. land

Article

Procedural Point Cloud and Mesh Editing for Urban Planning

Using Blender

Gorazd Gorup ', Ziga Lesar (0, Matija Marolt

check for
updates

Academic Editor: Shaojian Wang

Received: 7 March 2025
Revised: 3 April 2025
Accepted: 7 April 2025
Published: 9 April 2025

Citation: Gorup, G.; Lesar, 7.; Marolt,
M.; Bohak, C. Procedural Point Cloud
and Mesh Editing for Urban Planning
Using Blender. Land 2025, 14, 815.
https:/ /doi.org/10.3390/
land14040815

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ / creativecommons.org/
licenses /by /4.0/).

and Ciril Bohak **

Faculty of Computer and Information Science, University of Ljubljana, 1000 Ljubljana, Slovenia;
2g6898@student.uni-lj.si (G.G.); ziga.lesar@fri.uni-lj.si (Z.L.); matija.marolt@fri.uni-lj.si (M.M.)

* Correspondence: ciril. bohak@fri.uni-lj.si; Tel.: +386-1-4798-259

' These authors contributed equally to this work.

Abstract: Urban planning has become increasingly complex, necessitating the use of digi-
tized data, large-scale city scans, and advanced tools for planning and development. Recent
advancements in open-source 3D modeling software—Blender, have introduced powerful
procedural editing tools like geometry nodes alongside robust mesh and curve manipula-
tion capabilities. These features position Blender as a viable and cost-effective alternative to
proprietary solutions in urban planning workflows. This study identifies common require-
ments, tasks, and workflows associated with cityscape transformation and visualization,
implementing them within Blender’s environment. Documented working examples are
provided, including procedural editing, cloud painting, and mesh transformation opera-
tions, demonstrating Blender’s versatility. To evaluate its practicality and performance, we
conducted a comparative analysis with the Rhinoceros Grasshopper, a widely used tool
in urban planning. Metrics such as computational efficiency, workflow adaptability, and
user experience were analyzed across multiple scenarios involving point cloud processing,
mesh editing, and visualization tasks. Finally, we suggest further potential improvements
aided by Blender’s powerful scripting framework.

Keywords: procedural modeling; point cloud processing; computational design; open-
source GIS; parametric urban design

1. Introduction

The increasing accessibility of high-resolution point cloud datasets has significantly
enhanced urban planning capabilities, providing planners with detailed spatial data for
analysis and decision-making. Advances in data acquisition technologies, such as light
detection and ranging (LiDAR) and photogrammetry, have facilitated the creation of
extensive urban point cloud datasets, many of which are publicly available for research and
practical applications. Examples include city-scale LIDAR datasets such as Toronto-3D [1],
which supports autonomous driving and urban mapping, and Paris-Lille-3D [2], designed
for automatic segmentation and classification of urban infrastructure. Additional datasets,
such as SemanticKITTI [3] and TUM-MLS-2016 [4], further contribute to the understanding
of urban environments. National airborne LiDAR datasets, such as those from Slovenia [5,6]
and the Netherlands [7], provide extensive coverage but at lower resolution and with a
field of view limited to airborne acquisition.

These and similar datasets not only enable the development of machine learning
algorithms for urban scene understanding but also facilitate the integration of point cloud
data into urban planning workflows, promoting more data-driven and effective decision-
making [8-10].

Land 2025, 14, 815

https://doi.org/10.3390/land 14040815

https://doi.org/10.3390/land14040815
https://doi.org/10.3390/land14040815
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0009-0004-1933-1894
https://orcid.org/0000-0002-9850-0497
https://orcid.org/0000-0002-0619-8789
https://orcid.org/0000-0002-9015-2897
https://doi.org/10.3390/land14040815
https://www.mdpi.com/article/10.3390/land14040815?type=check_update&version=2

Land 2025, 14, 815

20f21

As demand for detailed urban modeling grows, the proliferation of such datasets is
crucial for advancing research and real-world applications. Alongside this, there is an
increasing need for advanced visualization and editing tools that support interactive model-
ing and dataset refinement. Existing point cloud processing and editing tools primarily only
focus on basic operations, such as cropping, trimming, translation, rotation, scaling, and
parameter adjustment. However, they lack direct editing capabilities akin to those available
in common 3D modeling applications, which support various geometry representations
(e.g., polygon meshes, Bézier curves, NURBS surfaces, metaballs, and constructive solid
geometry). Consequently, users often convert point cloud representations into alternative
geometries to enable more advanced editing, a process that introduces errors and loss of
data and disrupts traceability to the original data.

To address this gap, we propose a non-destructive direct point cloud editing approach
implemented within Blender, a widely used open-source 3D modeling application. Our
contributions include the following:

* Efficient handling of large point cloud datasets—enabling the loading and visualiza-
tion of extensive datasets with level-of-detail functionality.

* Non-destructive point cloud editing—implementing operations such as copying,
conditional removal, brush-based erasing, painting, and flattening using Blender’s
Geometry Nodes system.

* Advanced rendering support—utilization of various point attributes, such as color, po-
sition, classification, etc., in combination with different shaders to provide informative
and appealing visualizations.

We provide the above-mentioned functionality as a Blender add-on.

The rest of this paper is structured as follows: Section 2 presents relevant prior work.
Appendix A discusses existing tools and approaches in 3D modeling for urban planning.
Our proposed methods and implementations are detailed in Section 3, followed by an
evaluation of results in Section 4. We discuss our findings and limitations in Section 5 and
conclude with a summary and future research directions in Section 6.

2. Related Work

The convergence of procedural modeling, point cloud technologies, and urban plan-
ning has driven significant advancements in urban design and visualization. Recent
methodologies emphasize bridging artistic and technical aspects to enhance planning
workflows. Yang [11] explores the automatic transformation of 2D sketches into detailed
3D Computer Aided Design (CAD) models using a visual transformer model, streamlining
urban design for architects and planners. Similarly, Ihle and Wichmann [12] advocate for
integrating scientific data with artistic representation based on an educational experiment
that merges art and science to deepen landscape architecture students’ comprehension of
available scientific data, enriching the discourse on landscape visualization. Urech et al. [13]
highlight point clouds as a critical link between design and planning, demonstrating their
role in generating accurate urban representations. Raj et al. [14] provide an overview of the
LiDAR technology and point cloud construction. These studies collectively underscore the
growing reliance on advanced modeling techniques to improve visualization, analysis, and
sustainability in urban planning.

2.1. Procedural Methods in Urban Modeling

Procedural modeling has emerged as a powerful tool for urban design, addressing the
inefficiencies of traditional methods. Yang and Delparte [15] showcase a procedural frame-
work using CityEngine! to generate 3D urban models from Geographic Information System
(GIS) datasets, exemplifying efficient large-scale modeling. Mustafa et al. [16] extend this

Land 2025, 14, 815

30f21

approach by integrating environmental factors, such as flood sensitivity, demonstrating
how procedural techniques enhance urban resilience. Additionally, Zupan and Franges [17]
emphasize the automatic procedural generation of complex urban geometries, highlighting
the need for scalable modeling tools.

The role of open-source tools in procedural modeling is increasingly recognized. Cress
and Beesley [18] advocate for open-source software to democratize access to urban design
capabilities, while Gallo and Tuzzolino [19] emphasize their potential for promoting sustain-
able urban development. In the Blender ecosystem, Ladybug tools” provide environmental
analysis functionalities, fostering sustainable design. Charan et al. [20] further integrate
URBANopt3 and Dragonﬂy4 for energy-efficient modeling, streamlining workflows for
practitioners. Gschwandtner et al. [21] introduce BlenSor, a Blender-based sensor simula-
tion toolbox that facilitates the generation of synthetic LIDAR data for virtual environments,
supporting procedural workflows involving simulated sensing.

