed with scalability in mind to support such use
cases in the future. The implementation has been made
publicly available.!

2 Related work

One of the earliest examples of volumetric cloud render-
ing was introduced by Kajiya and Von Herzen [5], who

'https://github.com/markloboda/SandboxEngine

represented clouds with densities within a volume grid.
They developed light scattering equations and introduced
a diffusion approximation to the radiative transfer prob-
lem suitable for computer graphics applications. However,
real-time rendering of volumetric clouds remained compu-
tationally intractable until the advent of GPU acceleration.

Harris and Lastra [4] developed an approximation of
multiple forward scattering and first-order anisotropic scat-
tering, precomputing these effects for a set of impostors
that were then rendered in real time using alpha com-
positing. Bouthors et al. [2] presented a radiosity-based
approach and modeled the clouds with procedural noise.
Schpok et al. [10] use procedural noise with user-tunable
parameters and render the clouds with a slice-based vol-
ume renderer. The mentioned techniques were more re-
cently combined by Guerilla Games in their game Horizon:
Zero Dawn [1]. Their work heavily inspired our imple-
mentation.

A more modern approach by Webanck et al. [12] in-
volves procedural generation of different cloud types, such
as stratus and cumulus, and their animation based on key
frames and the characteristics of the terrain. More re-
cently, Kallweit et al. [6] explored the use of deep neural
networks to approximate higher-order scattering terms in
the radiative transfer equation. Their approach produces
the most realistic and accurate results, but is designed for
offline rendering to accelerate cloud preview generation
in film production workflows.

For a more comprehensive review of the field of cloud
modeling, rendering, and simulation, we refer the reader
to the survey by Goswami [3].

3 Implementation

The volumetric cloud renderer is implemented in C++
using the WebGPU API with the wgpu-native backend.
The user interface is implemented using ImGui?, enabling
real-time parameter tuning and the window for rendering
settings and performance statistics. GLFW? handles win-
dow creation and user inputs, while GLM* is used for
vector and matrix mathematics throughout the rendering
pipeline.

Zhttps://github.com/ocornut/imgui
3https://www.glfw.org
4https://github.com/g-truc/glm


https://github.com/markloboda/SandboxEngine
https://github.com/ocornut/imgui
https://www.glfw.org
https://github.com/g-truc/glm

3.1 Ray marching and light scattering

The core technique used for volumetric cloud rendering
in our method is ray marching [8], which simulates the
interaction of light with clouds by sampling density and
accumulating radiance along a light ray. For each pixel,
a ray is cast from the camera into the scene. The ray is
marched through the volume, accumulating radiance while
reducing transmittance. Radiance is split into in-scattered
radiance L and ambient radiance L,:

Ls = Lsuanpa (1)
L, = Lambient(1 - 67p)- ()

L is evaluated by ray marching secondary light rays to-
ward an external light source (the sun) with user-defined
radiance Lg,, and taking into account the phase function
fp- We use a single-scattering model with a Henyey-
Greenstein phase function [11] with positive anisotropy,
which is typical of atmospheric particles like water drop-
lets present in clouds. L, is calculated as a user-defined
ambient radiance L,mpient Scaled by the local scattering
probability 1 — e ™", which depends on the cloud density p.
This is a simplified, non-physical model that offers visu-
ally convincing results suitable for real-time applications.

At each step k of length As along a light ray, we
sample the cloud density p, and update radiance L and
transmittance 7

Ly = Ly—1 + (Lo + L) T} As, (3)
Ty = Th1e” P2, )

starting with Ly = 0 and T, = 1. Here, « is a user-defined
light absorption coefficient that controls the attenuation of
light as it travels through the cloud medium. The process
stops when the light ray exits the bounding box of the
cloud or reaches a transmittance value of 0.

3.2 Ray marching optimizations

The application supports dynamic step size during ray
marching to optimize performance. Ray marching starts
with long steps to quickly traverse empty space. Once a
non-zero density is detected, the algorithm takes a step
back and switches to a smaller step size to accurately cap-
ture cloud details. If several consecutive small-step sam-
ples return zero density, the renderer switches back to long
steps to continue traversal efficiently. Since clouds are
typically wide and shallow, the step size can be adjusted
further based on the angle of the view ray, as shorter steps
are required horizontally than vertically to maintain visual
detail. Furthermore, the renderer defines a cloud layer
with user-configurable minimum and maximum heights.
Ray marching is limited to the segment of the view ray
that intersects this cloud layer, effectively skipping large
empty areas above and below the clouds.

Another optimization involves using two types of den-
sity samples: a computationally cheap sample and a more
expensive, detailed sample. The renderer first evaluates
the cheap sample, and only if it returns a non-zero value
does it compute and add the expensive sample contribution.
A preliminary low-cost test avoids expensive sampling in

empty or sparse regions, improving overall rendering effi-
ciency.

