Using Modular Arithmetic Optimized Neural Networks To
Crack Affine Cryptographic Schemes Efficiently

Vanja Stojanovi¢!, Ziga Lesar?, Ciril Bohak?

L Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
E-mail: vs66277 @student.uni-lj.si
2Faculty of Computer and Information Science, University of Ljubljana, Slovenia
E-mail: {ziga.lesar, ciril. bohak} @fri.uni-lj.si

Abstract

We investigate the cryptanalysis of affine ciphers using a
hybrid neural network architecture that combines modular
arithmetic-aware and statistical feature-based learning.
Inspired by recent advances in interpretable neural net-
works for modular arithmetic and neural cryptanalysis
of classical ciphers, our approach integrates a modular
branch that processes raw ciphertext sequences and a
statistical branch that leverages letter frequency features.
Experiments on datasets derived from natural English text
demonstrate that the hybrid model attains high key recov-
ery accuracy for short and moderate ciphertexts, outper-
forming purely statistical approaches for the affine cipher.
However, performance degrades for very long ciphertexts,
highlighting challenges in model generalization.

1 Introduction

The cryptanalysis of classical ciphers has long served as a
proving ground for both cryptographic and machine learn-
ing techniques. Advances in the field have demonstrated
that artificial neural networks (ANNSs) can be trained to
automate attacks on classical ciphers by exploiting statis-
tical features of ciphertexts, such as letter frequencies and
n-grams [2]. However, these approaches typically treat the
neural network as a black box, without explicitly encod-
ing the algebraic structure underlying many cryptographic
schemes.

In parallel, Gromov [3] has shown that simple neural
networks can not only learn modular arithmetic operations,
but do so in an interpretable and analytically tractable
way. In particular, Gromov demonstrates that two-layer
networks can “grok” modular arithmetic, suddenly gener-
alizing after a period of overfitting, and that the learned
weights correspond to periodic, Fourier-like feature maps.
This suggests that neural networks can be designed or
regularized to explicitly capture the modular structure at
the heart of many ciphers, including the affine cipher.

The affine cipher, defined by the transformation y =
(ax +b) mod m, combines modular arithmetic with sta-
tistical properties of natural language, making it an ideal
testing ground for hybrid approaches. While prior work
has leveraged either statistical or algebraic cues in isola-
tion, it remains an open question whether a neural network
architecture or training regime that combines explicit mod-
ular arithmetic structure with statistical feature learning

can improve cryptanalysis of affine ciphers. In this work,
we investigate whether integrating modular arithmetic-
aware neural architectures (as in Gromov [3]) with statis-
tical feature-based learning (as in Focardi and Luccio [2])
can enhance the efficiency and interpretability of neural
cryptanalysis for affine ciphers. We analyze not only per-
formance, but also the correlation between algebraic and
statistical learning in this context. All code and datasets
for this work are available in a GitHub repository.'

2 Related Work

Gromov [3] demonstrates that simple two-layer ANNs
can learn modular arithmetic tasks through a phenomenon
known as “grokking,” where generalization emerges sud-
denly after extensive training. Notably, the study shows
that this learning process corresponds to the discovery
of interpretable periodic features, akin to Fourier com-
ponents. The paper even derives analytic solutions for
network weights when learning additive modular func-
tions, as exemplified in Equation (1).

f(n,m) = fi(n) + fa(m)

This provides strong support for our work by confirming
that neural networks can learn the fundamental operations
involved in affine ciphers and by offering insights into
the mechanism underpinning this learning—namely, the
encoding of modular features.

Another relevant contribution explores the use of stan-
dard ANNSs for automating the cryptanalysis of classical
ciphers, including Caesar (shift), Vigenere, and substi-
tution ciphers [2]. This study adopts a ciphertext-only
setting and leverages known statistical weaknesses of the
ciphers. For the shift cipher, a neural network is trained to
map ciphertext frequency distributions to the correspond-
ing shift key. This network is then repurposed to attack
Vigenere ciphers by segmenting ciphertext into monoal-
phabetic subtexts based on hypothesized key lengths and
applying the trained shift model. This approach validates
the broader applicability of neural networks in classical
cryptanalysis, reinforcing the feasibility of our method for
the affine cipher.

mod p €))