Naboni et al. [22] introduce a digital workflow for quantifying regenerative urban
design, demonstrating how procedural modeling supports sustainability by optimizing
urban landscapes for resilience and adaptability. These studies collectively underscore
procedural modeling’s transformative impact on urban visualization and planning.

2.2. Point Cloud Modeling

Advancements in LiDAR and mobile laser scanning have expanded point cloud
applications in urban planning. Wang et al. [23] provide a comprehensive overview of
mobile laser scanning for generating high-resolution 3D point clouds, facilitating detailed
urban modeling and decision-making. You et al. [24] focus on airborne laser scanning
for urban tree extraction, showcasing point clouds’ utility in managing green spaces.
Schmohl et al. [25] further integrate artificial intelligence with point cloud data to improve
urban forestry management, demonstrating its versatility in ecological planning.

Data augmentation and preprocessing also play key roles in improving point cloud
quality and generalizability. Zhao et al. [26] simulate Monte Carlo distortions to augment
missile-borne multi-sensor LiDAR data, increasing robustness in downstream applications.
Zhao et al. [27] propose a robust multi-task learning framework for preprocessing complex
LiDAR point clouds, enhancing denoising and segmentation capabilities. Meanwhile,
Griffiths and Boehm [28] introduce SynthCity, a large-scale synthetic point cloud dataset
designed to support deep learning and benchmarking in urban scenes.

Recent studies have emphasized the need for effective segmentation and reconstruc-
tion of urban structures from point cloud data. Chen et al. [29] propose an automated
methodology for extracting and reconstructing 3D urban buildings from airborne LiDAR,
underscoring the importance of reliable urban-scale modeling pipelines. Large-scale anno-
tated datasets such as SensatUrban [30] and STPLS3D [31] further advance this domain
by supporting a semantic understanding of complex urban scenes. These contributions
provide essential context for urban-scale point cloud modeling and align with this work’s
focus on flexible and non-destructive urban data manipulation.

2.3. Point Clouds in Urban Planning

The integration of point clouds into urban planning enhances data-driven decision-
making. Vijaywargiya and Ramiya [32] highlight their potential in sustainable governance,
including energy and resource management. Lei et al. [33] explore point-cloud-driven
virtual reality systems for urban design, emphasizing stakeholder engagement through
real-time interactive visualization. Zheng et al. [34] utilize point cloud data to define urban
development boundaries, supporting sustainable spatial planning.

Land 2025, 14, 815

40f21

Additionally, Wang et al. [35] review the role of LiDAR in 3D urban modeling, under-
scoring its precision for applications such as infrastructure management and environmental
monitoring. Zieba-Kulawik et al. [36] focus on urban forest monitoring, illustrating how
point clouds contribute to vegetation health assessment and green space planning. These
studies highlight the growing significance of point clouds in creating more sustainable,
resilient urban environments.

Despite the advancements in procedural modeling and point cloud integration for
urban planning, existing approaches face several limitations. Many procedural tools, such
as CityEngine, prioritize large-scale city generation but lack direct editing capabilities
for high-resolution point cloud datasets, restricting their adaptability in detailed urban
modeling. Similarly, while point clouds serve as a crucial link between design and planning,
current software solutions often focus on visualization and analysis rather than interactive
editing and transformation, forcing users to convert point clouds into alternative geometric
representations, leading to data loss and reduced accuracy. Proprietary solutions offer
powerful but rigid workflows that limit customization and accessibility, while open-source
tools, though promising, remain fragmented and underutilized in procedural urban design.
Addressing these gaps, our approach leverages Blender’s procedural capabilities to intro-
duce non-destructive point cloud editing, enabling interactive manipulation, enhanced
rendering, and seamless workflow integration for urban planning tasks. By combining effi-
ciency, flexibility, and accessibility, our work extends existing methodologies and provides
an open-source alternative that supports both large-scale procedural urban modeling and
detailed point cloud transformations.

3. Methods

When developing our solution, we researched the present state of the point cloud
manipulation software, which we overview in Appendix A.

Our workflow for point cloud manipulation, as presented in Figure 1, consists of
three stages: (1) preprocessing and import of the point cloud, (2) point cloud manipulation
through node trees, and (3) rendering of resulting point cloud geometry.

Import Render

Preprocessing > Editing —_—> Rendering
ﬂLAS to PLY Normals b LoD ‘ Geometry Nodes Grease Pencil L Shader Editor { Renderer]
Export Render

A

3,

Point Cloud Files Final Image

Figure 1. Representation of our workflow for point cloud manipulation inside Blender. First, we
preprocess the cloud, converting LASer (LAS) files to PLY files based on level-of-detail (LoD) and
classification. We optionally calculate normals, although this step can be moved to the editing stage at
the user’s preference. In the editing stage, Geometry Nodes and Grease Pencil are primarily used to
transform the point cloud. Editing leads either to the export of the modified point clouds or onto the
rendering stage, where the material on the points is prepared in the Shader Editor, and the renderer
settings are configured for either of the rendering engines: Cycles or EEVEE.

3.1. Preprocessing

At the time of writing, both Blender and Rhinoceros provide limited native support
for importing point cloud data. While both applications can handle PLY files, Rhinoceros
offers broader format compatibility, including ASTM E57 and a few others.

Land 2025, 14, 815

50f21

Since LiDAR point clouds are commonly stored in the LASer (LAS) format, preprocess-
ing is necessary to convert these files into a format suitable for Blender or Rhinoceros. To
achieve this, we utilized the open-source point cloud processing software CloudCompare
version 2.13.2 to convert LAS files to ASTM E57 for Rhinoceros and PLY for Blender.

One common challenge with LiDAR-acquired point clouds is that their coordinates are
often located far from the world origin, which can lead to precision issues in 3D modeling
software. To mitigate this, we used CloudCompare to recenter the point cloud before
importing it into either application.

Blender organizes scene data into objects, which can contain different types of geom-
etry, such as meshes, curves, and surfaces. When imported into Blender, a point cloud
is represented as an object consisting of unconnected vertices, which cannot be rendered
directly and appear in the 3D Viewport as simple, unshaded circles. However, using
Geometry Nodes, these vertices can be converted into points represented by geometry
instances, allowing them to be shaded and rendered effectively.

3.1.1. Level-of-Detail and Classifications

The current architecture of Blender imposes a fixed point buffer limit of approximately
4.2 GB per object, restricting the number of points per object that can be displayed in the
3D Viewport. Since our work involves large point clouds containing millions of points, we
introduce level-of-detail (LoD) to optimize point cloud rendering and interaction across
different hardware configurations. To address both memory limitations and performance
concerns, we implemented LoDs as separate objects, each containing a subset of points to
ensure the buffer limit is not exceeded. These objects can be hidden or revealed dynamically,
allowing users to switch between lower- and higher-detail representations as needed.

In LiDAR datasets, points can be classified into 256 categories, representing features
such as ground, buildings, railways, roads, and vegetation. To enable toggling the visibility
of points based on classification, we considered two approaches:

1. Storing points of different classes in separate objects—This approach leverages
Blender’s standard object visibility mechanisms, allowing classification-based fil-
tering across different LoDs via scripting.

2. Storing the class ID as a point attributes—Here, classification visibility is controlled
directly through Geometry Nodes, enabling efficient filtering and seamless color-
based rendering based on class attributes.

The first approach provides better display performance and simplifies classification
management, as visibility toggling can be handled efficiently at the object level. Addi-
tionally, the object creation process is highly optimized, taking only a few seconds in our
implementation.

