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Abstract. In this paper, we present a novel application of Neural Style
Transfer (NST) for converting procedurally generated orthophoto land-
scape images into highly realistic representations. Traditionally used to
apply artistic styles to images, we adapt NST to transfer the photorealis-
tic qualities of real aerial orthophoto images to synthetic terrain images.
This enables the creation of realistic visuals from generated landscapes,
addressing the common issues of stylization, abstraction, and inaccuracy
in synthetic imagery. Our approach involves upgrading and modifying
existing NST techniques and their comparison. The evaluation demon-
strates that our methods produce more convincing and realistic results
than general generative models. These findings highlight the potential of
NST in enhancing the realism of computer-generated landscapes, with
possible applications in urban planning, environmental simulations, video
games, and the film industry.

Keywords: neural style transfer, orthophoto images, terrain generation,
texturing, 3D models, virtual worlds

1 Introduction

In recent years, deep neural network techniques have transformed the field of
computer vision and machine learning, enabling the development of innovative
approaches to generate and transform visual content in ways that go beyond
previous limitations. One such use is image style transfer. It has mostly been
used to transfer photos into stylized images in the style of a specific artist or to
stylize images and or photos in a sketch-like style. However, there are other use
cases arising such as one presented in this paper.

We present an approach for transferring the style of the generated landscape
to a realistic appearance. This makes it possible to create images that reflect
realistic surface properties from synthetically generated landscapes, which are
often stylized, abstract, or simply too inaccurate. This has important applications
in urban planning, environmental change simulations, video games, and the film
industry where a high degree of visual fidelity is required.

The motivation for this research comes from the need to effectively bridge
the gap between large data sources such as aerial imagery and the ability to
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generate realistic visualizations of landscapes with different characteristics for
different applications. To address such needs, we can use a procedure called
style transfer, which has recently been addressed by methods for Neural Style
Transfer (NST) [7]. NST is a technique that uses the power of Convolutional
Neural Network (CNN) to synthesize images that combine the content of one
source image with the stylistic characteristics of another. Approaches mainly
focus on transferring artistic styles between images, while style transfer between
generated landscapes and realistic visualizations is an unexplored area.

This work investigates the potential of NST in solving the presented problem.
By using NST in the field of generating orthophoto images, we want to obtain
very realistic computer-generated images. These images can be used as a cheaper
and faster alternative to real orthophoto images and can help reduce the space
consumption of approaches that need large amounts of such images for learning
or optimization. The newly developed approach based on Gatyset al. [7] was
compared with photorealistic style transfer using wavelet transforms based on
Yooet al. [19].

The main contributions of this work are:

– NST, built on top of work by Gatys et al. [7], with adapted weights transferring
photorealistic style to computer-generated landscapes.

– Evaluation of the developed approach and its comparison with photorealistic
style transfer with wavelet transformations and an approach on computer-
generated images of the terrain and on real topographic maps.

The presented research introduces a new way of bridging the problem of
large data sources by using images of the earth’s surface, which allows us to
generate a large amount of data on the fly and transform it into a realistic look
by transferring the style. This also allows us to prepare a collection of realistic
data that meets certain criteria much faster than we would achieve by searching
large collections.

2 Related Work

Neural Style Transfer (NST) refers to a class of algorithms that manipulate
images or videos to leverage deep neural networks for image transformation,
marking a significant advancement in non-photorealistic rendering. The concept
of NST was initially explored by Efros and Freeman [6] and Drori et al. [4] with
texture synthesis algorithms using image patches. These methods utilized pairs
of input-output images (e.g., a photograph and a stylized image) to learn a
transformation applicable to new input images. While these methods produced
satisfactory results and had short learning times, they struggled when aligned
input-output pairs were unavailable. This limitation was partially addressed by
Efros and Freeman [6] through quilting techniques, though the results were still
constrained in handling more complex structures.

The formal introduction of NST as a deep learning technique was pioneered
by Gatys et al. [7]. Their approach employed the VGG19 network architecture
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presented by Simonyan and Zisserman [17], traditionally used for image classifi-
cation, repurposed to extract important image features for style transfer. NST
consists of two main components: content representation, achieved by extracting
feature maps from the deeper layers of the network, and style representation,
quantified using the Gram matrix. The final stylized image is obtained by mini-
mizing a combined loss function that balances content and style losses, fine-tuned
with user-defined parameters. Subsequent advancements have included image
segmentation techniques to apply style transfer to individual objects within an
image, as presented by Luan et al. [15]. Huang et al. [9] introduced arbitrary
style transfer using adaptive instance normalization (AdaIN), which aligns the
mean and variance of content features with those of style features. Mechrez et
al. [16] proposed contextual loss for image transformation with non-aligned data,
addressing the challenges of preserving spatial context in style transfer. Li et
al. [14] explored the use of deep photo style transfer to maintain photorealism
in stylized images. Yoo et al. [19] introduce wavelet corrected transfer based on
whitening and coloring transforms WCT2 that allows features to preserve their
structural information and statistical properties.

