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A B S T R A C T

Background: The uterus is the most important organ in the female reproductive system. Its shape plays
a critical role in fertility and pregnancy outcomes. Advances in medical imaging, such as 3D ultrasound,
have significantly improved the exploration of the female genital tract, thereby enhancing gynecological
healthcare. Despite well-documented data for organs like the liver and heart, large-scale studies on the uterus
are lacking. Existing classifications, such as VCUAM and ESHRE/ESGE, provide different definitions for normal
uterine shapes but are not based on real-world measurements. Moreover, the lack of comprehensive datasets
significantly hinders research in this area. Our research, part of the larger NURSE study, aims to fill this gap
by establishing the shape of a normal uterus using real-world 3D vaginal ultrasound scans. This will facilitate
research into uterine shape abnormalities associated with infertility and recurrent miscarriages.
Methods: We developed an automated system for the segmentation and alignment of uterine shapes from
3D ultrasound data, which consists of two steps: automatic segmentation of the uteri in 3D ultrasound scans
using deep learning techniques, and alignment of the resulting shapes with standard geometrical approaches,
enabling the extraction of the normal shape for future analysis. The system was trained and validated on a
comprehensive dataset of 3D ultrasound images from multiple medical centers. Its performance was evaluated
by comparing the automated results with manual annotations provided by expert clinicians.
Results: The presented approach demonstrated high accuracy in segmenting and aligning uterine shapes from
3D ultrasound data. The segmentation achieved an average Dice similarity coefficient (DSC) of 0.90. Our
method for aligning uterine shapes showed minimal translation and rotation errors compared to traditional
methods, with the preliminary average shape exhibiting characteristics consistent with expert findings of a
normal uterus.
Conclusion: We have presented an approach to automatically segment and align uterine shapes from 3D
ultrasound data. We trained a deep learning nnU-Net model that achieved high accuracy and proposed an
alignment method using a combination of standard geometrical techniques. Additionally, we have created a
publicly available dataset of 3D transvaginal ultrasound volumes with manual annotations of uterine cavities
to support further research and development in this field. The dataset and the trained models are available at
https://github.com/UL-FRI-LGM/UterUS.
1. Introduction

The uterus plays a very important role in women’s reproductive
outcomes. Recent advances in medical imaging and technology (e.g., 3D
ultrasound) improved the exploration of the female genital tract and,
with it, increased the quality of gynecological health care.

While the average size and distribution data for most organs, such
as the liver, brain, and heart, are well-established [1–3], there is no
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large-scale study of the uterus that examines its normal characteris-
tics. Some uterine shape classifications, such as Vagina Cervix Uterus
Adnex-associated Malformation (VCUAM) [4] and European Society of
Human Reproduction and Embryology (ESHRE)/European Society for
Gynaecological Endoscopy (ESGE) [5], do include separate classes for
the normal uterus. While VCUAM classification did not define either the
measures or the shape of the normal uterus, ESHRE/ESGE classification
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defined the normal uterus as an organ having ‘‘either straight or curved
interostial line but with an internal indentation at the fundal midline
not exceeding 50% of the uterine wall thickness’’, avoiding the use of
absolute values.

Our research is part of a larger study called NURSE (Normal UteRine
asSEssment) that aims to fill the gap by finding measurements that
define a normal uterus, encompassing various lengths, thicknesses, and
angles of the uterine wall. With a new standard that would clearly
define the normal shape, research into possible shape abnormalities
in women with unexplained infertility or repeated miscarriages could
become feasible and become part of routine diagnostic procedures
for primary or secondary infertility. The study is being conducted in
collaboration with several medical centers from different European
countries with a large number of female subjects.

Professionals have traditionally used the Virtual Organ Computer-
Aided Analysis (VOCAL) system to make uterine measurements by
defining a cross-section of the 3D volume on 2D images. However,
this method inherently limits accuracy due to its reliance on 2D views
and is prone to human error and inter-operator variability. Moreover,
the VOCAL system necessitates drawing the uterine cavity’s contour in
multiple projections, requiring the process to be repeated 30 times with
a 12-degree rotation of the image, as detailed in the GE User Manual.
Unfortunately, this often results in disappointing outcomes, such as
spikes or unnatural distortions that fail to accurately represent the true
shape of the uterine cavity [6].

To overcome these limitations, we propose a method that extracts
and aligns 3D uterine shapes from 3D ultrasound volumes. This ap-
proach will allow us to create a reference model of a normal 3D uterus
that will, in combination with the normal shape assessed statistically
from 2D measurements by the NURSE study, aid infertility specialists
in comparing the uterine cavity shape of an individual patient with that
of the established normal model, enhancing diagnostic and treatment
accuracy. 3D views obtained from aligned 3D shapes can provide
insights that are unattainable through manual 2D measurements and
reduce the scope for human error. Automating the entire process not
only minimizes human involvement but also significantly speeds up the
processing of large data volumes. Moreover, the resulting 3D shapes
facilitate easy visualization, serving as a valuable educational tool.