However, we ultimately adopted the second approach, as it integrates more seamlessly
with Geometry Nodes, allowing each point to retain its classification information. This
proved particularly useful in the shading stage, where points can be dynamically assigned
colors based on their classes. Despite these advantages, this approach resulted in longer
processing times due to the overhead of constructing the node tree for classification-based
filtering. Specifically, since Geometry Nodes lack native support for array-based toggling,
256 boolean inputs and 512 boolean math nodes had to be generated to manage classification
visibility. While this workaround is computationally expensive, it was necessary given the
current limitations in Blender’s node-based system. Future updates may introduce native
support for array-based operations, as this has been a recurring feature request from the
Blender community.

Land 2025, 14, 815

6of 21

3.1.2. Normal Computation

Computing normals for point clouds requires external tools such as CloudCompare
or custom script implementations. In the case of Blender, we developed a custom PCA-
based normal computation inspired by [37,38]. Our approach involves preprocessing
PLY files externally, where normals are computed and updated before being reloaded
into Blender. This ensures that point clouds maintain accurate normal information for
subsequent shading and rendering operations.

3.1.3. Viewport Display

To ensure proper visualization of point clouds in Blender’s 3D Viewport, both materials
and an initial Geometry Nodes configuration must be set up. Each point cloud object
requires a Geometry Nodes modifier, which converts unconnected vertices into point
instances for correct display. Additionally, a material must be applied to enable accurate
point coloration.

For optimal real-time visualization, the Material Preview shading mode provides the
best balance between performance and visual clarity. When using the EEVEE rendering
engine, disabling shadow calculations can further improve viewport performance, reducing
computational overhead and ensuring smoother interaction with large point clouds.

3.2. Editing

We evaluated Blender’s capabilities by testing a selection of operations that are com-
monly used in urban planning and similar applications, as identified in published work-
flows. All operations were implemented using Geometry Nodes, with certain parameters
dynamically controlled via auxiliary objects and mesh primitives to facilitate real-time
transformations in the 3D Viewport.

For instance, to define a specific region of interest, we used a Cube primitive, adjusting
its position and scale to encompass the desired set of points. Within the node tree, we
identified points contained within the Cube using the Object Info and Raycast nodes. As the
Cube was further manipulated, the Geometry Nodes computation updated dynamically,
ensuring real-time responsiveness.

When constructing operations within Blender’s Geometry Nodes, it is important to
note that point clouds are initially represented as unconnected vertices. Therefore, at some
stage, the geometry must be explicitly converted into renderable points using the Mesh to
Points node. This conversion can be introduced at any point in the node tree; however, we
have not extensively analyzed the performance implications of different placements within
our tested operations.

Additionally, we observed that the Set Material node should preferably be applied last
in the node tree, as some geometry-altering nodes remove previously assigned material
definitions. This workflow is visually outlined in Figure 2.

Input Geometry Mesh to Points Any other Set Material Geometry Output
Node Node node group Node Node

Figure 2. Our preferred node tree construction. Mesh to Points node could also be placed after other

nodes but before Set Material node.

3.2.1. Point Copying

Points can be duplicated and transformed based on a specified condition, such as loca-
tion, color, or classification. This functionality is particularly useful for rapid prototyping
and early-stage design, where existing structures within the point cloud can be reused and
repositioned in different areas.

Land 2025, 14, 815

7 of 21

In Blender, point duplication can be achieved by encapsulating a region of interest
within a primitive, such as a Cube. The primitive’s geometry can be accessed via the
Object Info node, while the Raycast node is used to determine which points fall within the
Cube’s boundaries. Once the relevant points are identified, the selected geometry can
be transformed and combined with both the original (untransformed) selection and the
remaining unselected geometry. To facilitate interactive adjustments, the transformation
can be linked to an empty object, allowing for real-time manipulation. This operation is
visually demonstrated in Figure 3.

Figure 3. Example of point copying on a region of point cloud from Tokyo dataset. The bottom left
skyscraper was copied, moved to the center of the scene, and rotated.

3.2.2. Point Removal

Points in the point cloud are removed based on a given condition. In Blender, we can
determine the geometry to be deleted via position coordinate intervals or Raycast node
and delete the selected geometry with the Delete Geometry node. The results can be seen
in Figure 4.

Figure 4. Example of point removal on a region of point cloud from Tokyo dataset.

3.2.3. Drawing Points

Blender features the Grease Pencil tool, which allows users to draw and paint strokes
that are represented as curves within the 3D environment. These curves are first converted
into mesh geometry, after which points are drawn onto the mesh faces. This functionality
is particularly useful for filling small voids in point clouds and creating irregular shapes
that may be difficult to generate through other modeling techniques. We show an example
in Figure 5.

To the best of our knowledge, Rhinoceros and Grasshopper do not offer a comparable
feature to Blender’s Grease Pencil. As a result, an equivalent implementation was not
possible.

Land 2025, 14, 815 8 of 21

020 ’éf?”
o’:'i- T 3 s’.?g’\%‘;"
£ % {gr’ N
53 35 2 S
¥ %, g #
’*.,?}‘ \,.:;:,:i
4‘.1;3. 53
Wiz

Figure 5. Example of point drawing operation. On the (left), a single Grease Pencil stroke with
Geometry Nodes applied to it is presented. On the (right), some Grease Pencil strokes are placed in
the scene. The Tokyo point cloud and Grease Pencil drawing are separate objects.

3.2.4. Painting on Points

With Grease Pencil, strokes can be painted directly onto points, allowing point at-
tributes to be modified based on their proximity to the stroke. For example, specific regions
of the point cloud can be marked by painting over them, and the color attribute of the
affected points can be updated accordingly.

Additionally, Grease Pencil strokes can be converted into mesh geometry, which can
then be processed using the Raycast node to identify points within a defined radius of
the stroke. This approach enables localized point modifications based on user-defined
strokes. We were unable to replicate this functionality within Rhinoceros. An example of
the functionality is illustrated in Figure 6.

Figure 6. Example of painting on points, presented on Tokyo dataset. The Grease Pencil curves were
painted blue after the fact to be more visible to the reader.
3.2.5. Erasing Points

Just like Grease Pencil can be used to draw points into a point cloud, we can remove
the geometry based on the distance from the stroke illustrated in Figure 7.

Land 2025, 14, 815

9of21

Figure 7. Example of erasing points, presented on Tokyo dataset.

3.2.6. Flattening Points

This tool enables the removal of structures from the point cloud while ensuring that
the affected area is seamlessly filled rather than leaving a blank space. The process can be
implemented in multiple ways, depending on the desired outcome. Our initial approach
involved defining a 2D plane, removing all points that could be projected onto it along its
normal direction, and then sampling new points on the plane to fill the void. The colors of
these newly generated points were sampled from the nearest existing points outside the
affected region, ensuring a natural transition. In contrast, our second approach modified
the coordinates of existing points, projecting them onto the plane rather than deleting and
resampling. While this method resulted in some redundant and overlapping points, it
produced a more visually consistent and textured result in the flattened region. Here, we
present results from the second implementation, which is illustrated in Figure 8.

Figure 8. Example of flattening, presented on Tokyo dataset.

3.2.7. Mesh Tools

Blender’s strong emphasis on mesh and curve modeling allows its mesh primitives
and modeling tools to be used for creating new structures that can be incorporated into
a point cloud. These structures are integrated by sampling points from mesh surfaces,
effectively converting geometric representations into point-based data.

Custom attributes can be assigned to points using the Store Named Attribute node,
enabling precise control over point properties. Additionally, attributes can be derived from
vertex data generated through vertex paint and mesh editing operations. When points are
converted from vertices, they retain their associated attributes, ensuring consistency in the
assigned properties. The use of this tool is illustrated in Figure 9.

Land 2025, 14, 815

10 of 21

Figure 9. Example of converting mesh object to point representation. On the left, the mesh object
is displayed with a wireframe. On the right, the point cloud of the mesh object is shown. Vertex
Painting was used to change the vertex color at certain edge angles, and the color attribute was
transformed via a Color Ramp node in the material to produce green shading.