3.3 Modeling clouds with procedural noise

To represent the complex structure of volumetric clouds,
the system combines several types of procedural noise
through a set of texture inputs. The approach uses one
2D texture and two 3D textures to describe large-scale
weather patterns and small-scale cloud details efficiently.

The 2D weather map shown in Figure 1 defines the
overall cloud coverage over a given area, enables efficient
representation of large-scale atmospheric patterns, and can
be modified at runtime to simulate dynamic weather when
driven by an external system. The red channel stores the
base cloud coverage between values of 0 (no cloud cov-
erage) and 1 (full cloud coverage), and the blue channel
encodes the cloud type. The cloud type is a normalized
value between 0 and 1, corresponding to different cloud
types: O for stratus, 0.5 for stratocumulus, and 1 for cu-
mulus. This type of value influences the vertical shape of
the cloud by selecting a height gradient used in density
evaluation.

Figure 1: Noise texture used as a weather map. The red channel
(left) stores the base cloud coverage, and the blue channel (right)
encodes the cloud type.

A large 3D texture (128 x 128 x 128) shown in Figure 2
provides the base noise data. The red channel contains a
combined Perlin-Worley noise (Perlin [9] multiplied by
inverse Worley [13]), which produces large, organic struc-
tures. The remaining three channels store low-frequency
inverse Worley noises at increasing frequencies. The low-
frequency inverse Worley noises are combined using a
weighted dot product to form a fractional Brownian mo-
tion (fBm) [7]. This value is then used to dynamically
remap the Perlin-Worley noise, effectively raising the den-
sity threshold based on the fBm value and allowing the
added cloud detail only where large-scale cloud structure
supports it.

Edge detail and erosion are added using a second,
lower resolution 3D texture (32x32x32) shown in Fig-
ure 3, which contains high-frequency inverse Worley noise
at increasing frequencies. This texture is used to erode the
edges of the clouds, giving them a soft and natural appear-
ance without requiring high-resolution volume textures.

The noise patterns are further modulated by a linear
height-based gradient that increases from the bottom to the
top of the cloud layer. This layered approach enables the



Figure 2: Large 3D texture for base cloud noise. The red channel
(left) contains a Perlin-Worley noise, and the remaining three
channels (right) contain an inverse Worley noise at increasing
frequencies.

Figure 3: Small 3D texture for edge detail and erosion. Three
channels (from left to right) contain inverse Worley noise at
increasing frequencies.

rendering of vast, visually rich and realistic cloud shapes
while minimizing memory usage and computational cost.
To simulate wind, we scroll both 3D noise textures
over time in the horizontal plane. This creates the illu-
sion of dynamic moving cloud formations without altering
their positions as defined by the weather map. Since the
weather map determines static cloud coverage and type,
only the internal structure and shading of the clouds evolve
with the wind. This technique allows the clouds to exhibit
dynamic motion and evolving appearance while maintain-
ing consistent large-scale patterns and positions, ensuring
coherence with the broader weather simulation.

3.4 Configuration

The application provides a wide range of configurable
parameters through a graphical user interface, shown in
Figure 4. These settings allow users to explore different
cloud formations, lighting conditions, and performance
characteristics interactively. In a given application, several
configuration presets might be created to allow balancing
between visual quality and rendering performance.

3.5 Scalability considerations

The design of the system is centered around scalability,
both in terms of data input and rendering flexibility. Cloud
coverage and cloud type are defined in a tileable 2D tex-
ture called the cloud map, while the actual cloud shapes
are procedurally generated using 3D noise textures. This
separation allows the system to remain lightweight and
flexible, while still supporting real-time parameter ad-
justments. The long-term vision is to implement a tiling
mechanism that can dynamically stream weather data such
as cloud coverage and type—from third-party providers.
Combined with localized parameter tuning, this would
enable simulation and visualization of atmospheric phe-
nomena at a global scale.

Another key scalability feature is the system’s high
degree of tunability. Users can adjust a wide range of

Lighting

100.8

Figure 4: The editor and the parameters for configuring the
renderer.

parameters affecting visuals, lighting, and performance,
allowing the system to adapt to different hardware con-
straints and visual fidelity requirements. This makes it
suitable for everything from small-scale to large-scale
real-time applications and simulations.

4 Results

Example images shown in Figure 5 demonstrate the sys-
tem’s ability to produce visually rich and varied volumet-
ric cloudscapes. The examples highlight different cloud
types, lighting conditions, and configurations, showcasing
the flexibility of the system.