The main contributions of our paper are:

1. We provide a trained neural model for automatic segmenta-
tion of uterine cavities in 3D ultrasound data. The model is
based on the nnU-net architecture [7] and gives good results
on 3D ultrasound data acquired in various hospitals by different
operators.

2. We present a novel method for automatic alignment of ex-
tracted 3D uterine shapes. The proposed method is based on
geometric and mathematical approaches and can be used to
align and compare the 3D uterine shapes of different patients.

3. We present a publicly available dataset of 3D transvaginal
ultrasound volumes with manual annotations of uterine cavities.
The dataset will help expand the currently limited pool of freely
available volumetric ultrasound data. It will enable the devel-
opment of new segmentation algorithms, facilitate comparative
studies in this area, and could also be used to solve other
problems in the broader field of gynecology or medical image
analysis.

1.1. Background

The uterus is a hollow, pear-shaped muscular (smooth muscle)
structure. Anatomically, the uterus consists of three main parts: the
uterine corpus or body, housing the uterine cavity; the isthmus — the
part where the uterine cavity starts to narrow; and the uterine cervix.
Fig. 1 presents the rough anatomy of the uterus. In our research, we
focused mainly on the cavity — therefore, unless stated otherwise, we
2

Fig. 1. Rough anatomy of the uterus. Image inspired by Nott [8].

will use the term uterus to refer to the uterine cavity. While most of us
can easily distinguish the rough anatomy of the uterus in a coronal view
(frontal view of the human body) as depicted in Fig. 1, it is crucial to
recognize the uterus as a three-dimensional object situated in a three-
dimensional environment, often appearing curved in the lateral view
(side view of the human body). The lateral view and the position of the
uterus inside the body are presented in Fig. 2. This curvature, among
other complexities, poses a challenge for the comparison and automatic
alignment of uteri.

Fig. 2. Position of the uterus in the body. Image adapted from Ellis [9].

Ultrasound, a widely used medical imaging technique, offers valu-
able insights into soft tissues and organs due to its minimal invasive-
ness, portability, and cost-effectiveness. However, challenges remain in
ultrasound analysis, particularly in the presence of noise and artifacts.
Speckle noise, resulting from the scattering of ultrasound waves, can in-
troduce random fluctuations in the received signal, complicating image
analysis. Moreover, various artifacts such as acoustic shadowing, rever-
beration, mirror image artifacts, and acoustic enhancement, can hinder
accurate diagnostics [10–13]. Despite the noise, medical professionals
are trained and skilled at telling apart artifacts from true anatomical
structures, but it is challenging for the automated approaches to do the
same [14].

3D ultrasound volumes are generated by capturing a sequence of
2D images using specialized 3D ultrasound probes, which can adjust
the direction of the ultrasound beam either manually or automatically.
These probes are often equipped with an electromagnetic position
sensor or an electrical gyroscope to ensure accurate spatial orientation
of each image captured. The computer system records these images
and gathers the necessary spatial data to construct the 3D volume. The
quality of these 3D ultrasound volumes heavily relies on the accurate
placement of the ultrasound probe and the expertise of the medical
professional performing the examination. Unlike many other imaging
modalities, where the patient’s position and the imaging direction
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are predetermined, ultrasound examinations require the operator to
skillfully manipulate the probe to obtain optimal images and, thus,
optimally constructed volumes. This operator-dependent nature of ul-
trasound poses unique challenges, especially in achieving consistent
quality across different examinations and among various operators.

Moreover, ultrasound does not provide uniform resolution across
all axes. The imaging plane that is displayed on the ultrasound screen
following volume acquisition, known as the acquisition plane, offers
the best visualization. It is critical that the structure of interest, in our
case, the uterus, is well-represented in this initial plane to ensure the
accuracy of the final results [15].

1.2. Related work

1.2.1. Ultrasound segmentation
As discussed in Section 1.1, ultrasound images present significant

challenges for automated analysis. From noise and artifacts resulting
from the physical properties of ultrasound propagation to the fact that
the quality of the images is highly dependent on the operator perform-
ing the ultrasound. Recently, however, technological advancements in
ultrasound equipment, such as improved ultrasound probes, higher
resolution, new digital systems, etc., have substantially enhanced image
quality [16]. Furthermore, the advent of deep learning has revolu-
tionized data analysis in this field, particularly in noise reduction and
feature extraction, making it a highly active area of research.