Our proposed workflow leverages Blender’s Geometry Nodes, Grease Pencil, and ren-
dering engines to facilitate point cloud manipulation in urban planning contexts. Through
efficient preprocessing, interactive editing, and customizable rendering, we demonstrated
a flexible and scalable approach for working with large-scale point clouds. The various
operations—copying, removal, flattening, painting, and transformation of points—enable
precise control over the dataset while preserving critical geometric attributes. In the
following section, we present the performance evaluation comparison with the Rhinoceros-
Grasshopper combination and present additional visual results.

4. Results

In this section, we present the experimental setup, performance analysis results, and
some selected images created using the introduced approach.

4.1. Experimental Setup

We conducted our experiments in Blender 4.4 and Grasshopper in Rhinoceros 8,
performing timing measurements using the internal debugging tools provided by each
software. Both Blender and Grasshopper display the execution time of individual nodes,
albeit with a key difference: Blender accumulates execution duration up to a specific node,
whereas Grasshopper reports the execution time of each node separately. However, both
programs caution that these timing values are approximate and should be interpreted
primarily for coarse optimization rather than precise benchmarking.

In Grasshopper, certain operations—such as point copying—had to be executed on
smaller datasets due to long processing times. For larger datasets, these operations fre-
quently resulted in crashes, limiting the scope of direct comparisons. Additionally, manual
LoD in Grasshopper was not included in our experiments.

Unless stated otherwise, experiments were conducted on a high-performance worksta-
tion equipped with two Intel Xeon Gold 6140 processors (2.30 GHz, 18 cores each), 256 GB
of RAM, and an NVIDIA RTX A4000 Ada-generation GPU, running Microsoft Windows
Server 2022.

When using another computer for performance comparison, a laptop was used with
an Intel i7-1260P processor (1.20 GHz, 12 cores), 16 GB of RAM, and a GeForce MX570 A
GPU, running Linux Mint 21.3 Cinnamon.

For our dataset, we used a subset of the Tokyo LiDAR dataset, consisting of approxi-
mately 6.4 million points.

Land 2025, 14, 815

11 of 21

4.2. Performance Evaluation

Blender renders the testing point cloud at roughly 25 frames per second (FPS) with
material shading and 45 FPS with solid shading. On the laptop, the performance reaches
10 FPS with material shading and 25 FPS with solid shading. Since Rhinoceros refreshes
the view only when necessary, measuring performance in FPS does not make sense and
cannot be used for comparison.

We measured the execution times for individual implemented operations in both
applications. We could directly compare three operations: Point Copying, Point Removal,
and Flattening Points. The execution times for Blender and Grasshopper are shown in
Tables 1 and 2, respectively. We also provide Blender results of operations on the laptop
computer in Table 3 to show the Blender’s performance across different machines.

Table 1. Results of operations on Tokyo LiDAR dataset performed in Blender with Geometry Nodes
on the workstation. Node Count excludes the input and output node of the observed node group
responsible for the operation, and execution time represents the approximate execution time of the
observed node group.

Operation Node Count Execution Time Number of Points Bottleneck
Point Copying 10 0.29s (~340k points) Join Geometry node
Point Removal 9 0.11s (~460k points) Delete Geometry node
Drawing Points 4 021s (~18k points added) Points on Faces node
Erasing Points 8 0.26s (~200k points) Delete Geometry node
Coloring Points 7+7% 0.50s (~200k points colored) Store Named Attribute node
Flattening Points 13 0.11s (~880k points) Store Named Attribute node
Mesh to Points 11 0.02s (~104k points) Points on Faces node

* There are two node groups, one applied to the point cloud object and one applied to the Grease Pencil object.

Table 2. Results of operations on Tokyo LiDAR dataset performed in Rhinoceros 8 Grasshopper.
Execution time represents the approximate execution time of the observed node group.

Operation Node Count Execution Time Number of Points Bottleneck
Point Copying 16 91s (~340k points) Point in Brep, Construct Point Cloud
Point Removal 9 90s (~460k points) Point in Brep, Construct Point Cloud
Flattening Points 19 65s (~880k points) Construct Point Cloud

Table 3. Results of operations on Tokyo LiDAR dataset performed in Blender with Geometry Nodes
on the laptop computer. Node Count excludes the input and output node of the observed node group
responsible for the operation, and execution time represents the approximate execution time of the
observed node group.

Operation Node Count Execution Time Number of Points Bottleneck
Point Copying 10 027s (~340k points) Join Geometry node
Point Removal 9 0.18s (~460k points) Delete Geometry node
Drawing Points 4 23s (~18k points added) Points on Faces node
Erasing Points 8 055s (~200k points) Delete Geometry node
Coloring Points 7+7% 047 s (~200k points colored) Store Named Attribute node
Flattening Points 13 0.09s (~880k points) Store Named Attribute node
Mesh to Points 11 0.01s (~104k points) Points on Faces node

* There are two node groups, one applied to the point cloud object and one applied to the Grease Pencil object.

When using paint tools on points in Blender, we observed a significant drop in per-
formance, as each update to the Grease Pencil geometry required recalculating attributes
on affected points. Similarly, interacting with objects that controlled parameters within
Geometry Node trees was severely limited due to the computational overhead incurred
with each modification.

In comparing Rhinoceros and Blender, certain operations were more efficiently repre-
sented with nodes in one program than the other. For instance, checking whether a point
was inside a mesh required only a single node in Grasshopper (Point in Brep), whereas, in
Blender, the same operation required three to four nodes (Raycast and several vector math

Land 2025, 14, 815

12 of 21

nodes), increasing workflow complexity. The comparable implementations of individual
operations used fewer nodes in Blender on average.

Grasshopper has limited access to point cloud attributes, primarily supporting location,
color, and normals. In contrast, Blender’s Geometry Nodes can read, manipulate, and store
additional attributes, allowing for more flexible rendering (e.g., visualizing elevation data)
and attribute-based filtering and manipulation (e.g., removing points based on specific
attribute values). This greater attribute control provides enhanced customization and
visualization options in Blender.

When performing basic transformations such as translation, rotation, and scaling
on a point cloud object, Rhinoceros demonstrated greater efficiency, maintaining smooth
real-time interaction. In contrast, Blender exhibited noticeable frame drops and viewport
lag, impacting usability when working with large datasets.

While both programs faced performance challenges with certain node operations,
Grasshopper was more prone to crashes or extended periods of unresponsiveness, even
when previewing only selected node outputs. This made handling complex or large-scale
point cloud operations more challenging in Grasshopper than in Blender.

We also compared the rendering performance of the built-in rendering engine in both
applications and presented the results in Table 4.

Table 4. Measurements of rendered images of Tokyo point cloud. The images were rendered
on the workstation at a resolution of 1920 x 1080 pixels. The middle column notes the material
shader applied on points. We did not provide measurements for the laptop computer, as rendering
comparisons for different machines is out of scope of this paper.

Renderer Shader Used Duration
Blender EEVEE PI'II:IClPled BSDF 39s
Emission 28s
Blender Cycles Pru}mpled BSDF 40s
Emission 19s
Rhino Renderer / <ls*

* The measurement does not include tone-mapping or gamma correction. These could take up to 3 s.

4.3. Output Image Comparison

To explore different visualization possibilities, we rendered high-resolution images
using Blender and Rhinoceros. In Blender, point cloud materials were customized to
visualize point colors, classifications, and elevation using the Attribute node in combination
with color conversion operators. The results for Blender are presented in Figure 10a—c,
while the corresponding visualization in Rhinoceros is shown in Figure 10d.

