
Automated Conversion of 3D Mesh Car Models into LEGO
Brick Sets Using Voxel-Based Optimization

Jan Ljubič, and Ciril Bohak
University of Ljubljana, Faculty of Computer and Information Science

Večna pot 113
1000, Ljubljana, Slovenia

jl6426@student.uni-lj.si, ciril.bohak@fri.uni-lj.si

Abstract
The transformation of 3D mesh car models into LEGO-compatible designs requires optimizing structural
integrity, brick placement, and computational efficiency. This paper presents an algorithm specifically
designed to convert polygonal car meshes into structurally sound LEGO representations. The approach
involves voxelization, heuristic-based component mapping, and optimization techniques to ensure con-
nectivity and maintain key design features. Using Blender for pre-processing and voxel-based methods
for brick placement, the algorithm prioritizes larger LEGO elements to enhance stability and reduce
part count. The proposed method is tested on various car models, demonstrating its ability to gener-
ate LEGO-compatible structures while preserving essential visual and functional details. The findings
highlight potential applications in automated LEGO set design.

Keywords
3D Mesh Processing; voxelization; procedural modeling; 3D model conversion; structural optimization.

1 INTRODUCTION

The transformation of digital 3D models into phys-
ical representations has gained significant attention
in various domains, ranging from rapid prototyp-
ing to digital fabrication. Among these, converting
3D mesh models into LEGO brick-based structures
presents unique challenges, particularly in terms of
structural integrity, brick placement optimization,
and aesthetic fidelity. LEGO models must not only
visually resemble their digital counterparts but also
maintain physical stability and logical connectivity
when constructed.

Manually designing LEGO-based models is a
time-consuming and intricate process, requiring
extensive experience in both digital modeling and
LEGO-compatible structural design. Traditional
approaches involve using dedicated LEGO mod-
eling software or manually assembling bricks in
real-world prototyping. However, automating
this process can significantly enhance efficiency,

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that
copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

particularly in applications where rapid design
iteration and structural feasibility are essential.
This paper focuses on the automated conversion of
3D mesh car models into LEGO-compatible rep-
resentations using a voxel-based optimization ap-
proach. The proposed method takes a polygonal
car model as input, voxelizes it to create a discrete
representation, and maps the resulting voxel grid to
an optimal LEGO brick arrangement. The multi-
stage process prioritizes structural connectivity, op-
timal part selection, and part minimization while
preserving key design elements such as wheels, win-
dows, and body shape.
The primary motivation for this work is to sup-
port the development of novel LEGO car sets which
is particularly challenging due to the need to bal-
ance realism, stability, and part efficiency. Current
manual approaches require extensive human effort,
making them inefficient for large-scale or iterative
design workflows. The main contributions of this
paper are:

• Voxelization-Aware LEGO Model Gener-
ation – A voxelization-based approach that pre-
serves the proportions and structure of 3D car
models by correcting for the cuboid nature of
LEGO bricks.

• Component-Aware Brick Placement –
A semantic segmentation system that maps

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 
http://www.wscg.eu WSCG 2025 Proceedings

http://www.doi.org/10.24132/CSRN.2025-27 255



car components (e.g., wheels, windows, cabin,
lights) to optimized LEGO brick selections
using convolution- and correlation-based
placement strategies.

• Graph-Based Connectivity Optimization
of LEGO models – A depth-first search al-
gorithm that detects and resolves disconnected
LEGO subgraphs by strategically placing large
bricks to ensure model connectivity and stabil-
ity.

The rest of the paper is structured as follows. We
first present related work in Section 2. Next, we
present our approach in Section 3. We present re-
sults in Section 4, and discuss their quality in Sec-
tion 5. Finally, we present the conclusions in Sec-
tion 6.

2 RELATED WORK
The conversion of 3D models into LEGO-
compatible representations has been an active
research area, particularly in the domains of
voxelization, structural optimization, and proce-
dural generation of LEGO models. Prior studies
have proposed various methodologies, ranging
from genetic algorithms to deep learning-based
approaches, to improve the accuracy and efficiency
of LEGO model generation. This section reviews
key contributions to this field, focusing on vox-
elization techniques, optimization strategies, and
automated LEGO model reconstruction.