The goals of biomedical data analysis can be divided into sev-
eral areas: classification, segmentation, detection, and reconstruction.
Recently, most analysis approaches have been based on deep neural
networks. Authors use various architectures, from convolutional neural
networks (CNN) effectively applied for analyzing different organs such
as the liver [17], breast [18], thyroid [19], and arteries [20] to recur-
rent neural networks (RNN) [21,22], encoder–decoder networks [23,
24], and generative adversarial networks (GAN) [25]. Fully convolu-
tional network (FCN) [26] based approaches proved successful, mostly
when stacking multiple simpler FCN models like the methods proposed
by Zhang et al. [27] and Wu et al. [28]. Mishra et al. [29] added
deep supervision [30] to overcome the difficulty of training FCNs on
complex ultrasound data as it generally needs more layers that are not
possible with FCN alone. The U-Net architecture [31] as an extension
of FCN was explicitly designed for automatic semantic segmentation
of biomedical data and has been very successful. Several extensions to
the U-Net architecture have been proposed. Valanarasu et al. [32] com-
bined U-Net with the Ki-Net encoder–decoder architecture to improve
the segmentation of objects with blurry and noisy edges. Jain et al. [33]
fused U-Net(+) and SegNet to address the placenta segmentation in
ultrasound, where they use data similar to our work. Kumar et al. [34]
used a Multi U-Net model to perform real-time segmentation of breast
ultrasound structures. Xu et al. [35] recently introduced the Vector Self-
Attention Layer (VSAL) for ultrasound data, improving object detection
in various aspects while maintaining equivariance properties. The nnU-
net model [7] as an extension to U-Net has proven successful in the
broader field of biomedical data. Despite being a general model, it
achieved top results in 33 of 53 tasks that are commonly used to
evaluate segmentation models and came close to the best methods in
the remaining tasks.

Attention mechanisms have further improved segmentation perfor-
mance by allowing models to focus on the most relevant parts of the
input, enhancing their capability to handle complex biomedical images.
These mechanisms have been integrated into various neural network
architectures. For instance, Oktay et al. [36] proposed the Attention
U-Net, which integrates attention gates into the U-Net architecture
to focus on relevant regions. Similarly, Wang et al. [37] introduced
a residual attention network that combines residual learning with
attention mechanisms to enhance feature representation, which has
later been used to improve segmentation performance in challenging
3

medical image datasets [38]. Hatamizadeh et al. [39] proposed Swin-
UNETR, which incorporates Swin Transformers [40] into a U-Net-based
architecture, leveraging self-attention mechanisms to capture long-
range dependencies in medical images, surpassing the state-of-the-art
in various biomedical segmentation tasks at the time of publication.

Despite extensive research and progress in the field, the problem
of automatic segmentation of the uterus in volumetric ultrasound data
remains challenging. In a recently presented approach to 3D segmen-
tation, Behboodi et al. [41] used a 2D approach where the model was
run on each slice in all three dimensions, and results were merged to
produce a 3D segmentation. This method loses some spatial information
that can be valuable for segmenting volumetric data. The method
mainly has problems with accurately labeling edges but is relatively
successful in segmenting intermediate slices. Therefore, the approach
is more suitable for assisting in manual segmentation rather than
replacing the entire process. Shahedi et al. [42] also proposed a semi-
automatic approach to 3D segmentation, using 3D U-Net, where an
operator was employed to select the bounding box of the uterus and
placenta.

Kong et al. [43] introduced an approach for fetal and uterine
segmentation in volumetric ultrasound data using a fully convolutional
neural network (FCN) and bidirectional long short-term memory (BiL-
STM). The encoder part of the FCN extracts relevant features from 2D
slices, while the BiLSTM layer is responsible for finding correlations
between slices. Two branches of the FCN decoder produce the final
segmentation of the fetus and uterus. In their research, the data used
differs significantly from our dataset as it was acquired at later stages
of pregnancy when the uterus has a different shape and appearance.
Additionally, their data was obtained using abdominal ultrasound,
whereas ours was acquired using transvaginal ultrasound.

Another modality for uterus diagnostics is magnetic resonance imag-
ing (MRI) – Kurata et al. [44] presented an approach to 2D segmenta-
tion of uteri, showing that the segmentation accuracy does not reduce
significantly with the presence of disorders. They achieved a Dice
coefficient (DSC) [45,46] of around 0.8. More recently, Zhou et al. [47]
presented a study on 3D reconstruction and automatic segmentation
of the uterine cavity. They used the recurrent saliency transformation
network (RSTN) [48] and achieved similar scores. The MRI data,
however, typically provides higher resolution and less noisy images
than ultrasound, making segmentation easier.