Rendering in Blender was more time-intensive, particularly when using the Cycles
rendering engine, which proved to be the slowest option. However, material selection
significantly impacted performance—applying a pure emissive material to points resulted
in faster computation times, particularly in Cycles.

On the other hand, Rhinoceros demonstrated strong initial rendering performance,
quickly generating images. However, its post-processing stage, which includes tone map-
ping and gamma correction, introduced a significant performance drop, affecting the overall
efficiency of the rendering workflow.

Land 2025, 14, 815

13 of 21

(b) (¢)

Figure 10. Renders of the Tokyo dataset in Blender Cycles (first three images) and in Rhinoceros
(the fourth image). Blender renders show more depth due to shading and shadows. The Rhinoceros
image shows the points as unshaded splats that do not scale with the view, which produces a flat,
artificial-looking result that, at close-up, seems too sparse. (a) A color render of Tokyo LAS dataset
in Blender Cycles, with Principled BSDF shaded material. A point light is placed just above the
skyscrapers. Some areas of interest are emphasized, highlighting shadows, lighting of points, and
quality of the cloud. (b) A classification render of Tokyo LAS dataset in Blender Cycles. The color of
points is sampled from an unsigned 8-bit integer attribute, which is normalized and passed as hue in
HSV color space. (c¢) An elevation render of Tokyo LAS dataset in Blender Cycles. The color of points
is calculated from the Z component of their positions, which is normalized and passed to the Red
component of RGB color space. (d) A rendered image in Rhino with the default renderer performed
on the Tokyo dataset. Contrast enhancement was applied to the rendered image. Some areas were
highlighted.

Land 2025, 14, 815

14 of 21

5. Discussion

As demonstrated in our experiments, Blender provided a more stable and responsive
node-based editing experience than Rhinoceros, particularly when Geometry Nodes opera-
tions were optimized. However, some caveats remain: Our experience with Rhinoceros is
limited, meaning that certain Grasshopper node configurations may not have been fully
optimized. Additionally, preprocessing techniques, such as point cloud reduction before
executing operations, could potentially improve performance. However, reversing such
reductions in the rendering stage would likely negate any performance benefits.

Comparing the results of Blender operations on the high-performance workstation
and the consumer-grade laptop, Blender holds up remarkably well on the less performant
machine, sometimes even a few milliseconds better. When sampling points on surfaces,
however, the drawbacks become clear, with the laptop requiring seconds to compute. This
highlights room for optimization of the way the points should be sampled.

The complexity of node setups plays an important role in editing as well. Less
complex setups are more maintainable and extendable while also sometimes reducing the
computational costs of geometry manipulation. Where comparison was possible, we had to
create larger node trees in Grasshopper, mostly due to more verbose point region selection
and conversions for combining modified and original geometry. In that regard, Blender
has a more direct approach, with most nodes treating the input and output geometry the
same without special conversions (except in the case of Grease Pencil and curves).

Some of Blender’s tools show great potential for future point cloud editing techniques.
Notably, painting in 3D space with Grease Pencil makes some more artistic or imprecise
modifications easier: coloring of points, in our case, was more intuitive due to the similarity
with how painting works in real life.

Blender’s flexible rendering workflow, the default inclusion of two rendering engines
that rely heavily on physically based rendering, and compositing node-based tools make
it a powerful tool for point cloud visualization. In renders, multiple visual features such
as shadows, compositing effects, and different material properties (glossiness, specularity,
roughness, etc.) could be produced. We could not observe any of these features with
Rhinoceros’ default rendering of point clouds, resulting in more flat renders. However,
Rhinoceros does offer some level of post-processing on the rendered images, e.g., color
correction and contrast adaption.

While Blender shows promise in utilizing point clouds for urban planning workflows,
several challenges still need to be addressed to fully leverage its capabilities.

Grasshopper’s strength lies in its list manipulation. Treating data as lists does have
advantages, especially when introducing external non-geometric data. Blender does not
provide such a list or array structures. Basic functionality could potentially be introduced
through operations on strings, although that would be rigid and inefficient.

While many tools for point cloud editing provide a relatively straightforward UI,
Blender, as a general-purpose 3D modeling application, poses a somewhat steeper learning
curve. There are many options, operations with specific parameters, and other specifics
that may require significant time and effort from new users. Users coming from Rihonceros
may have to adapt to different workflows and terminology, although the Grasshopper
node editing is similar to Blender’s Geometry Nodes in core aspects. Still, certain node
operations require different setups and more elaborate configurations because Geometry
Nodes do not have nodes for some specific tasks (as mentioned above regarding lists).

One notable limitation is the lack of shared modifier stacks. While Geometry Nodes
groups can be shared between objects, the modifiers that apply them cannot. As a result,
efficiently editing multiple LoDs and classification clusters is not currently possible without
custom scripting. Scripted operators could automate tasks, such as applying the same

Land 2025, 14, 815

15 of 21

Geometry Nodes group across multiple objects, reordering modifiers, and batch-processing
transformations, improving workflow efficiency.”

Another key challenge involves erasing points with a Grease Pencil. The current
approach lacks the performance needed for large datasets, as real-time stroke-based erasure
introduces significant lag due to simultaneous geometry updates. In our tests, strokes
could not be drawn continuously without severe slowdowns. A potential solution could
involve temporarily disabling the Geometry Nodes tree during drawing or operating on a
lower-resolution representation of the point cloud for improved responsiveness.

It is important to note that both Blender and Rhinoceros support scripting extensions
to extend their functionality. Blender offers a scripting interface and an extension system,
both utilizing Python. In contrast, Grasshopper supports scripting nodes that integrate
directly into node trees and are written in Python or C#. While these scripting capabilities
enable custom workflows and automation, they are not well suited for high-performance
processing of large point clouds, as operating on millions of points in Python or C# is
inherently slow.

In Blender, scripting can be particularly beneficial for improving the UI of point cloud
operations—for example, automating Geometry Nodes template generation, streamlin-
ing import/export processes, and enabling modifier stack sharing. For advanced users,
Blender’s open-source nature allows direct modifications to the program codebase, en-
abling deep customization and performance improvements. This level of extensibility is
not available in Rhinoceros and Grasshopper, where users are restricted to existing API
functionalities and proprietary constraints.

The workflows and operations presented in this paper required a high-end workstation
for our specific datasets because the entire point cloud is stored in memory. Future research
could be directed towards improving memory management and storage of point cloud
data inside Blender. We provide a limited set of operations on point clouds that may
not completely reflect the needs of urban planners and other professionals in the field.
Therefore, extending the toolset in collaboration with experts in the urban planning field
is an important goal to bring Blender closer to adoption in practice. Blender provides
simulation tools for smoke, fire, cloth, and particles, so future work could also be focused
on integrating point clouds with those. While we briefly address classification types in
LiDAR point clouds, currently, no mechanism in Blender allows for automatic segmentation
and classification of points, so integration with deep models for point cloud segmentation
should be an interesting challenge to pursue in the future.

6. Conclusions

In this study, we explored procedural point cloud and mesh editing for urban planning
using Blender, evaluating its capabilities in comparison to Rhinoceros Grasshopper. Our
workflow introduced non-destructive point cloud manipulation through Geometry Nodes,
enabling copying, removal, transformation, and visualization of large-scale datasets. Addi-
tionally, we leveraged Blender’s Grease Pencil tool for interactive point cloud modification,
demonstrating its potential for tasks such as painting, erasing, and filling voids within
point clouds. We packaged import processes, point-cloud management tools, and some
geometry node templates into a Blender add-on to build a more user-friendly experience in
the future.