"https://github.com/Vanja-S/using-modular—
arithmetic-optimized-neural-networks—-to-crack-
affine-cryptographic-shemes-efficiently

https://github.com/Vanja-S/using-modular-arithmetic-optimized-neural-networks-to-crack-affine-cryptographic-shemes-efficiently
https://github.com/Vanja-S/using-modular-arithmetic-optimized-neural-networks-to-crack-affine-cryptographic-shemes-efficiently
https://github.com/Vanja-S/using-modular-arithmetic-optimized-neural-networks-to-crack-affine-cryptographic-shemes-efficiently

Further work by Jeong et al. [4] expands on the po-
tential of deep learning for cryptanalysis. Their findings
highlight how neural models can effectively reveal vulner-
abilities in encryption schemes, illustrating the capacity
of neural cryptanalysis to discover weaknesses in crypto-
graphic algorithms. This aligns closely with Gromov’s
results, affirming neural networks as powerful tools for
addressing cryptographic challenges.

Finally, Dubey et al. [1] focus on incorporating modu-
lar arithmetic into neural network design. Their research
emphasizes the development of architectures that naturally
accommodate the structural requirements of cryptographic
tasks. These insights directly inform our approach, which
integrates modular branches within the network to enhance
its cryptanalytic capabilities.

3 Data Generation, ANN and Cipher Imple-
mentation

To evaluate our neural network’s architecture (proposed in
3.1) for the affine cipher cryptanalysis, we constructed a
dataset of plaintext-ciphertext pairs with corresponding en-
cryption keys. The data generation process was designed
to ensure both diversity and reproducibility, and to reflect
realistic cryptanalytic scenarios.

Plaintext samples were taken from the Project Guten-
berg English language corpus, which provides a large and
varied collection of natural language text. All text was
preprocessed by removing punctuation, converting to up-
percase, and mapping each character to its corresponding
integer value in the range 0 to 25 with Equation (2).

hZ{A,B,C,...,Z}—)ZQG 2)

ie, A— 0,B+—1,...,Z +— 25. Non-alphabetic char-
acters were discarded to maintain consistency with the
affine cipher’s domain.

For each plaintext sample, a distinct affine cipher key
was generated at random. The key comprises two integers,
a and b, where a is drawn uniformly at random from the
set of non-zero elements of Zog that are coprime to the
alphabet size (that is m = 26), and b is drawn uniformly at
random from {0, 1, ...,25}. There are exactly 12 possible
values for a, corresponding to the integers in this range for
which ged(a, 26) = 1. The requirement that a be coprime
to 26 ensures that the encryption function is invertible,
which is necessary for the affine cipher to be valid.

The affine cipher encrypts each plaintext letter x ac-
cording to the transformation Equation (3).

y=(ax+b) modm 3)
where y is the ciphertext letter, and all operations are
performed modulo m = 26. This transformation was
implemented in Python, and applied to each plaintext
sample using its associated key. The resulting ciphertexts,
along with their corresponding keys and plaintexts, were
stored for subsequent use in model training and evaluation.

The final dataset consists of tuples (C, K, P), where
C is the ciphertext sequence, K = (a, b) is the key, and
P is the original plaintext sequence. All sequences were

padded or truncated to a fixed length L to facilitate batch
processing in neural network training. The dataset was ran-
domly shuffled and split into training, validation, and test
sets in proportions of 80%, 10%, and 10%, respectively.
All data processing and encryption routines were im-
plemented in Python 3.11, leveraging the NumPy and
PyTorch libraries for efficient tensor operations. All mod-
els were also implemented with PyTorch. The dataset was
stored in PyTorch tensor format, with each batch contain-
ing ciphertexts, keys, and plaintexts as separate tensors.

3.1 Modular Arithmetic-Aware Neural Network Ar-
chitecture

To effectively exploit the algebraic structure of the affine
cipher, we designed a hybrid neural network architecture
that processes both the raw ciphertext sequence and statis-
tical features derived from the ciphertext. This design is
inspired by the analytic solutions described by Gromov [3]
and by the statistical feature-based approach by Focardi
and Luccio [2]. The goal is to enable the network to learn
both modular arithmetic patterns and language statistics
relevant for cryptanalysis.

InputRepresentation: Each input sample consists of:

* A ciphertext sequence C' = (c1, cq, ..., L), where
each ¢; € Zsqg, represented as a vector of integers
of length L, where L is the size of the dataset L €
{100, 500, 1000, 10 000}.

* A statistical feature vector S € R2%, representing
the normalized frequency of each letter in the ci-
phertext.

Network Architecture The network consists of two
parallel branches:

Modular Branch:

* Embedding Layer: Maps each integer c¢; to a 16-
dimensional learnable vector, producing an embed-
ding matrix of shape L x 16.