While the original NST approaches were not real-time, significant progress has
been made to accelerate the process. Johnson et al. [11] introduced a perceptual
loss function combined with advanced CNN architectures, enabling real-time style
transfer. This innovation led to the development of real-time camera filters, as
demonstrated by Dumoulin et al. [5]. Chen and Schmidt [2] developed Fast Neural
Style Transfer through instance normalization and residual learning, achieving
real-time performance with high-quality results. Gatys et al. [8] also extended
their initial work to video, introducing temporally coherent neural style transfer
for smooth style application in video sequences.

The introduction of Generative Adversarial Network (gan)s further revolution-
ized style transfer by eliminating the need for paired images. Notable approaches
include CycleGAN by Zhu et al. [21] and DiscoGAN by Kim et al. [12]. Cycle-
GAN ensures coherent style transfer between different domains without paired
examples, while DiscoGAN introduces reconstruction loss to maintain semantic
relationships in the transferred styles.

Recent works in style transfer cover different scenarios, such as text condi-
tioning presented by Kwon and Ye [13] and a recent survey by Jin et al. [10],
transformers-based architecture for style transfer presented by Deng et al. [3]
and unbiased image style transfer via reversible neural flows presented by An et
al. [1].

3 Background

Neural Style Transfer (NST) utilizes CNNs to blend the content of one image
with the style of another. A CNN is a deep learning model trained to recognize
patterns in images through a hierarchy of layers. Lower layers detect basic features
like edges and textures, while deeper layers identify complex structures such as
objects and scenes. The NST process begins by passing a content image through a
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pre-trained CNN to extract its content features from deeper layers. A style image
is similarly processed to extract style features from multiple layers, represented
by the Gram matrix, which captures the correlations between different feature
maps. NST aims to generate a new image that maintains the content of the
input image and the style of the reference image by optimizing a loss function
comprising two components:

1. Content Loss: measures the similarity between the content features of the
generated image and the input content image, typically using the Mean
Square Error (MSE).

2. Style Loss measures the similarity of the style features between the generated
image and the style image, using the mean squared error of their Gram
matrices across multiple layers.

The total loss is a weighted sum of the content and style losses, allowing control
over the balance between content and style. Gradient descent is used to minimize
this loss function. This iterative optimization algorithm adjusts the pixel values
of the generated image to reduce the loss, gradually transforming the image to
match the desired style while preserving the content. Through this process, NST
produces an image that artistically merges the structural content of the input
image with the stylistic elements of the reference image, showcasing the powerful
capabilities of deep learning in creative applications.

4 Method

In this work, we examined two distinct approaches to style transfer, applying
them to orthophoto images of computer-generated terrain and real topological
maps.

For terrain generation, we utilized publicly available applications to rapidly
and efficiently create diverse landscapes. Primarily, we employed World Machine
Basic1, which proved highly effective for generating terrains with intricate features
such as vegetation, snow, water, and roads. For urban areas requiring greater
accuracy, we used Esri ArcGIS City Engine2.

In selecting textures, we decided on less realistic textures to evaluate the
performance of different style transfer methods on simpler image data. This
approach allowed us to comprehensively analyze and understand the efficacy of
style transfer algorithms within terrain generation.

4.1 Classic NST

We first present our implementation of style transfer, which ranks as the simplest
of the pair. Observing how implementing the classical NST method addressed
1 World Machine: https://www.world-machine.com/
2 Esri ArcGIS City Engine: https://www.esri.com/en-us/arcgis/products/

arcgis-cityengine/

https://www.world-machine.com/
https://www.esri.com/en-us/arcgis/products/arcgis-cityengine/
https://www.esri.com/en-us/arcgis/products/arcgis-cityengine/
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the challenge was insightful. Image preprocessing was crucial for the successful
implementation of NST. This required resizing the images to uniform dimensions
and normalizing the pixel values. Additionally, it was necessary to ensure that all
images were in the RGB color space. These preprocessing steps were performed
using the transforms module from the torchvision3 library.