Our comparative analysis found that Blender offers a more stable and scalable node-
based editing experience when working with large point clouds. While Rhinoceros per-
formed better in basic transformations, it struggled with complex node-based operations,
frequently leading to crashes and unresponsiveness for large datasets. Furthermore,
Blender’s ability to manipulate and store custom point attributes provided greater flexi-

Land 2025, 14, 815

16 of 21

bility for rendering and classification-based filtering, which Grasshopper’s limited point
cloud attribute access could not fully support. We compared Blender performances on
a high-performance remote workstation and a lower-end laptop to find that on our se-
lected dataset, the performance was mostly comparable. However, Blender’s rendering
performance in Cycles proved time-intensive, while Rhinoceros excelled in initial rendering
speeds but suffered in post-processing steps. We also provided visual results to highlight
the differences in the visual quality of rendered images.

Despite these advantages, several challenges remain in Blender’s point cloud workflow.
The lack of shared modifier stacks complicates simultaneous editing of multiple LoDs and
classification clusters, requiring custom scripting for automation. Additionally, real-time
Grease Pencil-based point erasure is currently too slow for large datasets, necessitating
either temporary node tree deactivation or lower-resolution previewing for improved
responsiveness.

Our findings highlight Blender’s growing potential as a flexible, open-source alterna-
tive for urban planning applications, particularly in procedural point cloud editing and
visualization. With continued development and community-driven improvements, Blender
could become an increasingly viable tool for efficient, large-scale urban modeling and
design workflows.

Author Contributions: Conceptualization, G.G. and C.B.; methodology, G.G., 7.L., and M.M.;
software, G.G.; validation, G.G., Z.L., M.M., and C.B.; formal analysis, Z.L; investigation, G.G. and
C.B.; resources, Z.L. and C.B.; data curation, G.G. and C.B.; writing—original draft preparation, G.G.
and C.B.; writing—review and editing, 7.L. and M.M.; visualization, G.G. and C.B,; supervision, C.B,;
funding acquisition, C.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original data presented in the study are openly available in Tokyo
Digital Twin 3D Viewer at https:/ /3dview.tokyo-digitaltwin.metro.tokyo.lg.jp/ (last accessed 6 April
2025), under the section Shinjuku Ward, figure 09LD1638.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CAD Computer Aided Design

GIS Geographic Information System

LAS LASer

LiDAR light detection and ranging

LoD level-of-detail

SLAM simultaneous localization and mapping

Appendix A. Overview of Related Solutions

Several solutions exist for urban planning that support large point clouds with varying
degrees of interactivity. Some software provides only basic visualization and cloud-level
transformations, such as translation, rotation, and scaling, while others offer more advanced
tools for point-level operations and fine-grained control over point cloud representations.

Appendix A.1. Rhinoceros 3D and Grasshopper

Rhinoceros®

is a commercial CAD software widely used in industrial design, architec-
ture, and engineering, with growing adoption in urban planning. It supports 3D modeling

with curves, surfaces, solids, and mesh geometry, and as of version 8.0, it includes native

https://3dview.tokyo-digitaltwin.metro.tokyo.lg.jp/

Land 2025, 14, 815

17 of 21

support for point clouds. Its extension, Grasshopper”, provides a node-based interface for
generating geometry, applying algorithms, and performing various operations on objects
within Rhinoceros.

In previous versions, point cloud editing required external add-ons for Grasshopper.
One notable extension is Volvox®, which supports loading point clouds in ASTM E57
and XYZ formats. It allows basic point selection, deletion, and merging of multiple point

clouds. Another tool, Veesus’

, uses proprietary point cloud formats and primarily focuses
on visualization and mesh generation. It includes a clash detection feature, which helps
analyze collisions between meshes and point clouds for better alignment and topology
adjustments.

With the release of Rhinoceros 8, point clouds can now be imported natively and fully
integrated with Grasshopper. However, one drawback of Grasshopper is its operational
model, where each command creates a copy of the geometry, making editing large point
clouds computationally and memory-intensive.

Due to its extensive point cloud functionalities and widespread community adoption,
we selected Rhinoceros with Grasshopper as the primary benchmark for comparison in our

study.

Appendix A.2. Autodesk Software

Autodesk provides several commercial solutions for point cloud manipulation, in-
cluding Revit'’, AutoCAD'!, and ReCap PRO'?. Autodesk ReCap PRO specializes in 3D
scanning and point cloud creation, producing project files compatible with Revit for further
processing. It also supports external point cloud loading but is primarily designed for
visualization rather than direct editing. Most Autodesk tools treat point clouds as static
references for tasks like surface modeling and measurement rather than providing full
transformation, reduction, or manipulation capabilities.

Appendix A.3. Pix4D

Pix4D' is a commercial software primarily focused on photogrammetry and point
cloud analysis. It provides noise removal, basic point selection and deletion, and clas-
sification based on distance, elevation, and other parameters. Additionally, it includes
tools for volume measurement, contour visualization, point cloud vectorization, and mesh
generation.

Appendix A.4. ArcGIS

We include ESRI ArcGIS'#, a widely used GIS software which offers georeferencing
and point classification using additional geospatial datasets. While it does not support
direct point cloud editing, it allows manual selection and classification of points and
semi-automatic classification based on other loaded geographical data.

Appendix A.5. D]I Modify

DJI Modify' is a toolset designed for area surveying and 3D modeling, integrating
with DJI's drone-based mapping solutions. It provides noise removal, point flattening, and
hole-filling functionalities, allowing users to select point cloud regions and convert them
into mesh geometry.

Appendix A.6. Tep Point Cloud Editor

Tcp Point Cloud Editor!® is an architectural planning tool that enables basic point
cloud editing, including point deletion, density-based coloring, elevation-based classi-
fication, and visualization of individual cloud slices. It also supports mesh conversion,

Land 2025, 14, 815

18 of 21

volume computation, and drawing over point clouds. A key feature is its integration with
simultaneous localization and mapping (SLAM) visualization, which enhances real-time
point cloud analysis.

Appendix A.7. Vega

Vega'” is an AutoCAD extension designed for point cloud visualization and techni-
cal drawing. It supports cloud slicing, contour line generation, manual and automatic
triangulated irregular network creation, and 2D texture projection onto point clouds.

Appendix A.8. 3D Survey

3D Survey'® provides an intuitive interface for a broad range of point cloud processing
tasks. Features include point classification, selection, transformation, and removal, as well
as terrain profile generation, resampling, multi-cloud registration, and orthophoto creation.
One notable feature is the X-ray view, where points are projected onto a plane with variable
intensity, producing semi-transparent structural outlines of the scanned environment.

Appendix A.9. CloudCompare

CloudCompare' is the only open-source software among the tools reviewed. It is
specifically designed for point cloud processing, providing functionalities such as point
extraction, segmentation, transformation, classification, and format conversion. Its compre-
hensive toolset makes it a valuable resource for both research and practical applications in
urban planning.

Most of the tools mentioned above, except for Rhinoceros, offer limited point cloud
editing capabilities and are primarily designed for specific, specialized workflows. As
a result, their adaptability to diverse applications, such as urban planning, remains con-
strained, making them less suitable for flexible, general-purpose point cloud manipulation
and transformation.

Appendix B. Geometry Nodes Setups

Geometry Nodes setups are presented in Figure Al. These are constructions that
appeared to work well in our setups. It is important to note the use of external objects to
infer ranges and transforms.

We show one approach to conversion from mesh to point cloud that considers a non-
uniform topology and samples the points on faces. Another approach could be to convert
the mesh to points (as we do to change unconnected vertices of our imported LAS file to
point cloud), which is generally much faster.

Node trees to facilitate painting on points are applied on the cloud object and Grease
Pencil object. The Grease Pencil nodes transform the Grease Pencil curves to mesh, which
can then be used as geometry in point cloud Geometry Nodes.

Land 2025, 14, 815

19 of 21

Notes

U o= W N =

some solutions.

