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Abstract

Video game special effects are usually created using sprites or simplistic triangle meshes with added
textures, which is a good compromise between performance and quality. This paper presents an imple-
mentation of a real-time volumetric explosion effect that aims to enhance realism in video games while
seamlessly integrating the volume into a 3D scene, allowing it to interact with the environment. The
effect is rendered in a web environment using JavaScript and WebGPU. Our implementation uses ray
marching for volume rendering, integrating a transfer function for color mapping, noise functions for
adding natural variation, and bloom post-processing to enhance fire illumination. The contribution of
this paper is to demonstrate the rendering possibilities and growing support of volumetric special effects
for more interactive and immersive web applications and video games.
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1 INTRODUCTION

One of the most significant challenges in computer
graphics remains the creation of realistic real-time
volumetric effects, particularly in interactive appli-
cations and video games. Despite advancements in
graphics technology, volumetric effects are compu-
tationally intensive and demand more system re-
sources. Practical methods like polygon meshes
and billboards have great performance but lack
volumetric depth, light scattering, and natural in-
teraction with the environment. This compromise
limits the realism and immersion of special effects.

Recent advancements in GPUs and graphics APIs
have expanded the possibilities for volumetric ef-
fects, enabling more realistic and efficient render-
ing techniques. WebGPU [3], a new standard
for web-based graphics, is currently the only web-
based API that supports compute shaders, mak-
ing it easier to implement volumetric effects. This
paper explores the potential of WebGPU for ren-
dering realistic volumetric effects. It was chosen
for its cross-platform compatibility and accessibil-
ity through web browsers. By developing a real-
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time volumetric explosion effect, this work aims to
demonstrate how it is possible to achieve both re-
alism and computational efficiency. The full im-
plementation is available at https://github.com/

makieew/webgpu-volumetric-explosion.

The main contributions of this paper are:

• a WebGPU-based real-time implementation of
animated volumetric explosion effects using pre-
simulated volumetric data, enhanced with pro-
cedural noise and post-processing;

• evaluation and analysis of performance across
different hardware configurations;

• user study on perceived realism of the imple-
mented effects.

The rest of the paper is structured as follows: we
first present the related work in Section 2; next we
present our approach in Section 3, followed by Sec-
tion 4 where we present the performance analysis
and user study and their outcomes. We discuss the
results and present the limitations of our approach
in Section 5, and finally conclude the paper with
Section 6.

2 RELATED WORK

The field of volume rendering has evolved signif-
icantly over the past decades following the ad-
vancements in hardware and algorithm develop-
ment. Initial approaches to volume rendering were
limited by the lack of computational power and
frameworks to model light interactions within the
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medium. However, the advancement of more pow-
erful GPUs, optimized algorithms, and efficient
memory management enabled the development of
more detailed and eventually real-time volumetric
effects.

The work of Kajiya and Von Herzen [7] set a foun-
dation for volume rendering. They mathematically
formalized light transport within volumes, using
ray tracing as a method to simulate light absorp-
tion, emission, and scattering. Because of hard-
ware limitations at the time, their approach was
extremely slow.

Later, Levoy [10] proposed an innovative method
for rendering surfaces from volumetric datasets.
Around the same time, volumetric data was dis-
played by converting it to geometric primitives us-
ing the marching cubes algorithm [12]. Levoy intro-
duced a new technique where the volumetric data
is rendered directly using ray casting, sampling the
data at regular intervals along a ray and accumulat-
ing the samples. His work also provided new meth-
ods of data classification, using transfer functions
to emphasize specific features within the data. A
limitation of the method was its support for only
emission and absorption without light scattering.
Even so, Levoy’s work was successful enough to be
used in various scientific domains for the next few
decades.

Guthe et al. [6] demonstrated efficient compression
techniques for large-volume datasets while using in-
teractive rendering on a commodity desktop PC.
Their work highlighted the potential for achieving
complex rendering even on commercial hardware.

Enhancing the realism of computer-generated ef-
fects is also a well-researched topic, especially in
simulating natural phenomena like smoke, fire, and
fluids. Perlin [15] developed the Perlin noise algo-
rithm, which is a type of gradient noise that has
many uses, often in the generation of procedural
content. It is used to create effects with natural
patterns and textures. Based on this development,
Worley [17] provided a method, Worley noise, to
simulate cellular structures widely used in organic
and natural phenomena. In addition, curl noise,
created by Bridson et al. [2], helped in making tur-
bulent flow fields, which are essential for realistic
fluid dynamics.