For the model architecture, we selected the VGG19 network [17] (see Figure 1),
known for its simplicity and efficiency. Although originally developed for object
recognition, this architecture is highly suitable for NST due to its ability to
capture various feature levels within images.
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Fig. 1. VGG19 architecture.

Determining the appropriate weights is a critical step in NST implementation,
as they significantly influence the final output. Selecting suitable weights is time-
consuming and requires extensive testing of multiple variations. This experimental
process involves adjusting both the overall style and content weights and the
individual layer weights to achieve a desired balance between content retention
and style representation.

Generally, assigning more weight to deeper layers results in the generated
image exhibiting more pronounced and complex stylistic characteristics of the
reference image, potentially at the expense of content features from the original
image. Conversely, focusing on the early layers highlights simpler stylistic features
such as textures, edges, and basic shapes, preserving the content characteristics
of the original image and producing a more recognizable representation.

To experimentally determine the best weights, we started with a balanced set
of initial weights and iteratively adjusted them based on visual feedback. With
our goal in mind, to create orthophoto landscape pictures that look convincingly
realistic, we added specific constraints and objectives to our weight adjustment
process.

For instance, if the generated image lacked fine details, we increased the
weights in early layers to enhance textural details such as grass and water. This
was crucial because these fine textures contribute significantly to the realism of
landscape images. However, if the image appeared too noisy or overly detailed,
reducing the early layer weights and increasing the deeper layer weights helped.

3 Torchvision: https://pytorch.org/vision/stable/index.html

https://pytorch.org/vision/stable/index.html
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This adjustment ensured that broader stylistic features like lighting, color gra-
dients, and overall atmosphere were well represented, contributing to a more
cohesive and realistic look.

Moreover, we carefully balanced the content weight with the deeper layer
weights to maintain clear and accurate structural details like the layout of
landforms, roads, and buildings. Increasing the content weight helped preserve
these crucial elements. In contrast, strategic adjustments to deeper layer weights
ensured the style did not overpower the content, keeping the overall scene coherent
and lifelike.

This iterative process involved running the NST algorithm with different
weight configurations, visually evaluating the results, and making incremental
adjustments until the desired balance was achieved. By carefully fine-tuning the
weights, we emphasized textures and fine details where necessary while ensuring
that the larger stylistic elements contributed to a lifelike appearance without
overwhelming the content. Additionally, it was crucial to minimize artifacts to
maintain the overall realism and quality of the images. Artifacts can detract
from the visual coherence and authenticity of the landscape, so each adjustment
aimed to enhance the style while keeping the image clean and free of distracting
anomalies.

We used the originally proposed loss functions: MSE was used for content
loss, the sum of MSEs of Grahm matrices for selected layers was used for style
loss, and a weighted sum of content loss and style loss was used for total loss
function.

The optimization process is iterative, performed over a specified number of
steps. Each iteration incrementally refines the target image toward the desired
artistic result. If the number of steps was too low, the model did not have enough
iterations to fully integrate the style, resulting in incomplete or unsatisfactory
images. On the other hand, an excessively high number of steps would lead to
diminishing returns, where further iterations did not significantly improve the
image quality and only increased computational costs. Control of the learning
rate is crucial, as it dictates the step size in each optimization iteration. In our
implementation, we employed the Adam optimizer with a learning rate of 0.01,
which proved suitable for our purposes.

4.2 Style transfer using Wavelet Corrected Transfer

Style transfer using Wavelet Corrected Transfer (WCT2) (see Figure 2) upgrades
the basic style transfer algorithm and relies on whitening and coloring transfor-
mations. This advanced version allows efficient style transfer without the need
for additional post-processing procedures such as smoothing and filtering, which
helps reduce the algorithm’s running time.

The wavelet transforms used in the algorithm are based on Haar transforms,
which are used to group and ungroup information. These transforms include
four cores (LLT, LHT, HLT, HHT) where low-pass and high-pass filters capture
different aspects of the image, such as smooth surfaces, textures, and vertical,
horizontal, and diagonal edges. An important property of Haar transforms is that
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Fig. 2. WCT2 architecture

the original signal can be accurately reconstructed, allowing image stylization
with minimal loss of information.

The architecture of the WCT2 model replaces all concatenation and de-
convolution layers with wavelet transforms, while the basic architecture of the
VGG19 network remains unchanged. Layers 1 (3× 3 conv, 224× 224× 64) to 9
(3× 3 conv, 28× 28× 512) serve as the encoder and represent the image style,
while the high-frequency components are directly transferred to the decoder. This
allows only low-frequency components to be transmitted, leading to minimal
information loss and preserving the original image’s quality.