2.1 Voxelization and LEGO Model
Representation

Voxelization is a crucial preprocessing step in the
transformation of 3D mesh models into LEGO-
compatible structures. Zhao et al. [2] proposed a
real-time voxelization algorithm optimized for com-
plex polygonal models, enabling rapid discretiza-
tion of 3D meshes into a structured voxel grid suit-
able for further processing. Huang et al. [4] de-
veloped an accurate method for voxelizing polygon
meshes that ensures topological consistency and ge-
ometric fidelity, laying the groundwork for subse-
quent LEGO model generation techniques.
Voxelization techniques tailored for LEGO recon-
struction have been explored in several works.
Min et al. [9] introduced a silhouette-fitted vox-
elization approach, which refines voxelization by
preserving the outer shape of the model while
adapting the internal structure for optimal LEGO
representation. This method enhances visual
fidelity while ensuring model stability. Similarly,
Gower et al. [3] proposed an automated model

construction approach that segments voxelized
3D objects into LEGO-compatible components,
facilitating efficient brick placement strategies.

2.2 Optimization Strategies for
LEGO Model Generation

Once a 3D mesh is voxelized, selecting an optimal
brick layout is essential to ensure both stability
and efficiency. Lee et al. [5] developed a genetic
algorithm-based approach to determine the opti-
mal arrangement of LEGO bricks for voxelized 3D
models, significantly improving structural integrity
and part efficiency. Their method demonstrated
how evolutionary computation can enhance the au-
tomation of LEGO model design.
Beyond heuristic-based optimization, deep learning
has also been explored. Thompson et al. [12] intro-
duced a deep generative model trained on LEGO
graphs to predict optimal brick placement, en-
abling automatic generation of stable LEGO struc-
tures. While such methods show promise, they re-
quire extensive training data and computational re-
sources.
Alternative heuristic approaches have also been
investigated. Cai et al. [1] proposed an intelli-
gent system for constructing complex LEGO mod-
els using rule-based algorithms and heuristic search
techniques, improving the feasibility of large-scale
LEGO reconstructions. Ono et al. [10] introduced
an algorithm for automatically generating LEGO
assembly instructions from polygonal 3D models,
streamlining the transition from digital designs to
physical builds.

2.3 Automated LEGO Model Re-
construction

Several studies have focused on automating the re-
construction of LEGO models from 3D meshes and
images. Luo et al. [8] presented “Legolization”, a
framework for transforming 3D models into struc-
turally valid LEGO structures by prioritizing part
connectivity and load distribution. Their approach
ensures that generated models are not only visually
accurate but also physically stable.
Image-based LEGO model generation has also been
explored. Lennon et al. [6] proposed Image2LEGO,
a system for generating customized LEGO sets
from input images, demonstrating how computer
vision techniques can facilitate LEGO design from
real-world objects. Zhou et al. [14] extended this
concept by developing computational techniques
for generating LEGO sketch art, broadening the
applicability of LEGO-based design automation.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 
http://www.wscg.eu WSCG 2025 Proceedings

http://www.doi.org/10.24132/CSRN.2025-27 256



Input 3D model Voxelization
Component 

mapping
Filling with bricks

Fixing model 
connectivity

Output LEGO 
model

Figure 1: The overall system structure.

In addition to standard model reconstruction, Tes-
tuz et al. [11] proposed an algorithm for construct-
ing large-scale LEGO sculptures, optimizing the
use of brick sizes while ensuring mechanical sta-
bility. Zhou et al. [13] extended this work by intro-
ducing an automated system for generating real-
istic LEGO architectural sculptures, incorporating
shape-preserving constraints to enhance fidelity.
The body of research on voxelization, optimization,
and automated LEGO model generation provides a
strong foundation for further advancements in the
field. While previous approaches have addressed
general-purpose LEGO model construction, there
remains a gap in domain-specific applications, such
as the conversion of 3D car models into LEGO-
compatible designs. This paper builds upon these
prior works by developing a voxel-based optimiza-
tion framework specifically tailored for car models,
ensuring structural integrity while preserving key
vehicle features.

3 METHODS
To address the given problem, we developed a sys-
tem that automatically converts a 3D mesh model
of a car into a LEGO-compatible representation.
Due to the complexity of the task, the system is
structured into multiple phases, enabling modular
processing where each phase is responsible for a
specific sub-task. The overall system architecture
is illustrated in Figure 1.