* Flattening: The embedding matrix is flattened into
a single vector of length 16L.

* Dense Layer I: A fully connected layer with ReLU
activation, mapping the flattened vector to a hidden
dimension (128 in our experiments).

* Dense Layer 2: Another fully connected layer with
ReLU activation, producing the modular feature
vector (dimension 128).

Statistical Branch:

* Dense Layer I: A fully connected layer with ReLU
activation, mapping the 26-dimensional frequency
vector to a hidden dimension (128 in our experi-
ments).

* Dense Layer 2: Another fully connected layer with
ReL.U activation, producing the statistical feature
vector (dimension 128).

Modular branch

l Ciphertext Sequence }—>| Embedding Layer }—»

Flatten }—>| Dense + ReLU }——| Dense + ReLU |

Statistical branch

Letter Freq. Vector }—'

Dense + ReLU }—'

Dense + ReLU }—>

Final Dense Layer (312 logits) }—v Predicted Key (a, b)

Figure 1: Neural network architecture for affine cipher key recovery.

The outputs of both branches (each of size equal to the
hidden dimension) are concatenated and passed through
a final fully connected layer without activation, which
outputs a vector of logits of length 312, corresponding
to all possible affine keys (a, b). These logits are used as
input to the cross-entropy loss function during training.

System diagram: A diagram of the ANN architecture
is presented in Figure 1.

Training Objective: The network is trained to minimize
the cross-entropy loss between the predicted logits and the
true key class index for each sample. The output logits
are interpreted as unnormalized scores for each possible
affine key (a, b), and the predicted key is the one with the
highest logit. The model is trained end-to-end using the
Adam optimizer and standard backpropagation.

Implementation Details: Hyperparameters, including
the number of layers, hidden units (128), and activation
functions (ReLLU), were selected based on initial valida-
tion and kept fixed for all experiments. The modular and
statistical branches are trained jointly end-to-end. While
the modular branch does not explicitly encode modular
arithmetic, its design—processing the raw ciphertext se-
quence via embeddings—enables the network to learn
modular patterns from data.

4 Results and Analysis

4.1 Experimental results

We trained the proposed ANN on the affine cipher key
recovery task using ciphertexts of varying lengths (L =
100, 500, 1000, 10000). The model was trained for 30
epochs with a hidden layer size of 128 and a batch size of
128. The results are summarized in Table 1.

Length Hidden Batch Test Acc. (%) Epochs
100 128 128 98.08 30
500 128 128 96.85 30
1000 128 128 70.53 30

10000 128 128 2.50 30

Table 1: Test accuracy for affine key recovery as a function
of ciphertext length.

The learning curves for each ciphertext length are sh-
own in Figures 2 and 3. For L = 100 and L = 500,
the model achieves near-perfect accuracy after only a few
epochs, with both training and validation accuracy con-
verging rapidly. For L = 1 000, the model also achieves
perfect training accuracy, but the validation and test accu-
racy plateau at a lower value, suggesting overfitting or a

limitation in the model’s ability to generalize for longer
ciphertexts under the current setup. The same goes for
the longer text of L = 10 000 where the testing accuracy
is significantly lower and the validation confirms that the
neural network is not able to predict the key.

Additionally, Figure 3 shows the test accuracy as a
function of ciphertext length, summarizing the model’s
performance across all settings.

4.2 Discussion

The results demonstrate that the hybrid neural network is
highly effective at recovering the affine cipher keys from
ciphertexts of moderate length (L = 100 and L = 500),
achieving test accuracies above 96 %. The learning curves
indicate rapid convergence and strong generalization for
these settings. For longer ciphertexts (L = 10 000), the
model achieves perfect training accuracy but lower test
accuracy, suggesting that either the model capacity, the
feature representation, or the training regime may need
to be further tuned to handle longer sequences without
overfitting.

The observed performance drop for L = 10 000 may
be due to the increased complexity of the input, the fixed
model size, underfitting, the embedding layer properties
of the modular branch, or the statistical properties of the
dataset. Further investigation, such as increasing the mod-
el capacity, using regularization, or augmenting the feature
set, could help address this limitation.

4.3 Comparison with Forcardi and Luccio

Focardi and Luccio [2] demonstrated that standard ar-
tificial neural networks can be trained to recover keys
for classical ciphers, including the Caesar and Vigenere
ciphers, by leveraging statistical features such as letter
frequencies and n-grams. Their approach achieved high
accuracy for short, mono-alphabetic ciphers, but did not
explicitly incorporate the algebraic structure of the cipher
into the neural network architecture.