1.2.2. 3D object alignment
3D data alignment is a well-researched topic with applications

spanning numerous fields, including robotics, 3D scanning, and medical
image registration. Classical point-based approaches, such as Iterative
Closest Point (ICP) [49,50], Coherent Point Drift (CPD) [51], and
Principal Component Analysis (PCA) [52], are commonly employed
for this purpose. Additionally, geometric properties, like the convex
hull [53], provide alternative methods for alignment.

Feature-based methods, which identify and link salient points on
3D models – such as corners, edges, and key points – are also preva-
lent. Notable examples include the Scale-Invariant Feature Transform
(SIFT) [54], Speeded-Up Robust Features (SURF) [55], and Random
Sample Consensus (RANSAC) [56].

Within the medical context, Statistical Shape Models (SSMs) [57]
and amongst them, Active Shape models [58] and Active Appearance
models [59] are often utilized due to their ability to align well-defined
and consistent shapes across similar datasets. These models build upon
the analysis of shape variations within a population, making them par-
ticularly useful in scenarios where anatomical landmarks are consistent
and well-defined. However, their efficacy diminishes when applied to
highly variable anatomical structures.

These traditional methods generally assume that the objects to
be aligned exhibit a high degree of similarity and can be accurately
described by a set of predetermined landmarks. This assumption often

proves problematic in medical settings, where anatomical variations
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Fig. 3. Diagram of the procedure from ultrasound volume to the final result - aligned uteri.
from patient to patient present unique alignment challenges — es-
pecially with organs like the uterus, which not only vary between
individuals but also undergo physiological changes.

To overcome this, deep learning methods [60] have gained impor-
tance in this area, as they have the ability to align objects with signifi-
cantly different shapes, given a sufficient amount of data. The recently
introduced ART [61] is a neural network module that can be integrated
into various architectures for 3D tasks (such as point cloud auto-
encoding, shape alignment, shape interpolation, human pose transfer,
etc.) as the authors have shown that having aligned shapes improves
their performance. The module learns to rotate the input shapes to their
canonical orientation through self-supervised learning, eliminating the
need for gold standards. Although the approach aims to find the orien-
tation for each object individually and was not created solely for object
alignment, it implicitly aligns objects by moving them into the same
coordinate system. The authors have shown that even for objects that
are not identical (e.g., different car shapes, different dog breeds), the
network finds the same canonical orientations and aligns the objects
with each other. However, a significant amount of data is required to
train the model successfully.

Despite the advancements and promising results shown by deep
learning methods, our decision to adopt a geometrical approach for 3D
uterine alignment was driven by several factors. Firstly, the high vari-
ability in uterine shapes presents a significant challenge for training-
based methods, which typically require large, annotated datasets to
achieve reliable performance. In the context of our study, such ex-
tensive datasets are not readily available. Secondly, the anatomical
variability of the uterus, both between different individuals and within
the same individual over time, complicates the application of standard
alignment techniques. While ICP and CPD are effective for aligning
objects with high similarity, they struggle with significant anatomical
variability and lack of consistent landmarks in uterine shapes. Geo-
metrical methods, on the other hand, do not rely on large training
datasets and are inherently more adaptable to variability. Additionally,
these methods allow for more interpretable and controllable alignment
processes, which is crucial for ensuring clinical relevance and accuracy.
By focusing on a purely geometrical approach, we aim to provide
a robust, efficient, and transparent solution for aligning 3D uterine
shapes, thereby facilitating more accurate and consistent analyses in
4

medical research and practice (see Fig. 3).
2. Materials and methods

In this section, we describe the main contributions of the paper.
We collected a dataset of transvaginal 3D ultrasound scans (the UterUS
dataset) and annotated the uterine cavities as described in Section 2.1.
To enable visualization and comparison of such scans, we developed
a procedure that includes two key steps: segmentation (described in
Section 2.2) and alignment (described in Section 2.3).

2.1. The uterUS dataset

In collaboration with several medical centers across Europe, we
have collected a set of 298 3D ultrasound volumes of the uterus. The
data was collected from female subjects, categorized into three groups:

1. women who have never been pregnant aged between 18 and 28
in order to avoid acquired anomalies of the uterus that have the
tendency to increase with age — general population (G),

2. women with at least 6 months of unexplained causes of infertility
(normal semen analysis, tubal patency, no ovulation disorders)
(I),

3. women with 2 or more spontaneous miscarriages (normal kary-
otype, no antiphospholipid syndrome or thrombophilia) (M).

The exclusion criteria for participating in the study were as follows:

1. women who have been pregnant (since pregnancy may modify
several measurements of the uterus),

2. women with acquired uterine abnormalities, such as myomas
and adenomyosis,

3. women with endometrial polyps (who could be included after
polypectomy),

4. women with a unicornuate uterus.