3.1 Voxelization
The voxelization process is carried out using the
Binvox program, which accepts a 3D model in var-
ious formats, voxelizes it based on user-defined
parameters, and outputs a voxelized 3D grid in
the .binvox format. This output can be read
and converted into a NumPy data array using the
binvox-rw module in Python. The voxelized grid
is a 3D array of integers, where 0 represents empty
space, and 1 indicates occupied voxels within the
model. The output of this stage can be seen in
Figure 2.
To evaluate the voxelization output, we initially re-
place each occupied voxel with the smallest avail-
able LEGO brick, a 1 × 1 × 1 unit brick. How-
ever, a direct one-to-one mapping results in gaps
between horizontal layers due to the cuboid nature
of LEGO bricks, which do not perfectly align with

Figure 2: The output of the voxelization stage.

unit voxels. This misalignment arises because stan-
dard LEGO bricks are 40 % of the height of a unit
cube. To correct this, we introduce a scaling factor
of 2.5 along the vertical axis before voxelization, en-
suring that the final LEGO model accurately pre-
serves the original proportions of the input 3D car
model.

3.2 Component Mapping
Cars typically consist of distinct functional compo-
nents, such as (1) wheels, (2) the cabin, and (3)
lights. The component mapping phase is designed
to classify each voxel within the model based on its
corresponding car component. This classification
is essential for determining the appropriate LEGO
bricks, their placement, and their respective prop-
erties, such as color and material. The component
mapping stage is divided into two sub-phases: (1)
Preprocessing the 3D model to define all necessary
components and (2) Mapping each voxel to its cor-
responding car component. The components can
be built using different LEGO bricks. Some of the
bricks used in our approach can be seen in Figure 3.

3.2.1 Preprocessing the 3D Model
Initially, input 3D models are treated as single ob-
jects, representing the car as a whole. To facilitate
component-based brick selection, users must manu-
ally define separate model components in Blender.
This is achieved by creating new geometric objects
that represent key elements, such as wheels, the
cabin, and lights. Due to the discrete nature of the
voxelization grid, a certain degree of approximation
is required. Instead of manually segmenting the
existing model, users can create separate bounding
geometries that define the target components.
Once all components are defined, they are grouped
under a single object within the Blender scene,

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 
http://www.wscg.eu WSCG 2025 Proceedings

http://www.doi.org/10.24132/CSRN.2025-27 257



Figure 3: The output of the component mapping
stage.

where each component retains its individual iden-
tity. This grouping mechanism simplifies hierar-
chical mapping, as each component can be refer-
enced by its assigned name in subsequent process-
ing steps.

3.2.2 Component Mapping via Ray Casting
Before proceeding with voxel-based mapping, the
3D model must be aligned and scaled to match the
voxelization grid. This manual step in Blender al-
lows users to adjust the desired scale for optimal
brick resolution.
To classify each voxel, we introduce a component
tracking grid that mirrors the dimensions of the
voxelization grid. However, instead of binary occu-
pancy values (0 or 1), this grid stores integer labels,
each corresponding to a specific car component.
To assign voxel classifications, we employ a ray-
casting technique, where each voxel is analyzed
to determine its component affiliation. This
process involves iterating through the voxel grid,
identifying intersecting component volumes, and
marking the voxel grid accordingly. The resulting
component-aware voxel grid serves as the basis
for structured LEGO brick placement, ensuring
that each car component is represented with the
appropriate LEGO elements. The output of this
stage can be seen in Figure 4.

3.3 Filling with Bricks
The process of filling the model with LEGO bricks
is the most computationally intensive stage of the
entire workflow. It consists of several sub-stages ex-
ecuted in a specific order to ensure the correct and
consistent placement of bricks. Bricks are placed
in horizontal layers, starting from the bottom and

Figure 4: The output of the component mapping
stage.

progressing to the top. The thickness of each layer
depends on the height of the currently selected
bricks, which can be classified as either thick or
thin bricks.
Initially, only bricks corresponding to directly
mapped voxels are placed in the model. However,
to incorporate bricks of different dimensions, a
method is required to determine all the available
positions for each type of brick, which may span
multiple voxels. We implement two key methods
for this purpose:
• Convolution, used for bricks whose kernels are

entirely filled, and
• Correlation, used for bricks whose kernels are

only partially filled.
Convolution is applied to standard thick, thin, and
smooth bricks, while correlation is used exclusively
for sloped bricks. These methods ensure that each
brick type can be correctly placed, provided that
sufficient space is available in the voxel grid.
To handle the different orientations that bricks can
take within the model, we define cardinal directions
for brick placement. Each brick can have either
no direction, two directions, or four directions, de-
pending on the number of filled voxels within its
kernel. For example:
• A 2×2×3 brick has no directional constraints.
• A 4 × 2 × 3 brick has two orientations (north-