Fedkiw et al. [5] made a major contribution by de-
veloping a realistic smoke simulation that renders
in real time. Their approach used inviscid Euler
equations for improved efficiency and a physically
consistent vorticity confinement term to capture
the characteristics of smoke. Additionally, their
model correctly handles the interaction of smoke
with moving objects. This set a new standard

for special effects in interactive applications and
games.

In the field of volume rendering, Lesar et al. [9]
presented a volumetric path tracing framework
that uses web technologies to visualize volumetric
data, making it more accessible and efficient.
General web-based rendering frameworks have also
shaped browser-based visualization. Babylon.js1

and Three.js2 are widely adopted frameworks
that simplify the creation of interactive 3D web
applications. Building on WebGL and WebGPU
technologies, Bohak et al. [1] introduced Ren-
derCore, a lightweight framework that supports
deferred rendering. Together, these frameworks
make it possible to visualize volumes interactively
across different platforms.

Recent work, such as Nubis volumetric cloud
system3, has advanced the real-time rendering of
voxel-based clouds. Krüger et al. [8] introduce
techniques for rendering real-time volumetric phe-
nomena like smoke, fire, and explosions, focusing
on optimization for interactive applications. The
fast vortex particle method for fluid-character
interaction [14] presents an efficient approach for
simulating dynamic fluid interactions with charac-
ters and environments. NVIDIA’s FlameWorks4

demonstrates a real-time fire simulation system
that relies on particle-based techniques to generate
convincing fire effects.

2.1 Volumetric Effects in Games

Volumetric effects simulate the interaction with
light, scattering, emission, and absorption in a 3D
medium. They are used to create realistic and at-
mospheric effects such as smoke, fire, fog, clouds, or
explosions. Adding these effects significantly con-
tributes to the game’s ambient and mood, making
it more alive.

Several modern games have pushed the boundaries
of volumetric effects, showcasing their potential
to enhance realism and immersion. For instance,
Horizon Zero Dawn5 has a volumetric cloud sys-
tem6 that creates dynamic skies that change with
the time of day and weather conditions. These
clouds are rendered in real time, interacting with
the game’s lighting system to produce soft shadows
and atmospheric scattering, adding to the game’s

1 https://babylonjs.com
2 https://threejs.org
3 https://www.guerrilla-games.com/read/

nubis-cubed
4 https://developer.nvidia.com/flameworks
5 Horizon Zero Dawn, Guerrilla Games, 2017
6 https://advances.realtimerendering.com/s2015/
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beautiful landscape. It uses ray marching with two
levels of detail: a low-frequency cloud base and
a high-frequency noise (Perlin, Worley, and curl).
The lighting model incorporates Beer’s Law for ab-
sorption, the Henyey-Greenstein phase function for
scattering, and a “powdered sugar” effect for sim-
ulating the scattering of light within the cloud. To
optimize performance, the shader reduces sample
counts and reuses previous frame data via repro-
jection. This allows real-time rendering at 2 ms
per frame by using a quarter-resolution buffer with
upscaling techniques.

Similarly, Red Dead Redemption 2 7 features vol-
umetric fog and clouds8. Fog rolls through val-
leys and reacts to light, creating stunning sunrises
and sunsets. Like Horizon Zero Dawn, it uses ray
marching and multi-scale noise (Perlin and Wor-
ley) to shape clouds, but with a focus on physically
based lighting. To optimize performance, effects
near the camera are stored in a voxel grid, while
distant fog and clouds use ray marching with large
step sizes. Shadows are handled with shadow maps
and approximated transmittance for light scatter-
ing, while temporal reconstruction helps smooth
out sampling artifacts and improve efficiency.

Unlike previous games with atmospheric realism,
Counter-Strike 2 ’s9 volumetric smoke is a game-
play feature. Throwing a smoke grenade creates a
3D smoke effect that can be manipulated, bullets
and explosions create holes that reveal what is be-
hind the smoke. While the exact implementation
details are not publicly available, the effect likely
relies on a voxel grid for simulation and ray march-
ing for rendering. A flood-fill algorithm or similar
approach may be used to propagate changes in the
smoke’s shape.