In all subjects included in the study, examinations were conducted dur-
ing the proliferative phase of the menstruation cycle. This choice was
made because, during the secretory phase, a thickened endometrium
can create irregularities in the uterine cavity, as shown by Sarave-
los et al. [62]. The ultrasound exam was done between the 11th and
14th days of the menstrual cycle when the lining of the uterus is
clearly visible. The volume acquisition was performed in a sagittal
projection with the region of interest (ROI) maximized. To minimize
artifacts, patients were instructed to hold their breath for a few seconds
during the acquisition process. One volume was acquired per patient.

At the current stage, the study focused on determining the shape and
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measurements of the general population. We have 141 volumes from
group G, 96 volumes from group I, and 9 volumes from group M. For
the remaining samples, we do not yet have metadata. In the future, we
plan to extend the dataset to include more samples from other classes
for further analysis.

Most of our collected volumes were acquired with General Elec-
tric (GE) ultrasound equipment. The acquired ultrasound data were
originally in a toroidal system, as used by the GE ultrasound ma-
chines [63]. One dimension represents radial distance, while the other
two dimensions represent angles, and the voxel spacing in this system
is not isotropic. To facilitate analysis and visualization, we transformed
this data into a Cartesian coordinate system using the 3D Slicer [64]
extension SlicerHeart [65]. During the transformation to Cartesian
coordinates, the inherently cone-shaped ultrasound data is enclosed
within a cuboid. Any unoccupied voxels within this cuboid are set to
0. This approach preserves the anatomical shapes of the organs and
avoids distorting them, even though it results in some voxel space being
unused (black voxels on the borders). This also proved to be more
understandable when visualized by both the annotator working on the
uterine annotations and the scientists responsible for verifying the ac-
curacy of the annotations, as it is consistent with the 2D representations
they are used to.

The sizes of the volumes range from 135 × 109 × 71 to 336 × 267
× 169 voxels, with brightness, contrast, and noise levels varying within
the dataset. The voxel spacing in all volumes is isotropic, with a
uniform spacing of 0.50mm in all directions. We also acquired 44
volumes with Samsung ultrasound machines, making the dataset multi-
device. The volumes were converted from their proprietary format to
the Neuroimaging Informatics Technology Initiative (NIfTI) format [66]
with a tool developed by Samsung’s R&D team.

For training and evaluation of segmentation models, we manually
annotated the uterine cavity in the acquired volumes. For annotation,
we used 3D Slicer, an open-source software for visualization, analysis,
and annotation of medical, biomedical, and other 3D data. Volumes
imported into 3D Slicer can be viewed in slices along axial, coronal, and
sagittal planes. Annotations were made by coloring the uterine cavity
in each slice along a selected axis.

The annotation procedure proved challenging as accurate identi-
fication of the uterus is sometimes difficult because the quality of
ultrasound volumes can vary significantly; in some volumes, the uterine
region may be clearly visible, whereas in others, the boundaries are
barely discernible. The quality of the data depends on several factors.
It may be influenced by the ultrasound machine’s quality and the
technician’s skill, as discussed in Section 1. Since we collected data
from different hospitals, all these factors also play a role in our data
set. Because ultrasound travels through tissue, the patient’s anatomy
and the tissue’s composition around the region of interest also play
a role [67]. Unforeseen hardware maintenance issues, such as faulty
transducer cable shielding, an unconnected cable in the room that may
act as an antenna, excessive dust, and oxidation in the system, etc.,
can also add noise [68]. Due to these factors, the volumes may have
different noise, contrast, and brightness levels, all affecting the overall
quality of the volumes, as shown in Fig. 4. For this reason, annotating
along a single axis was rarely sufficient, and in most cases, information
from all three dimensions had to be used for accurate annotations.
The final annotations were obtained by combining information from
all views and adjusting the annotations over each dimension. The 3D
shape was checked regularly during the annotation process to ensure
that the results were correct. As the final step, minimal smoothing of
the segmentation was employed to ensure continuity between slices.

The most challenging part of the annotation process was delineating
the cervix. The length and appearance of the cervix vary significantly
across ultrasound volumes due to differences in ultrasound diagnostics
and patient anatomy. In addition, the visibility of the cervix decreases
toward its end (closer to the vagina) because ultrasound quality is
poorer at greater distances from the region of interest (the uterine
5

Fig. 4. Slices of volumes on different planes with different levels of quality.

cavity). Even gynecologists measuring the distances manually did not
always agree on where the cervix ends. However, the slightly less
accurate cervix annotations did not significantly affect the overall
results of the trained segmentation models.