south and east-west).
• A 3 × 1 × 3 sloped brick has four orientations

(north, south, east, and west).
The number of available directions for a brick de-
termines the number of possible orientations that
must be considered when searching for valid place-
ment positions.
Since the model consists of bricks of varying sizes,
a good placement strategy is necessary. We imple-
ment a greedy brick selection method that calcu-
lates the surface area of each brick and prioritizes
placing the largest bricks first, followed by pro-
gressively smaller bricks. This approach enhances

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 
http://www.wscg.eu WSCG 2025 Proceedings

http://www.doi.org/10.24132/CSRN.2025-27 258



Cabin Sloped bricks Smooth bricks Thick bricksWheels Thin bricks Lights

Figure 5: Sub-stages of the Filling with Bricks phase.

model connectivity, as larger bricks generally con-
tribute to stronger structural integrity by connect-
ing more bricks. Once all available placements for
a given brick type are exhausted, the algorithm dis-
cards that brick and moves to the next largest avail-
able brick, continuing until all possible placements
are completed.
To further improve brick placement and enhance
the model’s visual symmetry, we introduce a mir-
roring algorithm. This algorithm checks the mir-
rored voxel positions across the Y-axis (the axis
along the car’s length) for each brick placement.
If empty space is available, it places a correspond-
ing mirrored brick on the opposite side. The al-
gorithm also prioritizes placements where mirrored
positions are available before placing other bricks,
contributing to a more balanced and aesthetically
pleasing design.
The following subsections describe the sub-stages
involved in filling individual components, as illus-
trated in Figure 5. The outputs of each sub-stage
are visualized in Figure 6.

3.3.1 Wheels
The first components to be placed in the model
are the wheels. The best-fitting LEGO wheels and
tires are selected based on the diameter of the cor-
responding wheel component in the 3D model. Be-
fore placing the wheels, the connecting brick that
holds them must be aligned with the actual 3D
model’s wheel center. This alignment is achieved
by shifting the wheel’s center to the closest calcu-
lated fitting hole in the connecting brick. Once the
positioning is corrected, the wheels, their connect-
ing pins, and the supporting bricks are placed into
the model at the pre-mapped wheel component lo-
cations.

3.3.2 Cabin
The cabin consists of two main parts: (1) the
windshield and (2) the remaining cabin structure,
including the roof. The windshield is manually
selected based on the cabin height, choosing be-
tween a lower windshield (6 LEGO units) and a
higher windshield (9 LEGO units). Once selected,
the windshield piece is placed at the front of the
car, oriented backward. In cases where the cabin
height exceeds the windshield height, adjustments
are made by increasing the height of the vox-
elized and component grids. After this adjustment,

the remainder of the cabin is filled using sloped,
smooth, and standard LEGO bricks, with the final
step being the addition of the roof bricks.

3.3.3 Sloped and Smooth Bricks
Sloped bricks are placed first, followed by smooth
bricks. A key consideration for both of these brick
types is that they have a smooth top surface (see
Figure 3), preventing other bricks from being at-
tached above them. Consequently, they can only
be placed at the very top of the model. To ensure
correct placement, the voxelization grid is analyzed
to identify all voxels above the sloped and smooth
bricks. If these voxels contain only empty space,
the placement is approved, and the corresponding
brick is inserted. This process continues iteratively
until all available positions for sloped and smooth
bricks are filled.

3.3.4 Thick and Thin Bricks
Thick and thin bricks form the majority of the
bricks used in the generated model. The filling pro-
cess begins with thick bricks, which have a height
of 3 LEGO units, ensuring structural stability and
efficient space coverage. Once all available posi-
tions for thick bricks are filled within the current
layer, thin bricks (1 LEGO unit high) are placed to
fill smaller gaps and add finer details to the model.

3.3.5 Fitting Lights
The front and rear lights are filled using the same
method applied for thick and thin bricks, with an
additional constraint that ensures only the specific
voxels assigned to lights are populated. To differ-
entiate the lights from other model components,
distinct colors are applied: yellow for front lights
and red for rear lights. All other components, ex-
cept wheels, pins, and the windscreen, retain the
default car body color.