These games show the growing trend of using vol-
umetric special effects. However, their implemen-
tation often requires significant optimization, skill,
and time, making them a challenge for developers.

3 METHODS

3.1 System Overview

The voxel data is initially generated in Blender and
then pre-processed in Python to align, pad, and
export it in a format suitable for rendering. We
reused an existing engine10 that renders basic ob-
jects through a node system as the foundation for

7 Red Dead Redemption 2, Rockstar Games, 2018
8 https://advances.realtimerendering.com/s2019/

index.htm
9 Counter-Strike 2, Valve, 2023
10https://github.com/UL-FRI-LGM/webgpu-examples

Figure 1: Diagram illustrating the process from
voxel data generation in Blender to rendering the
volumetric explosion using WebGPU, with inter-
mediate steps including Python pre-processing and
JavaScript based engine.

Figure 2: Overview of the system structure. Green
represents the application entry point, light gray
corresponds to the base engine, orange highlights
components of the rendering system, purple indi-
cates volume data, and yellow denotes noise gener-
ation components.

this implementation. A renderer is created that
supports both solid objects and the volumetric ex-
plosion. Additional features such as noise, bloom,
and temperature-based color mapping are applied
to enhance the visual effect. These techniques work
together to produce a dynamic and visually com-
pelling explosion effect. Figure 1 illustrates the
steps of the technique, from voxel data generation
to rendering.

The overall structure of the system is shown in Fig-
ure 2, where the application begins by initializing
the base engine and rendering system, followed by
loading the volume data. The loaded data is then
rendered in five distinct render passes. These steps
are further explained in the following sections.

3.2 Data preparation

The 3D explosion effect begins with a low-resolu-
tion 32 × 32 × 32 volumetric animation of an ex-
plosion created in Blender. Each voxel contains
density and temperature data that define opacity
and color, respectively, through a transfer function.
This relatively small volume was chosen to ensure
real-time performance and manageable memory us-
age, as increasing the resolution significantly raises
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Figure 3: Data preparation workflow, from gener-
ating Blender animation data to processing it into
two arrays of 3D textures for rendering.

the memory access cost due to the cubic growth of
the voxel count.

The exported animation data is processed in
Python using the pyopenvdb11 library. While
OpenVDB’s infinite grid system allocates space
dynamically for the expanding explosion, We-
bGPU requires fixed texture sizes. Therefore,
all frames must be positioned correctly within a
consistent simulation box to prevent misalignment
during animation.

After alignment and padding, the data is exported
as two separate raw files (density and tempera-
ture), each containing data for all frames of the
32 × 32 × 32 volume. In JavaScript, these files are
loaded to generate 3D textures for each frame.
These textures are stored in two separate arrays
for efficient access during animation, as frames can
be quickly bound to the shader for sampling. The
data preparation steps are shown in Figure 3.

3.3 Rendering Pipeline and Render

Passes

The rendering pipeline transforms 3D scene data
into the final 2D image through a sequence of GPU
operations. Our WebGPU implementation uses
shaders written in WGSL [4] to process geometry,
determine pixel colors, and perform ray marching
for volumetric rendering.

As illustrated in Figure 4, our implementation em-
ploys five distinct render passes: (1) geometry pass,
(2) volume pass, (3) bright pass, (4) bloom pass,

11https://www.openvdb.org/documentation/doxygen/

Figure 4: Render pass flow diagram. Render passes
are shown in blue, fixed inputs/outputs are shown
in gray, and user-configurable inputs are shown in
purple.

and (5) final pass. Each pass handles specific as-
pects of the volumetric explosion effect and gener-
ates textures that are used by subsequent passes.

The geometry pass establishes the foundation by
rendering basic scene geometry. It produces color
and depth textures that provide context for the
volumetric effect. Standard vertex and fragment
shaders handle the geometry transformation and
basic texturing in this initial stage.

3.4 Animation

3D textures for each frame are stored in two sepa-
rate arrays (density and temperature) for easy ac-
cess during animation. To switch between the ani-
mation frames, the corresponding 3D textures and
their respective samplers are bound to the shader
with a dedicated bind group based on the current
animation frame.