The entire dataset was annotated by a single annotator in order to
minimize variability. The annotator, while not a medical professional,
received training from a gynecologist to accurately identify and mark
the boundaries of the uterus. In addition, the final annotations were
reviewed by a gynecologist. Annotating a volume took about 20 min on
average, although the time varied depending on the volume’s quality
and the uterus’s shape. Some volumes required extensive adjustments
and adaptations along one axis after initial segmentation on another.
An example of an annotated volume is shown in Fig. 5.

Volumes with insufficiently visible uterine regions were not anno-
tated because poorly annotated data would adversely affect further
steps. In addition, data obtained later in the research was not yet
manually annotated but is included in the publicly available dataset.
The dataset, named UterUS (Uterine UltraSound), thus contains 141
3D ultrasound volumes with manual annotations of the uterine region
and 113 unannotated volumes from 11 different hospitals. The volumes
and their associated segmentations are stored in the NiFTi file format.
The dataset is available at https://github.com/UL-FRI-LGM/UterUS
under the CC-BY-NC-SA 4.0 licence.1

2.2. Automatic segmentation

Our goal was to develop a method for automatically segment-
ing uteri in 3D ultrasound data. Given the rapid advances in the

1 https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

https://github.com/UL-FRI-LGM/UterUS
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
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Fig. 5. An annotated volume visualized with the 3D Slicer tool. Above is the 3D
representation of the annotated region, and below are 2D projections that allow
movement along the coronal (red), axial (green), and sagittal (yellow) planes.

field and the frequent introduction of new machine-learning architec-
tures in various domains, we began exploring the broader biomedical
data segmentation field. This included segmentation for different data
types, such as microscopic, X-ray, MRI, and CT volumes. On a subset
of the UterUS data, we first evaluated several architectures, includ-
ing HighRes3DZMUNet [69], an extension of the U-Net architecture;
Med3D [70], which is pre-trained on various medical data; contrastive
learning [71], which incorporates unsupervised learning and allows
for the use of unannotated data; nnU-net [7], an extension of the
U-Net [31]; and Swin UNETR [39], combining the characteristics of
Swin transformers [40] and U-Net. The best results were obtained with
nnU-net and Swin UNETR, which we chose for all future experiments.
Among these two, nnU-net proved to perform slightly better.

The nnU-net is an extension of the U-Net in that it automates the in-
tricate process of configuring the network parameters. This automation
includes preprocessing, architecture selection, hyperparameter tuning,
and postprocessing. The authors have introduced a systematic method-
ology that leverages heuristic principles and empirical data to adjust
hyperparameters dynamically. This approach eliminates the tedious
and time-consuming manual process of parameter tuning, which often
requires a deep understanding of the domain but does not necessarily
yield optimal results. Therefore, the nnU-net framework can perform
various medical image segmentation tasks without requiring manual
configuration or domain-specific knowledge. It offers two U-Net vari-
ants: the 2D U-Net, tailored for processing individual slices within a
3D volume, and the 3D U-Net, designed for processing entire 3D vol-
umes. Both architectures include residual blocks, batch normalization
and deep supervision techniques. In addition, nnU-net introduces a
self-configuring data preprocessing pipeline that dynamically adjusts
image properties such as orientation, spacing, cropping, and intensity
normalization based on the unique characteristics of the dataset and the
chosen network architecture. The model also employs an autonomous
training strategy that optimizes critical parameters such as learning
rate, batch size, number of training epochs, and data augmentation
parameters by using a Bayesian optimization framework. nnU-net has
achieved state-of-the-art results in several medical image segmentation
benchmarks, such as the Medical Segmentation Decathlon [72], the
KiTS19 Challenge [73], and the BraTS Challenge [74]. Due to its
performance and user-friendly interface, this tool has since been widely
adopted in the field of biomedical segmentation. Notably, it has been
employed in various studies, including the segmentation of lung cancer
in combination with GANs to generate training datasets [75], the
segmentation of uteri in MRI data [76], as well as making a model for
segmenting 104 different organs in CT data [77].

Swin UNETR builds on the U-Net architecture and incorporates the
Swin transformer’s attention mechanism, allowing the model to capture
6

global contextual information across the entire image/volume. This
attention mechanism enhances the model’s ability to understand rela-
tionships between distant regions, unlike U-Net, which relies primarily
on convolutional layers and might miss broader contextual connections.
The Swin transformer that is used as the encoder in Swin UNETR
creates a hierarchical feature representation, meaning that it captures
features at varying resolutions and scales, which improves the model’s
ability to identify fine and course structures. The decoder used is U-Net-
like, which knowingly excels in localizing segmentation features. The
decoder merges multi-resolution features from the encoder using skip
connections, providing high-resolution output while benefiting from
the hierarchical understanding of the encoder. At it’s publication, Swin
UNETR marginally surpassed nnU-Net in the BraTS 2021 challenge
(0.913 vs 0.908 Dice score on average). It has since been used for other
segmentation tasks, such as tumor and lymph node segmentation [78].