(@) (b)

(0) (d)

(e) ()

(8) (h)

Figure Al. Geometry Node graphs showcasing examples used in our experiments. (a) Point

copying, applied onto point cloud object. (b) Point removal, applied onto point cloud object.
(c) Drawing points, applied on Grease Pencil object. (d) Erasing points, applied on Grease Pen-
cil object. (e) Flattening of points, applied on point cloud object. (f) Conversion from mesh to point
cloud, applied on a mesh object. (g) Painting on points (1), applied on point cloud object. (h) Painting
on points (2), applied on Grease Pencil object.

https:/ /www.esri.com/en-us/arcgis/products/arcgis-cityengine. Last accessed 6 April 2025.
https://github.com/ladybug-tools/ladybug-blender. Last accessed 6 April 2025.

https:/ /www2.nrel.gov/buildings/urbanopt. Last accessed 6 April 2025.

https:/ /www.ladybug.tools/dragonfly.html. Last accessed 6 April 2025.

There is an existing feature request in the Blender developer forum, which pointed out the lack of this functionality and proposed

6 https:/ /www.rhino3d.com/. Last accessed 6 April 2025.

https:/ /www.grasshopper3d.com. Last accessed 6 April 2025.
https:/ /www.grasshopper3d.com/group/volvox. Last accessed 6 April 2025.

https://www.esri.com/en-us/arcgis/products/arcgis-cityengine
https://github.com/ladybug-tools/ladybug-blender
https://www2.nrel.gov/buildings/urbanopt
https://www.ladybug.tools/dragonfly.html
https://www.rhino3d.com/
https://www.grasshopper3d.com
https://www.grasshopper3d.com/group/volvox

Land 2025, 14, 815 20 of 21

https:/ /www.veesus.com. Last accessed 6 April 2025.

10 https:/ /www.autodesk.com/products/revit. Last accessed 6 April 2025.

1 https:/ /www.autodesk.com/products/autocad. Last accessed 6 April 2025.

12 https:/ /www.autodesk.com/products/recap. Last accessed 6 April 2025.

13 https:/ /www.pix4d.com. Last accessed 6 April 2025.

14 https:/ /www.arcgis.com/. Last accessed 6 April 2025.

15 https:/ /enterprise.dji.com/modify. Last accessed 6 April 2025.

16 https:/ /www.aplitop.com/products/tcp-pointcloud-editor. Last accessed 6 April 2025.
7 https:/ /www.vegaapp.co.il. Last accessed 6 April 2025.

18 https:/ /3dsurvey.si. Last accessed 6 April 2025.

o https://cloudcompare.org. Last accessed 6 April 2025.

References

1. Tan, W,; Qin, N.; Ma, L.; Li, Y;; Du, J,; Cai, G.; Yang, K,; Li, J. Toronto-3D: A Large-scale Mobile LiDAR Dataset for Semantic
Segmentation of Urban Roadways. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Seattle, WA, USA, 14-19 June 2020; pp. 797-806. [CrossRef]

2. Roynard, X.; Deschaud, J.; Goulette, F. Paris-lille-3d: A large and high-quality ground-truth urban point cloud dataset for
automatic segmentation and classification. Int.]. Robot. Res. 2018, 37, 545-557. [CrossRef]

3. Behley, J.; Garbade, M.; Milioto, A.; Quenzel, J.; Behnke, S.; Stachniss, C.; Gall,]. Semantickitti: A dataset for semantic scene
understanding of lidar sequences. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV),
Seoul, Republic of Korea, 27 October—2 November 2019. [CrossRef]

4. Zhu,],; Gehrung, J.; Huang, R.; Borgmann, B.; Sun, Z.; Hoegner, L.; Hebel, M.; Xu, Y,; Stilla, U. Tum-mls-2016: An annotated
mobile lidar dataset of the tum city campus for semantic point cloud interpretation in urban areas. Remote Sens. 2020, 12, 1875.
[CrossRef]

5. Geodetic Institute of Slovenia. Izvedba Laserskega Skeniranja Slovenije. Blok 35—Tehnic¢no Porocilo o Izdelavi Izdelkov; Technical
Report; Geodetic Institute of Slovenia: Ljubljana, Slovenia, 2023.

6. Mongus, D.; Luka¢, N.; Zalik, B. Ground and building extraction from LiDAR data based on differential morphological profiles
and locally fitted surfaces. ISPRS]. Photogramm. Remote Sens. 2014, 93, 145-156. [CrossRef]

7. van Natijne, A. GeoTiles: Readymade Geodata with a Focus on The Netherlands; Technical Report; Delft University of Technology:
Delft, The Netherlands, 2023.

8. Hu, Q.; Yang, B.; Khalid, S.; Xiao, W.; Trigoni, N.; Markham, A. Towards Semantic Segmentation of Urban-Scale 3D Point Clouds:
A Dataset, Benchmarks and Challenges. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Nashville, TN, USA, 20-25 June 2021.

9. Guo, Y,; Wang, H,; Hu, Q.; Liu, H; Liu, L.; Bennamoun, M. Deep learning for 3d point clouds: A survey. IEEE Trans. Pattern Anal.
Mach. Intell. 2021, 43, 4338-4364. [CrossRef]

10. Xiao, W,; Cao, H.; Tang, M.; Zhang, Z.; Chen, N. 3D urban object change detection from aerial and terrestrial point clouds: A
review. Int. |. Appl. Earth Obs. Geoinf. 2023, 118, 103258. [CrossRef]

11. Yang, H.B. Sketch2CAD: 3D CAD Model Reconstruction from 2D Sketch using Visual Transformer. arXiv 2025, arXiv:2309.16850.

12. Ihle, M.E.; Wichmann, V. Blurring Boundaries Between Scientific and Artistic Representation of Landscapes. J. Digit. Landsc.
Archit. 2024, 2024, 253-266. [CrossRef]

13. Urech, PR,; Dissegna, M.A.; Girot, C.; Grét-Regamey, A. Point cloud modeling as a bridge between landscape design and
planning. Landsc. Urban Plan. 2020, 203, 103903. [CrossRef]

14. Raj, T.; Hashim, FH.; Huddin, A.B.; Ibrahim, M.F,; Hussain, A. A Survey on LiDAR Scanning Mechanisms. Electronics 2020,
9, 741. [CrossRef]

15. Yang, X.; Delparte, D. A Procedural Modeling Approach for Ecosystem Services and Geodesign Visualization in Old Town
Pocatello, Idaho. Land 2022, 11, 1228. [CrossRef]

16. Mustafa, A.; Zhang, X.W.; Aliaga, D.G.; Bruwier, M.; Nishida, G.; Dewals, B.; Erpicum, S.; Archambeau, P; Pirotton, M.; Teller, J.
Procedural Generation of Flood-Sensitive Urban Layouts. Environ. Plan. Urban Anal. City Sci. 2018, 47, 889-911. [CrossRef]

17. Zupan, R.; Franges, S. Automatic procedural 3d modelling of buildings. Teh. Glas. 2018, 12, 166-173. [CrossRef]

18. Cress, K.; Beesley, P. Architectural Design in Open-Source Software Developing Measurelt-ARCH, an Open Source tool to create
Dimensioned and Annotated Architectural drawings within the Blender 3D creation suite. Blucher Des. Proc. 2019, 7, 621-632.
[CrossRef]

19. Gallo, G.; Tuzzolino, G.F. Open-Source for a Sustainable Development of Architectural Design in the Fourth Industrial Revolution.