We tested the cloud rendering system on a commodity
desktop computer with an AMD Ryzen 5 7600X CPU and
AMD Radeon RX 7900 XT GPU with 20 GB VRAM, run-
ning Windows 11. The implementation runs in real time,
though closely tied to the required visual fidelity. The
image in Figure 6 demonstrates a highly optimized ren-
der achieving a frame time of 2.6 ms at 1440p resolution.
However, the same settings may produce noticeable alias-
ing when the camera is inside the cloud volume. While
some of these issues may be addressed with parameter
tuning, there remains room for improvement in close-up
scenarios. Note that all cloud examples were rendered
using a cloud layer thickness of 15 km. Reducing this
height could yield major performance gains by enabling
smaller and fewer ray marching steps. Combining this
with a static skybox layer could allow high visual quality
at an even lower computational cost.

Our approach cannot render two clouds vertically lay-
ered at the same position, and ray marching, though real-



Figure 5: Three example renderings: clouds in a sunny setting
with low absorption and high ambient light (top), rendering from
inside the clouds (middle), and rain clouds with high absorption
and low ambient light (bottom). The other parameters are similar
to those in Figure 4.

time, is more costly than other approaches and varies with
cloud conditions.

5 Conclusion

The paper presents the design, implementation, and re-
sults of a physically-based volumetric cloud rendering
system. By leveraging a combination of procedural 3D
noise, weather maps, and dynamic rendering parameters,
the system is capable of producing convincing and diverse
cloudscapes in real time. The separation between global
weather patterns and local detail offers scalability and
flexibility, with the potential to integrate real-world mete-
orological data. The renderer can be tuned for various use
cases, from cinematic visuals to lightweight interactive
scenes.

The resulting cloud visuals are rich and responsive,
and the performance is competitive even at high resolu-
tions. Nevertheless, several areas for future improvement
have been identified, including enhancing visual quality
when flying through clouds, better aliasing control, further
optimization of ray marching, and deeper integration of
dynamic weather behavior beyond static maps and wind

Figure 6: Cloud rendering optimized for performance with frame
time of 2.6 ms.

scrolling. These directions offer promising opportunities
for extending the system into a more complete and physi-
cally faithful atmospheric simulation.

References

[1] N. Vos A. Schneider. The real-time volumetric cloudscapes
of horizon: Zero dawn. In ACM SIGGRAPH 2015: Ad-
vances in Real-Time Rendering Course, 2015. Course
presentation.

[2] A. Bouthors, F. Neyret, and S. Lefebvre. Real-time re-
alistic illumination and shading of stratiform clouds. In
Eurographics Workshop on Natural Phenomena, 2006.

[3] P. Goswami. A survey of modeling, rendering and anima-
tion of clouds in computer graphics. The Visual Computer,
37:1931-1948, 7 2021.

[4] M. J. Harris and A. Lastra. Real-time cloud rendering.
Computer Graphics Forum, 20:76-85, 9 2001.

[5] J. T. Kajiya and B. P. Von Herzen. Ray tracing volume
densities. ACM SIGGRAPH computer graphics, 18(3):165—
174, 1984.

[6] S. Kallweit, T. Miiller, B. Mcwilliams, M. Gross, and
J. Novék. Deep scattering: Rendering atmospheric clouds
with radiance-predicting neural networks. ACM Transac-
tions on Graphics, 36:1-11, 12 2017.

[7] B. B. Mandelbrot and J. W. Van Ness. Fractional brownian
motions, fractional noises and applications. SIAM Review,
10(4):422-437, 10 1968.

[8] N.Max. Optical models for direct volume rendering. IEEE
Transactions on Visualization and Computer Graphics,
1:99-108, 6 1995.

K. Perlin. An image synthesizer. ACM Siggraph Computer
Graphics, 19(3):287-296, 1985.

[10] J. Schpok, J. Simons, D. S. Ebert, and C. Hansen. A real-
time cloud modeling, rendering, and animation system. In
Proceedings of the 2003 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA 03, page
160-166, Goslar, DEU, 2003. Eurographics Association.

[11] D. Toublanc. Henyey—greenstein and mie phase functions
in monte carlo radiative transfer computations. Applied
Optics, 35:3270, 6 1996.

[12] A. Webanck, Y. Cortial, E. Guérin, and E. Galin. Procedu-
ral cloudscapes. Computer Graphics Forum, 37:431-442,
52018.

[13] S. Worley. A cellular texture basis function. In Proceedings
of the 23rd annual conference on Computer graphics and
interactive techniques, pages 291-294, 1996.

[9

—



	Introduction
	Related work
	Implementation
	Ray marching and light scattering
	Ray marching optimizations
	Modeling clouds with procedural noise
	Configuration
	Scalability considerations

	Results
	Conclusion