To address the variable ultrasound image quality as already dis-
cussed in Section 1.1, we employed several strategies common in deep
learning analysis. We used extensive data augmentation techniques dur-
ing the training of our model, including random intensity variations and
noise addition. These augmentations help the model generalize better
to different image qualities. Additionally, the preprocessing pipeline of
nnU-Net includes normalization steps to standardize the intensity dis-
tributions across different scans, mitigating the effects of varying image
quality. We performed cross-validation to ensure consistent model per-
formance across different data subsets, accounting for potential image
quality variations. Our dataset also included volumes from multiple
centers with different ultrasound machines and settings, exposing the
model to a range of image qualities during training and evaluation.

We train both segmentation models to predict the location and seg-
mentation of the uterine cavity in 3D ultrasound volumes. The models
are trained to output a binary volume of the same size as the input,
where a value of 1 depicts the uterine cavity, and 0 depicts everything
else. To evaluate the performance, we use DSC, which measures the
similarity between predicted and annotated segmentations, with higher
values indicating better performance. We provide more details on the
training procedures in Section 3.1.

2.3. Alignment

To enable a comparison between different 3D uterine shapes, we
need to align the shapes to a common reference. For the alignment, we
first tested traditional point set alignment methods such as ICP [79],
normal distributions transform [80], and an algorithm based on phase
correlation [81]. The results were unsatisfactory, mainly because uter-
ine shapes vary significantly, while the methods were designed to align
identical or similar shapes. We also decided not to use deep learning-
based alignment approaches because, for unsupervised methods, such
as the one presented by Zhou et al. [61], the dataset is not big enough,
while for supervised deep learning approaches, such as the method
presented by Shimada et al. [82], we lack the manual alignments.

We therefore propose a new alignment method based on geometric
principles. The proposed method consists of several steps: selection of
the target uterus 2.3.1, initial alignment of the uteri 2.3.2, curvature
reduction 2.3.3, alignment of the uteri according to their principal axes
2.3.4, and fine-tuning of the alignment 2.3.5.

2.3.1. Choosing the target uterus
In our approach, each uterus is aligned to a manually selected target

uterus (all-to-one alignment) to reduce the computational burden of
all-to-all alignments and to allow easy updating when we receive new
data. A qualitatively suitable specimen from the UterUS dataset was
selected as the target, characterized by symmetry and a distinct cervix
so that the rotations aren’t biased in either direction. In addition, it has
only a slight curvature so that the curvature reduction process doesn’t
significantly change its shape.
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Fig. 6. A scheme of the initial step of the alignment process with the OBB shown in
2D for a clearer depiction. The purple dot shows the center of the bounding box (𝑂)
and the yellow dot shows the center of mass of the uterus (𝑀).

2.3.2. Initial alignment
In the first alignment step, we roughly align the uteri by positioning

and orienting their shapes in the same general direction. This means
that the uterine bodies are in approximately the same position and the
cervae point in approximately the same direction. This alignment is
then gradually refined in the subsequent steps.

We calculate an approximate initial alignment of two uteri by
aligning their bounding boxes. First, we look for the minimum oriented
bounding box (OBB) with the smallest volume that completely encloses
the uterus. We search for an oriented bounding box instead of an axis-
aligned bounding box to ensure that the shape of the bounding box
truly represents the shape of the uterus. The algorithm for finding OBB
is based on convex hulls and principal component analysis (PCA) [83].
After calculating the bounding box of a selected uterus, it is aligned
with the target by rotating it so that the axes of its box and the target
box are parallel and by moving it so that the centers of the boxes
coincide.

Due to the anatomy of the uterus and the imaging method used, the
rotation of the uterus around the coronal (𝑧) axis may be different for
different volumes. Therefore, when aligning the bounding boxes, we
must also check whether the aligned uterus should be rotated. Since
the body of the uterus generally has more mass than the cervix, we
compare the position of the center of mass of the uterus 𝑀(𝑀𝑥,𝑀𝑦,𝑀𝑧)
with the center of the bounding box 𝑂(𝑂𝑥, 𝑂𝑦, 𝑂𝑧). If 𝑀𝑥 − 𝑂𝑥 < 0, we
rotate the uterus by 180 degrees around the 𝑧 axis (as is schematically
shown with the rightmost green uterus shape in Fig. 6); otherwise, we
leave it as it is.