3.5 Ray marching

Ray marching visualizes volumes by casting rays
from the camera and sampling at discrete steps
along each ray’s path. Our implementation tra-
verses the voxel grid and samples transfer func-
tions, which map raw values to color and opacity.

The fragment shader derives ray origin and di-
rection from camera matrices and calculates ray-
volume bounding box intersections to determine
entry and exit points. Ray marching employs a
configurable step count (16, 32, 64, 128, or 256),
with 128-256 steps providing a good balance be-
tween performance and visual quality.

At each step, the ray position is updated as:

p(t) = o+ td,
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(a) linear sampling (b) quasi-cubic sampling

Figure 5: Sampling artifacts comparison.

Figure 6: Explosion color palette.

where p(t) is the current position, o is the ray ori-
gin, and d is the normalized direction. Step size ∆t

is calculated as:

∆t =
tmax − tmin

N
,

with tmin and tmax representing entry and exit
points, and N being the step count.

We sample density and temperature textures us-
ing quasi-cubic sampling12 to enhance interpola-
tion quality, as shown in Listing 1.

Listing 1: Pseudocode for quasi-cubic sampling.

1 // u is the input texture coordinate

2 vec4f quasiCubicSampling ( texture_3d volume ,

sampler s, vec3f u)

3 {

4 R = textureDimensions ( volume );

5 U = u * R + 0.5;

6 F = fract (U);

7 U = floor (U) + F * F * (3.0 - 2.0 * F);

8 C = (U - vec3f (0.5) ) / R;

9 return textureSample (volume , s, C);

10 }

This approach reduces artifacts by pre-distorting
the texture sampling coordinates using a smooth-
step function for smoother interpolation13. Fig-
ure 5 demonstrates the improvement over linear
sampling.

Temperature values are mapped to explosion colors
using a transfer function that samples from a color
palette (Figure 6) encoded as a 1D texture.

Alpha blending [16] combines voxel contributions
along the ray path:

³acc := 1− (1−³acc) · (1−³current),

Cacc := Cacc +(1−³acc) ·Ccurrent ·³current,

12https://iquilezles.org/articles/texture/
13https://iquilezles.org/articles/smoothsteps/

where ³acc and Cacc are accumulated opacity and
color. ³current and Ccurrent are the opacity and
color of the current voxel. The ray march continues
until the ray exits the volume or reaches an opacity
threshold.

3.6 Depth testing

For proper occlusion between volumetric effects
and solid objects, we implement manual depth test-
ing within the ray marching loop. This approach
uses depth values from the geometry pass to deter-
mine visibility.

To compare volume samples against the depth
buffer, we transform each sample’s world position
to clip space. We compare this depth against the
stored depth buffer value with a small bias ϵ to
avoid precision issues:

dw :=

{

1, if z f (zb + ϵ)

0, otherwise
,

where dw is the depth weight, z is the screen depth
and zb is the stored depth buffer value.

For visible samples, we apply the depth weight to
the density w := Ä · dw, where w is the weighted
density and Ä is the density value of the volume
sample.

The accumulated color and opacity are updated as:

³acc := ³acc +(1−³acc) ·
w ·o

N
,

Cacc := Cacc +(1−³acc) ·
Ccurrent ·w ·o

N
,

where o is a user-adjustable opacity factor. This
accumulation formula adapts classical alpha blend-
ing following the approach described by Max [13].

If the volume sample’s depth is greater than the
stored depth, it lies behind an opaque object and
is discarded. Otherwise, it contributes to the final
color accumulation, and it blends with the scene.
Figure 7 demonstrates the effect of depth testing,
while Figure 8 shows the importance of adding bias
for precision.

3.7 Noise

To enhance realism in our volumetric explosion,
we implemented three types of noise: Perlin noise,
Worley noise, and a combination of curl noise with
Worley noise. Each implementation can be indi-
vidually selected to evaluate its distinct contribu-
tion. This was done by linearly blending the origi-
nal sample value with a noise-modified version, us-
ing a weight that controls how strongly the noise
affects the result.
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(a) without depth testing (b) with depth testing

Figure 7: The effect of depth testing results in in-
correct rendering in (a) and the correct version in
(b).

(a) without bias ϵ (b) with bias ϵ = 0.004

Figure 8: Depth testing without bias (a) results in
incorrect rendering. Adding a small bias accounts
for numerical errors (b).