3.4 Fixing Model Connectivity
Up to this stage, the LEGO models are generated
without explicit connectivity considerations. If
physically assembled, some bricks may lack proper
connections, causing structural weaknesses. To ad-
dress this, we implement a connectivity enforce-
ment method that ensures all bricks remain se-
curely attached.
The connectivity problem is similar to a graph con-
nectivity problem, where each brick is treated as

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 
http://www.wscg.eu WSCG 2025 Proceedings

http://www.doi.org/10.24132/CSRN.2025-27 259



Figure 6: Outputs of individual sub-stages: Wheels (top-left), Cabin (top-right), Sloped and smooth
bricks (middle row), Thick and thin bricks (bottom-left), and Fitting lights (bottom-right).

a graph node. A connected LEGO model should
form a single connected graph; otherwise, discon-
nected brick clusters will lead to instability. To
analyze this, we traverse all bricks using a depth-
first search (DFS) algorithm, identifying all distinct
subgraphs (disconnected regions). The goal is to
merge these subgraphs into a single cohesive struc-
ture.
Each individual brick initially lacks information
about its surroundings. To resolve this, we modify
the brick data structure by introducing two addi-
tional sets:
• Connected Bricks Set, which stores direct con-

nections between bricks.
• Neighboring Bricks Set, which identifies adja-

cent but unconnected bricks.
A grid-based representation is created to track the
occupied voxels of each brick using a unique ID.
This enables efficient processing of connections.
Once all subgraphs are identified, the algorithm
proceeds with merging. The largest subgraph (con-
taining the most bricks) is designated as the main

Figure 7: The output of the component mapping
stage.

structure, while smaller subgraphs must be con-
nected to it. To achieve this, a random brick from
a disconnected subgraph is selected, along with a
neighboring brick from the main structure. The
two selected bricks are removed, and the vacant
space is analyzed to determine the largest possible
brick that can bridge the gap between both sub-
graphs. The empty space is filled with the largest
brick that fits, ensuring strong and stable connec-
tions.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 
http://www.wscg.eu WSCG 2025 Proceedings

http://www.doi.org/10.24132/CSRN.2025-27 260



Figure 8: Comparison between input mesh model
and LEGO model of sports car from different an-
gles.

Figure 9: Comparison between input mesh model
and LEGO model of sedan from different angles.

For instance, if an empty space of size 4 × 2 × 2 is
detected, it is filled using two 4×2×1 bricks, effec-
tively linking the two subgraphs. This approach is
adaptable to different empty space dimensions and
considers the material type of the affected voxel,
ensuring the newly placed bricks retain the correct
material properties (e.g., front lights, rear lights,
or car body). The output of the this stage can be
seen in Figure 7. In some instances, the process of
connecting the subgraphs causes some bricks to be
removed from the model altogether, as seen in the
last row images of Figure 6.

3.4.1 Adjusting Brick Materials
Since the connectivity algorithm introduces new
bricks to merge disconnected regions, some bricks
may be placed across multiple components, leading
to incorrect material assignments. To correct this,
a material validation method is implemented. Each
brick is checked to ensure that its assigned material
corresponds to the component in which it is fully
located. If a mismatch is detected, the material
is updated to the correct one. This step is espe-
cially critical for front and rear lights, preventing
unintended color inconsistencies in the final LEGO
model.

4 RESULTS
We present the output results of our approach for
various 3D car models. The method was applied to
three distinct car types: a sports car (Figure 8), a
sedan (Figure 9), and an SUV (Figure 10). These

Figure 10: Comparison between input mesh model
and LEGO model of SUV from different angles.

models were chosen due to their differences in size,
cabin height, and overall shape, providing a com-
prehensive context for analyzing the various stages
of our approach.
Additionally, we performed a performance analysis
by measuring the execution time for each stage of
the approach across all three cases displayed in Ta-
ble 1. The total time required to generate a LEGO
model varies depending on factors such as the ran-
domness in brick layout generation and the com-
plexity of the connectivity function.
A notable issue observed during the model connec-
tivity stage was the potential occurrence of infinite
loops. This happens when a specific brick (referred
to as a "static" brick) cannot be removed, and no
alternative bricks are available for placement, caus-
ing the algorithm to become stuck. To prevent this,
an exit condition was implemented to terminate
the process if no viable solution is found. Conse-
quently, the execution time for the model connec-
tivity stage is not always consistent across multiple
runs.
To evaluate the computational efficiency of the ap-
proach, we measured the time required for both
the voxelization process and the complete LEGO
model generation. Each test was executed 10 times,
and the average results were recorded. The ex-
periments were conducted on a system equipped
with an AMD Ryzen 7 7800X3D processor, 32GB
of DDR5 RAM, and an AMD RX 7900XTX graph-
ics card.
The total time required for generating the LEGO
models varies significantly depending on several
factors, including the complexity of the input
model, the placement of bricks, and the number of
disconnected subgraphs that must be merged.