In Architecture and Design for Industry 4.0: Theory and Practice; Springer International Publishing: Cham, Switzerland, 2024;
pp. 113-131. [CrossRef]

https://www.veesus.com
https://www.autodesk.com/products/revit
https://www.autodesk.com/products/autocad
https://www.autodesk.com/products/recap
https://www.pix4d.com
https://www.arcgis.com/
https://enterprise.dji.com/modify
https://www.aplitop.com/products/tcp-pointcloud-editor
https://www.vegaapp.co.il
https://3dsurvey.si
https://cloudcompare.org
http://doi.org/10.1109/cvprw50498.2020.00109
http://dx.doi.org/10.1177/0278364918767506
http://dx.doi.org/10.1109/iccv.2019.00939
http://dx.doi.org/10.3390/rs12111875
http://dx.doi.org/10.1016/j.isprsjprs.2013.12.002
http://dx.doi.org/10.1109/TPAMI.2020.3005434
http://dx.doi.org/10.1016/j.jag.2023.103258
http://dx.doi.org/10.14627/537752024
http://dx.doi.org/10.1016/j.landurbplan.2020.103903
http://dx.doi.org/10.3390/electronics9050741
http://dx.doi.org/10.3390/land11081228
http://dx.doi.org/10.1177/2399808318812458
http://dx.doi.org/10.31803/tg-20180713143638
http://dx.doi.org/10.5151/proceedings-ecaadesigradi2019_561
http://dx.doi.org/10.1007/978-3-031-36922-3_8

Land 2025, 14, 815 21 of 21

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Charan, T.; Mackey, C.; Irani, A.; Polly, B.; Ray, S.; Fleming, K.; El Kontar, R.; Moore, N.; Elgindy, T.; Cutler, D.; et al. Integration of
Open-Source URBANopt and Dragonfly Energy Modeling Capabilities into Practitioner Workflows for District-Scale Planning
and Design. Energies 2021, 14, 5931. [CrossRef]

Gschwandtner, M.; Kwitt, R.; Uhl, A.; Pree, W. BlenSor: Blender Sensor Simulation Toolbox. In Proceedings of the Advances in
Visual Computing; Bebis, G., Boyle, R., Parvin, B., Koracin, D., Wang, S., Kyungnam, K., Benes, B., Moreland, K., Borst, C., DiVerdi,
S., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 199-208.

Naboni, E.; Natanian,].; Brizzi, G.; Florio, P.; Chokhachian, A.; Galanos, T.; Rastogi, P. A digital workflow to quantify regenerative
urban design in the context of a changing climate. Renew. Sustain. Energy Rev. 2019, 113, 109255. [CrossRef]

Wang, Y.; Chen, Q.; Zhu, Q.; Liu, L.; Li, C.; Zheng, D. A survey of mobile laser scanning applications and key techniques over
urban areas. Remote Sens. 2019, 11, 1540. [CrossRef]

You, H,; Li, S.; Xu, Y.; He, Z.; Wang, D. Tree extraction from airborne laser scanning data in urban areas. Remote Sens. 2021,
13, 3428. [CrossRef]

Schmohl, S.; Vallejo, A.; Soergel, U. Individual tree detection in urban als point clouds with 3d convolutional networks. Remote
Sens. 2022, 14, 1317. [CrossRef]

Zhao, L.; Hu, Y;; Han, F;; Dou, Z.; Li, S.; Zhang, Y.; Wu, Q. Multi-sensor missile-borne LiDAR point cloud data augmentation
based on Monte Carlo distortion simulation. CAAI Trans. Intell. Technol. 2024, 10, 300-316. [CrossRef]

Zhao, L.; Hu, Y,; Yang, X.; Dou, Z,; Kang, L. Robust multi-task learning network for complex LiDAR point cloud data
preprocessing. Expert Syst. Appl. 2024, 237, 121552. [CrossRef]

Griffiths, D.; Boehm, J. SynthCity: A large scale synthetic point cloud. arXiv 2019, arXiv:1907.04758.

Chen, D.; Zhang, L.; Mathiopoulos, P.T.; Huang, X. A Methodology for Automated Segmentation and Reconstruction of Urban
3-D Buildings from ALS Point Clouds. IEEE |. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4199-4217. [CrossRef]

Hu, Q.; Yang, B.; Khalid, S.; Xiao, W.; Trigoni, N.; Markham, A. SensatUrban: Learning Semantics from Urban-Scale Photogram-
metric Point Clouds. Int. |. Comput. Vis. 2022, 130, 316-343. [CrossRef]

Chen, M.; Hu, Q,; Yu, Z; Thomas, H.; Feng, A.; Hou, Y.; McCullough, K.; Ren, F.; Soibelman, L. STPLS3D: A Large-Scale Synthetic
and Real Aerial Photogrammetry 3D Point Cloud Dataset. arXiv 2022, arXiv:2203.09065.

Vijaywargiya, J.; Ramiya, A. Metamorphism of als point data for multitude application. ISPRS Ann. Photogramm. Remote Sens.
Spat. Inf. Sci. 2023, 10, 25-31.

Lei, Z.; Shimizu, S.; Ota, N.; Ito, Y.; Zhang, Y. Construction of urban design support system using cloud computing type virtual
reality and case study. Int. Rev. Spat. Plan. Sustain. Dev. 2017, 5, 15-28. [CrossRef]

Zheng, B.; Liu, G.; Wang, H.; Yingxuan, C.; Lu, Z.; Hua-wei, L.; Xue-xin, Z.; Wang, M.; Lu, Y. Study on the delimitation of the
urban development boundary in a special economic zone: A case study of the central urban area of doumen in zhuhai, china.
Sustainability 2018, 10, 756. [CrossRef]

Wang, R.; Peethambaran, J.; Chen, D. LiDAR Point Clouds to 3-D Urban Models: A Review. IEEE]. Sel. Top. Appl. Earth Obs.
Remote Sens. 2018, 11, 606-627. [CrossRef]

Zieba-Kulawik, K.; Skoczylas, K.; Wezyk, P.; Teller, J.; Mustafa, A.; Omrani, H. Monitoring of urban forests using 3D spatial
indices based on LiDAR point clouds and voxel approach. Urban For. Urban Green. 2021, 65, 127324. [CrossRef]

Berkmann, J.; Caelli, T. Computation of surface geometry and segmentation using covariance techniques. IEEE Trans. Pattern
Anal. Mach. Intell. 1994, 16, 1114-1116. [CrossRef]

Bohak, C.; Slemenik, M.; KordeZ, J.; Marolt, M. Aerial LIDAR data augmentation for direct point-cloud visualisation. Sensors
2020, 20, 2089. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/en14185931
http://dx.doi.org/10.1016/j.rser.2019.109255
http://dx.doi.org/10.3390/rs11131540
http://dx.doi.org/10.3390/rs13173428
http://dx.doi.org/10.3390/rs14061317
http://dx.doi.org/10.1049/cit2.12389
http://dx.doi.org/10.1016/j.eswa.2023.121552
http://dx.doi.org/10.1109/JSTARS.2014.2349003
http://dx.doi.org/10.1007/s11263-021-01554-9
http://dx.doi.org/10.14246/irspsd.5.1_15
http://dx.doi.org/10.3390/su10030756
http://dx.doi.org/10.1109/JSTARS.2017.2781132
http://dx.doi.org/10.1016/j.ufug.2021.127324
http://dx.doi.org/10.1109/34.334391
http://dx.doi.org/10.3390/s20072089

	Introduction
	Related Work
	Procedural Methods in Urban Modeling
	Point Cloud Modeling
	Point Clouds in Urban Planning

	Methods
	Preprocessing
	Level-of-Detail and Classifications
	Normal Computation
	Viewport Display

	Editing
	Point Copying
	Point Removal
	Drawing Points
	Painting on Points
	Erasing Points
	Flattening Points
	Mesh Tools

	Results
	Experimental Setup
	Performance Evaluation
	Output Image Comparison

	Discussion
	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.3
	Appendix A.4
	Appendix A.5
	Appendix A.6
	Appendix A.7
	Appendix A.8
	Appendix A.9

	Appendix B
	References