(a) 1 octave (b) 3 octaves (c) 6 octaves

Figure 9: Perlin noise with varying octave counts.

3.7.1 Perlin noise

Our 3D Perlin noise implementation uses layered
octaves for added detail. The function takes pa-
rameters p (3D coordinate), f (base frequency), o

(octave count), ¼ (persistence), l (lacunarity), and
s (seed). The noise is computed as:

P (p) =
o

∑

i=0

perlinNoise(p ·fi,si) ·ai,

where si is a derived seed, ai = ¼i, and fi = f · li.
The base function maps position p to a grid cell, as-
signs gradient vectors to corners, and computes dot
products between gradients and relative positions.
A smoothing function F (t) = 6t5 − 15t4 + 10t3 en-
sures smooth transitions between grid values. Fig-
ure 9 demonstrates the effect of varying octave
counts.

3.7.2 Worley noise

Worley noise generates cellular patterns by parti-
tioning space into a grid with pseudo-random fea-

(a) 0.5 power (b) 1.5 power (c) 2.5 power

Figure 10: Worley noise with different power factor.

ture points. The feature point placement uses a
hashing function:

p3 = fract(p · (0.1031,0.1030,0.0973)),

p3 = p3 +dot(p3,p3.yxz +33.33),

hash(p) = fract((p3.xxy +p3.yxx) ·p3.zyx).

The noise value is determined by the minimum
distance to the nearest feature point, adjusted by
power factor ³:

D′ = min
i

||p−fi||
α,

where ³ < 1 creates smoother transitions and ³ > 1
produces sharper edges, as shown in Figure 10. The
final noise is inverted to make high-density areas
correspond to feature points.

3.7.3 Worley and curl noise

Curl noise introduces turbulent motion when com-
bined with Worley noise, creating a balance be-
tween structured smoke and chaotic movement.
Derived from Perlin noise gradients, curl noise is
calculated using the curl of the vector field:

∇×G =

(

∂Gz

∂y

−
∂Gy

∂z

,
∂Gx

∂z

−
∂Gz

∂x

,
∂Gy

∂x

−
∂Gx

∂y

)

.

We approximate derivatives using finite differences
with step size ¶:

cx = G(y + ¶,z + ¶)−G(y − ¶,z − ¶),

cy = G(x+ ¶,z + ¶)−G(x− ¶,z − ¶),

cz = G(x+ ¶,y + ¶)−G(x− ¶,y − ¶).

The resulting vector c⃗ represents local swirling mo-
tion. Figure 11 shows the effect of varying ¶ values.

3.8 Post-Processing: Bloom

Bloom enhances the perception of bright regions by
simulating light scattering. Our implementation
follows a multi-stage process based on techniques
described14.

14https://developer.nvidia.com/gpugems/

gpugems/part-iv-image-processing/

chapter-21-real-time-glow
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(a) 0.005 ¶ step (b) 0.01 ¶ step (c) 0.02 ¶ step

Figure 11: Worley noise plus curl vector with vary-
ing ¶ step size.

3.8.1 Bright pass

The bright pass isolates high-intensity pixels using
a luminance function derived from the CIE XYZ
color space:

L = 0.2126R +0.7152G+0.0722B,

where R, G, and B are color channels weighted by
human visual sensitivity. Pixels exceeding a thresh-
old T are retained:

Cbright =

{

C, if L > T

0, otherwise
,

where C is the original pixel color.

3.8.2 Downsampling

We downsample the bright regions across multiple
mip levels, with each level at half the resolution of
the previous. The number of mip levels is deter-
mined by:

M = +log2(max(W,H)),.

Each mip level i is generated by bilinear filtering
from the previous level:

Ci(x,y) =
1

4

4
∑

j=1

Ci−1(x+∆xj ,y +∆yj),

where ∆xj , ∆yj are offsets of neighboring texels.

3.8.3 Upsampling

We reconstruct the bloom effect by progressively
upsampling and blending from the smallest mip
level:

Ci(x,y) = Ci(x,y)+³ ·U(Ci+1,x,y),

where ³ is the bloom intensity factor. Figure 12
illustrates this process.

The final pass combines the main rendered image
with the processed bloom texture to produce the
final output.