5 DISCUSSION
The performance analysis results (Table 1) indi-
cate that the two most time-consuming stages in
our system are voxelization and fixing connectivity
stage. The time required for voxelization is directly
influenced by the size and complexity of the input

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 
http://www.wscg.eu WSCG 2025 Proceedings

http://www.doi.org/10.24132/CSRN.2025-27 261



Table 1: Average total processing times for the test models and average times for each stage.
Car Triangle

count Voxelization Component
mapping Wheels Cabin Sloped Smooth Thick Thin Lights Fixing

connectivity
Total

generation
Sports car 579,027 44.092 s 14.805 s 0.245 s 0.038 s 2.887 s 1.372 s 0.248 s 0.551 s 0.251 s 10.953 s 31.350 s

Sedan 70,926 46.358 s 4.509 s 0.170 s 0.0378 s 3.305 s 1.486 s 0.263 s 0.752 s 0.256 s 7.645 s 18.424 s
SUV 7,812 1.368 s 2.636 s 0.171 s 0.037 s 2.245 s 1.221 s 0.233 s 0.446 s 0.315 s 10.542 s 8.356 s

mesh model—larger polygonal models result in sig-
nificantly longer processing times.
On the other hand, the execution time of the con-
nectivity fixing stage varies for a different reason:
randomness. Due to variations in brick placement,
the algorithm may need to connect a different num-
ber of subgraphs in each run. Additionally, certain
bricks are classified as “static” bricks, meaning they
cannot be removed once placed. This can lead to
an issue where the algorithm continuously removes
and replaces the same brick, failing to establish a
necessary connection. If this process reaches a pre-
defined threshold of unsuccessful attempts, the al-
gorithm removes the problematic bricks altogether,
leading to extended processing times.
By analyzing the input and output images in Fig-
ure 8-10, it is evident that the generated LEGO
models closely resemble their corresponding input
mesh models. This could be further validated
through a user study in future work.
A key limitation of our method is that it is con-
strained to a predefined set of car components
(wheels, cabin, and lights). Future extensions could
introduce additional components to enhance model
diversity and realism. Furthermore, the system is
restricted to a fixed set of LEGO bricks, orienta-
tions, and placement rules. Expanding the avail-
able brick types and refining placement strategies
could improve both structural stability and visual
fidelity in future iterations of the approach.

6 CONCLUSION
In this paper, we explored the problem of generat-
ing LEGO car models from input 3D mesh mod-
els. We proposed, defined, and tested a solution
designed to aid LEGO designers by automating
and accelerating the early phases of LEGO model
creation. Our method systematically converts 3D
car models into LEGO-compatible representations
through a structured pipeline that includes vox-
elization, component mapping, structured brick
placement, and connectivity optimization.
The results demonstrate that our approach effec-
tively translates input meshes into recognizable
LEGO car models while ensuring structural
connectivity. Future work could focus on several
key enhancements. Machine learning techniques
could be integrated to improve brick selection and

placement strategies, incorporating more advanced
building techniques used in official LEGO models.
The 3D car model could be automatically seg-
mented into individual components as presented
in [7]. Refining the connectivity algorithm to
handle complex edge cases without resorting
to brick removal would improve the structural
integrity of the generated models. Expanding the
set of supported LEGO bricks, orientations, and
components would allow for more intricate and
diverse designs. Automating the generation of
step-by-step assembly instructions would make
the system more practical for real-world model
reconstruction. Finally, conducting user studies
to evaluate the perceptual similarity between the
generated LEGO models and their original 3D
counterparts would provide valuable insights for
further refinement.
Overall, our system provides a foundation for au-
tomating LEGO car model generation from 3D
mesh data, with potential applications in digital
prototyping and interactive design workflows. Ad-
dressing the identified limitations and exploring
future improvements could streamline LEGO car
model design while enhancing both structural and
aesthetic quality.