A special feature of the WCT2 algorithm is the use of progressive stylization,
which enables repeated use of the WCT2 stylization. This simpler approach uses
only one encoder-decoder pair, allowing for faster implementation.

However, with this method, artifacts may appear in the output image due to
the amplification of errors during repeated execution of the stylization. Like the
basic NST, adjusting the weights to our needs was necessary here.

5 Results

We evaluated the presented approaches on orthophoto data. We first present
qualitative results and then quantitative evaluation. All the approaches were
tested on NVIDIA GTX 1070 GPU with 8GB VRAM, Ryzen 3600 processor,
and 16GB RAM.

5.1 Qualitative evaluation

In Figure 4, we show a comparison of content and style input images and images
generated using NST and WCT2. Content images are generated using Word
Machine Basic from an orthophoto view. Style images were acquired using Google
Earth4. The images contain diverse terrain and surface structures for content
and style images to illustrate the models’ adeptness in different conditions.
4 https://earth.google.com

https://earth.google.com
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Fig. 3. Qualitative comparison of results from NST and WCT2 and the input content
and style images.

One can see that the results of both methods are quite similar. In most cases,
NST images contain more high-frequency details from the style image, which
reflects how we manually tuned weights to work best with orthophoto images.
WCT2 results preserve more structural details from the content images.

5.2 Quantitative evaluation

To make a quantitative evaluation meaningful, we generated images using map
images as content and orthophoto images as style images. The pairs of images
contained the same regions and were aligned.

For quantitative evaluation, we calculated image similarity metrics Structural
Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR) [18], and Learned
Perceptual Image Patch Similarity (LPIPS) [20]. The results are presented in
Table 1.

6 Discussion

The qualitative results show that both NST and WCT2 approaches have their
strengths and limitations. One key observation is that NST images tend to
incorporate more high-frequency details from the input style images. This can
be attributed to the manual tuning of weights to optimize performance with
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Fig. 4. Quantitative comparison of results from NST and WCT2 where the content
image is map and style image an aligned orthophoto image.

orthophoto images. This characteristic is particularly evident in Figure 3 for NST
examples #2 and #3, where the generated images successfully capture textural
details such as vegetation and water bodies. In contrast, WCT2 tends better to
preserve structural details from the input content images, maintaining a more
coherent layout of landforms and man-made structures, as seen in examples #4
and #5.

Despite these strengths, both approaches exhibit challenges in reconstructing
high-frequency details in certain scenarios. For instance, NST example #4 and
WCT2 examples #5 and #6 fail to retain sufficient detail, resulting in a less
realistic appearance. This suggests that while NST is adept at capturing detailed
textures, it may struggle with maintaining the overall structure, whereas WCT2,
although preserving structural integrity, might lose finer details due to its emphasis
on low-frequency components during wavelet transformations.

Quantitatively, the evaluation metrics reveal that, on average, WCT2 achieves
better similarity metrics values for all metrics compared to NST, indicating a
closer resemblance to the original orthophoto images (the content image). The
results show that the methods’ performance is on pair and that a more extensive
study would be needed to draw more meaningful conclusions.

We can see from the resulting images that both methods have problems coping
with the text in the content images. This could be addressed with additional
preprocessing steps for text removal in content images using image inpainting.
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Table 1. Quantitative comparison between the style transferred images of maps to
orthophoto and the original orthophoto image using image similarity metrics SSIM,
PSNR, and LPIPS.

Neural Style Transfer (NST) Wavelet Corrected Transfer (WCT2)

Example no. SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓

1 0.087 11.383 0.434 0.115 11.801 0.494
2 0.260 11.626 0.533 0.354 12.899 0.495
3 0.115 9.013 0.589 0.123 9.212 0.701
4 0.441 14.474 0.588 0.606 12.274 0.387
5 0.200 11.846 0.678 0.250 12.118 0.560
6 0.172 11.317 0.720 0.232 14.612 0.722

mean 0.213 11.610 0.590 0.280 12.153 0.560

As demonstrated in this research, the adaptation and evaluation of the meth-
ods for orthophoto images expand the applicability of style transfer approaches to
more realistic and practical domains such as urban planning and environmental
simulations. Their application to synthetic terrain data showcases a novel use
case with significant potential for improving procedural landscape generation.

7 Conclusion

In conclusion, this research demonstrates the feasibility and effectiveness of using
NST and WCT2 for transforming computer-generated orthophoto landscape
images into realistic representations. The results underscore the potential of these
techniques in various applications requiring high visual fidelity and open up new
possibilities for future advancements in the field of realistic image synthesis.
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