In contrast, our approach combines both modular ari-
thmetic-aware and statistical feature-based learning in a
hybrid neural network, inspired by the analytic insights of
Gromov [3]. Our results show that this hybrid model can
achieve comparable or superior accuracy for affine ciphers,
particularly for shorter ciphertext lengths (under 500 in
length). The rapid convergence and high accuracy for L =
100 and L = 500 suggest that explicitly encoding modular
structure, in addition to statistical features, provides a
significant advantage for cryptanalysis of ciphers with
modular arithmetic components.

Moreover, our experiments highlight the importance
of model design and feature selection in neural cryptanal-
ysis. While Focardi and Luccio’s method is effective for
ciphers where statistical features dominate, our results
indicate that hybrid models are better suited for ciphers

Learning Curve (Ciphertext Length 100)

90

<
=]

Accuracy (%)

@
o

50

40 1 —— Train
Validation

T T
0 5 10 15 20 25 30
Epoch

(a) Ciphertext length is 100.

Learning Curve (Ciphertext Length 1000)

80 1

60

Accuracy (%)

40 4

20 4

— Train
Validation

0 5 10 15 20 25 30
Epoch

(c) Ciphertext length is 1 000.

Learning Curve (Ciphertext Length 500)

100 4 /

80 4

60

Accuracy (%)

20

—— Train

Validation
0 5 10 15 20 25 30
Epoch
(b) Ciphertext length is 500.
Learning Curve (Ciphertext Length 10000)
100 4
80 1
2 60
> — Train
® 3
5 Validation
2 40
20 4
04 I
0 5 10 15 20 25 30

Epoch

(d) Ciphertext length is 10 000.

Figure 2: Learning curve (train and validation accuracy) for ciphertexts of different lengths.

Affine Cipher Key Recovery: Test Accuracy vs. Ciphertext Length

100

80

60

40 1

Test Accuracy (%)

100 500 1000 10000
Ciphertext Length (log scale)

Figure 3: Test accuracy for affine key recovery as a func-
tion of ciphertext length.

like the affine cipher, where both algebraic and statistical
properties are essential for successful key recovery.

4.4 Limitations and Future Work

While the hybrid model performs well for moderate ci-
phertext lengths, its performance degrades for longer se-
quences. Future work should explore increasing model
capacity, incorporating additional regularization, and ex-
perimenting with alternative architectures (such as trans-
formers or convolutional networks) to improve generaliza-
tion. Additionally, further ablation studies could clarify
the relative contributions of the modular and statistical
branches, and experiments on other modular ciphers (e.g.,
Hill cipher) could extend the generality of these findings.

5 Conclusion

We have shown that the proposed hybrid neural net-
work combining modular arithmetic-aware and statistical
feature-based learning can accurately recover affine cipher
keys from moderate-length ciphertexts. Explicitly model-
ing modular structure enables superior performance over
purely statistical approaches for shorter texts. However,
the model’s effectiveness diminishes with longer cipher-
texts, indicating challenges in generalization. These re-
sults emphasize the value of incorporating algebraic priors
into neural cryptanalysis, especially for ciphers with mod-
ular components. Future work should focus on improving
scalability and robustness, as well as extending this ap-
proach to other cryptographic schemes. Our findings high-
light the promise of interpretable, structure-aware neural
models for advancing automated cryptanalysis.

References

[1] A.Dubey, A. Ahmad, M. Pasha, R. Cammarota, and A. Aysu. Mod-
ulonet: neural networks meet modular arithmetic for efficient hard-
ware masking. lacr Transactions on Cryptographic Hardware and
Embedded Systems, pages 506-556, 2021.

[2

—

Riccardo Focardi and Flaminia L. Luccio. Neural cryptanalysis of
classical ciphers. In Italian Conference on Theoretical Computer
Science, 2018.

[3] Andrey Gromov. Grokking modular arithmetic, 2023.
[4

=

0. Jeong, E. Ahmadzadeh, and I. Moon. Comprehensive neural
cryptanalysis on block ciphers using different encryption methods.
Mathematics, 12:1936, 2024.

	Introduction
	Related Work
	Data Generation, ANN and Cipher Implementation
	Modular Arithmetic-Aware Neural Network Architecture

	Results and Analysis
	Experimental results
	Discussion
	Comparison with Forcardi and Luccio
	Limitations and Future Work

	Conclusion