7 REFERENCES
[1] Hao Cai, Yanjia Chen, Lingling Xu, Khalid El-

baz, and Chengdian Zhang. Intelligent build-
ing system for 3d construction of complex
brick models. IEEE Access, 8:182506–182516,
2020.

[2] Zhao Dong, Wei Chen, Hujun Bao, Hongxin
Zhang, and Qunsheng Peng. Real-time vox-
elization for complex polygonal models. In
12th Pacific Conference on Computer Graph-
ics and Applications, 2004. PG 2004. Proceed-
ings., pages 43–50, 2004.

[3] Rebecca A. H. Gower, Agnes E. Heydtmann,
and Henrik Gordon Petersen. Lego: Auto-
mated model construction. In 32nd European
Study Group with Industry, 1998.

[4] Jian Huang, Roni Yagel, Vassily Filippov, and
Yair Kurzion. An accurate method for vox-
elizing polygon meshes. In IEEE Symposium
on Volume Visualization, pages 119–126, 11
1998.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 
http://www.wscg.eu WSCG 2025 Proceedings

http://www.doi.org/10.24132/CSRN.2025-27 262



[5] Sangyeop Lee, Jinhyun Kim, Jae Woo Kim,
and Byung-Ro Moon. Finding an Optimal
LEGO® Brick Layout of Voxelized 3D Object
Using a Genetic Algorithm. In Proceedings
of the 2015 Annual Conference on Genetic
and Evolutionary Computation, GECCO ’15,
page 1215–1222, New York, NY, USA, 2015.
Association for Computing Machinery.

[6] K. Lennon, K. Fransen, A. O’Brien, Y. Cao,
M. Beveridge, Y. Arefeen, N. Singh, and
I. Drori. Image2LEGO®: Customized LEGO
Set Generation from Images, 2021.

[7] Qing Liu, Adam Kortylewski, Zhishuai Zhang,
Zizhang Li, Mengqi Guo, Qihao Liu, Xiaod-
ing Yuan, Jiteng Mu, Weichao Qiu, and Alan
Yuille. Learning part segmentation through
unsupervised domain adaptation from syn-
thetic vehicles. In CVPR, 2022.

[8] S. Luo, Y. Yue, C. Huang, Y. Chung, S. Imai,
T. Nishita, and B. Chen. Legolization. ACM
Transactions on Graphics, 34:1–12, 2015.

[9] K. Min, C. Park, H. Yang, G. Yun, and
Y. Grim. Legorization from Silhouette-Fitted
Voxelization. KSII Transactions on Internet

and Information Systems, 12, 2018.
[10] Sumiaki Ono, Alexis André, Youngha Chang,

and Masayuki Nakajima. Lego builder: Au-
tomatic generation of lego assembly manual
from 3d polygon model. ITE Transactions on
Media Technology and Applications, 1(4):354–
360, 2013.

[11] Romain Pierre Testuz, Yuliy Schwartzburg,
and Mark Pauly. Automatic generation of
constructable brick sculptures. In Eurograph-
ics 2013-Short Papers, page 81–84, 2013.

[12] R. Thompson, E. Ghalebi, T. DeVries, and
G. Taylor. Building LEGO Using Deep Gen-
erative Models of Graphs, 2020.

[13] J. Zhou, X. Chen, and Y. Xu. Automatic Gen-
eration of Vivid LEGO Architectural Sculp-
tures. Computer Graphics Forum, 38:31–42,
2019.

[14] Mingjun Zhou, Jiahao Ge, Hao Xu, and Chi-
Wing Fu. Computational design of lego®
sketch art. ACM Trans. Graph., 42(6), De-
cember 2023.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 
http://www.wscg.eu WSCG 2025 Proceedings

http://www.doi.org/10.24132/CSRN.2025-27 263



 

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 
http://www.wscg.eu WSCG 2025 Proceedings

http://www.doi.org/10.24132/CSRN.2025-27 264


	Introduction
	Related Work
	Voxelization and LEGO Model Representation
	Optimization Strategies for LEGO Model Generation
	Automated LEGO Model Reconstruction

	Methods
	Voxelization
	Component Mapping
	Preprocessing the 3D Model
	Component Mapping via Ray Casting

	Filling with Bricks
	Wheels
	Cabin
	Sloped and Smooth Bricks
	Thick and Thin Bricks
	Fitting Lights

	Fixing Model Connectivity
	Adjusting Brick Materials


	Results
	Discussion
	Conclusion
	References