Figure 12: Stages of the bloom effect. From left to
right: original image, bright pass image, and raw
bloom effect (blurred highlights before combining
with the original image).

3.9 Resolution Scaling

To reduce the rendering time of the volumetric ef-
fect, we use resolution scaling, where the scene is
rendered at a smaller resolution and then scaled up.
There are three resolution options: full, halved, and
quartered. The full resolution renders at the native
canvas resolution, offering the best visual fidelity at
the cost of performance. On the other hand, the
quartered option reduces both width and height to
1

4
of their original size, meaning that it renders at

only 1

16
of the original pixel count. When the reso-

lution is quartered, it has the highest performance
boost, though at the expense of some visual plau-
sibility.

4 RESULTS

This section presents the results of the benchmark
and visual quality assessment for the real-time ex-
plosion effect. The core rendering settings included
volume density (20.0), bloom intensity (0.8), and
bloom threshold (1.0). The noise was generated
using curl noise (delta 0.01), Worley noise (power
1.5) when combined with curl noise scaled by a fac-
tor of 5, and Perlin noise (frequency 4, octave count
2, persistence 0.5, lacunarity 2). 30 % of the noise
influenced the color distribution, while 50 % influ-
enced the density distribution.

4.1 Benchmark

Performance was evaluated on three hardware
configurations with varying ray marching steps
(Nsteps), resolutions (Q: quartered – 480 × 270
and upscaled to full screen, H: halved = 960 × 540
and upscaled, F: full - 1920 × 1080), and noise
types (P: Perlin, W: Worley, WC: Worley+curl).
Real-time performance results (f16.67 ms) are
bolded.

Laptop (ASUS TUF Gaming FX505DT) specifi-
cations:

• CPU: AMD Ryzen 3550H
• GPU: NVIDIA GeForce GTX 1650
• Memory: 16 GB RAM
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Results are shown in Table 1:

Table 1: Laptop render times

Nsteps Resolution Noise Time (ms)

16 Q P 7.21

256 F WC 5412.35
32 Q P 9.37

32 H P 33.64
64 Q WC 83.85
64 H WC 320.51
128 Q P 38.52
128 H P 142.50
128 Q WC 180.47
128 H WC 675.69

Desktop PC specifications:

• CPU: Intel Core i5-9400F
• GPU: Nvidia GTX 1050 Ti
• Memory: 16 GB RAM

Results are shown in Table 2:

Table 2: Desktop PC render times

Nsteps Resolution Noise Time (ms)

16 Q P 3.54

256 F WC 1867.12
32 Q P 5.11

32 H P 11.19

64 Q WC 34.54
64 H WC 127.27
128 Q P 12.78

128 H P 48.23
128 Q WC 68.88
128 H WC 252.12

Workstation specifications:

• CPUs: Dual Intel(R) Xeon(R) Gold 6140
• GPUs: three Nvidia RTX A4000 (Ada genera-

tion) 20 GB RAM (one GPU used)
• Memory: 256 GB RAM

Results are shown in Table 3:

Table 3: Workstation render times

Nsteps Resolution Noise Time (ms)

16 Q P 1.77

256 F WC 159.30
32 Q P 3.41

32 H P 8.32

64 Q WC 10.56

64 H WC 10.68

128 Q P 9.24

128 H P 12.78

128 Q WC 9.50

128 H WC 21.17

4.2 Visual Quality Assessment

A survey compared the real-time implementation
against a Blender-rendered effect using four ani-
mation frames (10, 30, 50, 70). The real-time ef-
fect used 128 steps, quartered resolution, and Wor-
ley+curl noise. For each frame, participants an-
swered multiple comparison and evaluation ques-
tions structured as follows:

• Perceived similarity between the real-time and
Blender explosions (5-point Likert scale [11],
from not similar at all to almost identical)

• Realism rating of the real-time explosion (5-
point Likert scale, from very unrealistic to very
realistic)

• Realism rating of the Blender explosion (5-point
Likert scale, from very unrealistic to very real-
istic)

• Perceived realism preference, where participants
selected which version appeared more realistic
(real-time or Blender)

At the end of the survey, participants were given
the render times of one frame for both effects. They
were asked to pick the effect they think is more
suitable for use in games, considering their render
times.

The survey was anonymous and distributed online.
In total, 48 responses were collected from partici-
pants with varying levels of experience in computer
graphics, based on the authors’ knowledge of the
distribution channels. The goal was to evaluate
subjective visual quality by comparing our real-
time implementation against the offline-rendered
simulation, using the same input data to ensure
a fair comparison. The images used in the survey
are available in the supplemental material folder of
the code repository. The left image represents the
real-time render, while the right image shows the
offline Blender render.
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Figure 13: Survey results on the perceived suit-
ability for games: “Left (62.85 ms)” represents the
real-time effect, while “Right (8 min)” represents
the Blender rendered effect, with their respective
render times.

Key Findings:

• Similarity: The real-time explosion was rated
“slightly similar” to the Blender version, with
Frame 30 being the most similar (39.6 % chose
“very similar”).

• Individual Realism: Real-time explosion was
commonly rated “somewhat unrealistic” (35.4 %
across all frames).

• Comparative Realism: Real-time explosion was
preferred in Frames 10 (83.3 %) and 70 (70.8 %),
while Blender was preferred in Frame 30 (62.5
%).

• Suitability for Games: 93.8% selected the real-
time explosion (62.85 ms render time) over the
Blender version (8 minutes) for game applica-
tions, as shown in Figure 13.

4.3 Rendered Images

The images in Figure 14 demonstrate the final re-
sults of the rendered volumetric explosion with 128
steps.

5 DISCUSSION

The explosion effect scales well across hardware,
but performance degrades significantly at higher
step counts, increased resolution, and more com-
plex noise functions. It is important to use a per-
formant GPU, as the lowest-performing device in
the benchmark is a gaming laptop.

In the benchmark, we used the halved and full res-
olutions for comparison; further on, the quartered
resolution is considered default and implied. To
achieve real-time performance on lower-end hard-
ware, the maximum number of steps is 32, with
Perlin or Worley noise. On a mid-range desktop
PC, 128 steps are achievable in real time, but with-
out Worley+curl. On a high-performance worksta-
tion optimized for graphics workloads, real-time is

(a) Perlin noise

(b) Worley noise

(c) Worley+curl noise

(d) Worley noise with
intense bloom

(e) Blender rendered explo-
sion

Figure 14: Rendered images with different noise
types and comparison with Blender-rendered out-
put image.
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maintained across almost all settings. The only ex-
ception is in the more extreme cases, such as at 128
steps, Worley+curl noise, and halved resolution.

Overall, achieving a visually appealing explosion
effect at around 128 steps is feasible on mid-range
commercial hardware by using Perlin and Worley
noise to stay within real-time performance. Higher-
end setups can afford more complex noise functions
and higher resolutions.

The survey results highlight a trade-off between re-
alism and performance. While the real-time explo-
sion effect is generally well received and deemed
suitable for games, it falls short in terms of achiev-
ing complete visual plausibility, yet is perceived as
more realistic compared to the pre-rendered simu-
lation.

6 CONCLUSION

This paper presented the implementation of a real-
time volumetric explosion effect using WebGPU
and JavaScript, focusing on efficient rendering of
volumetric data while maintaining real-time perfor-
mance. Explosion data was generated in Blender,
processed in Python for alignment and padding,
and imported as 3D textures. Ray marching was
used for volume traversal, evaluating density and
temperature to compute color and opacity, with

quasi-cubic sampling ensuring smooth interpola-
tion.

Noise functions like Perlin, Worley, and curl noise
introduced natural variation and turbulence, while
a bloom post-processing effect emphasized high-
intensity regions. Performance improvements in-
cluded adjustable step counts, resolution scaling,
and noise configuration, achieving real-time frame
rates on mid-range hardware. User surveys indi-
cated the real-time effect, though less realistic than
the Blender reference, was preferred for its speed
and suitability for games.

6.1 Future Work

Improvements could include integrating physically
based lighting models, 4D noise functions, and
dynamic transfer functions that evolve over time.
Adaptive ray marching and early ray termination
could further optimize performance. Real-time vol-
umetric effects have the potential to greatly en-
hance immersion through more convincing envi-
ronmental interactions. As hardware continues to
evolve, we expect volumetric effects to become an
essential component in modern gaming. Beyond
games, these techniques have applications in scien-
tific visualization, simulation, and interactive me-
dia, paving the way for future advancements in
real-time rendering.
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