2.3.3. Reducing the curvature

Fig. 7. Three examples of the curvature reduction step in 2D. The initial curvature
surface and the flattened curvature surface are shown with dotted lines.

The uterine shapes within the body are curved to varying degrees,
which makes precise alignment difficult. Moreover, this curvature has
no anatomical significance. Gynecologists examining uterine shapes
focus on the shape of the uterine cavity rather than its position and
curvature in the body. Therefore, a reduction in uterine curvature is
desirable, resulting in more accurate alignment.

We first estimate a curved surface, which we call the curvature
surface, that best fits the uterus. This surface is then used to ‘‘flatten’’
the uterus and reduce its curvature. The schematic representation of
the process in 2D can be seen in Fig. 7.

To find the curvature surface, we model the uterus shape as a point
cloud and look for a curvature surface (plane) that best fits the points.
We model the curvature surface with a quadratic function that can
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capture the overall curvature without overfitting the small bends. The
curvature surface equation is given by:

𝑓 (𝑥, 𝑦, 𝛽) ⇒ 𝑓 (𝑥, 𝑦) = 𝐴𝑥2 + 𝐵𝑦2 + 𝐶𝑥𝑦 +𝐷𝑥 + 𝐸𝑦 + 𝐹 .

We estimate the parameters of the curvature surface 𝛽 = {𝐴,𝐵, 𝐶,𝐷,
𝐸, 𝐹 } by minimizing the sum of the squares of the distances between
the point cloud coordinates 𝑃 and the curvature surface:

argmin
𝛽

𝑚
∑

𝑖=1
dist(𝑃𝑖, 𝑓 (𝑥, 𝑦, 𝛽))2

where 𝑚 is the number of points in the point cloud and dist is the
shortest distance between a point and the curvature surface. We use
the Levenberg–Marquardt algorithm [84], an iterative algorithm that
combines the Gauss–Newton method and the gradient descent method,
to solve the nonlinear system of equations and estimate the curvature
surface parameters 𝛽.

The obtained curvature surface is then used to reduce the curvature
of the uterus in two steps:

1. displacement calculation, where we calculate the displacement of
each point relative to the curvature surface and

2. point cloud transformation, where we move the points in the point
cloud based on the calculated displacements.

For each point 𝑃 = (𝑝𝑥, 𝑝𝑦, 𝑝𝑧) in the uterus point cloud, we find the
closest point 𝑆 = (𝑠𝑥, 𝑠𝑦, 𝑠𝑧) on the curvature surface by minimizing:

𝑑(𝑃 , 𝑆) = (𝑠𝑥 − 𝑝𝑥)2 + (𝑠𝑦 − 𝑝𝑦)2 + (𝑠𝑧 − 𝑝𝑧)2

where 𝑠𝑧 = 𝑓 (𝑠𝑥, 𝑠𝑦, 𝛽). We use the first and second derivatives of the
function to identify critical points and estimate the closest point 𝑆.

In the second step, we create a new point cloud 𝑃 ′ by reducing the
curvature along the 𝑧 axis for all points 𝑃 in the point cloud as follows:

𝑃 ′(𝑥, 𝑦, 𝑧) = (𝑝𝑥, 𝑝𝑦, 𝑝𝑧 − 𝑠𝑧) = (𝑝𝑥, 𝑝𝑦, 𝑝𝑧 − 𝑓 (𝑠𝑥, 𝑠𝑦, 𝛽)).

2.3.4. Finding the principal axis

Fig. 8. A schematic of the alignment step using the principal axis in 2D.

When the uteri are flattened and thus better aligned along the
𝑧 axis, they must also be aligned along the other two axes. This is
accomplished by determining the principal axis of each uterus and
aligning it with the corresponding axis of the target uterus. We define
the principal axis as the axis connecting the midpoint of the uterine
fundus (the upper part of the uterus, as shown in Fig. 1) to the
midpoint of the lower part of the cervix. Since the cervix is usually more
symmetrical than the body of the uterus, we approximate the principal
axis by connecting the midpoint of the end of the cervix to the center
of mass of the uterus (see Fig. 8).

To find the midpoint of the end of the cervix, we first project the
point cloud of the uterus onto the 𝑋𝑍 plane and fit a fourth degree
polynomial curve to the 2D points to capture the curvature of the
cervix. We then determine the last point on this curve that still overlaps
with the uterus, which gives us the midpoint of the cervix in the 𝑋𝑍
plane, denoted as 𝐾1 = (𝑥1, 𝑧1). Next, we project the uterus onto the 𝑋𝑌
plane and find the center point 𝐾2 = (𝑥2, 𝑦2) using a similar method.
We combine these two points to get the midpoint of the cervix in 3D
as 𝐾 = (𝑥2, 𝑦2, 𝑧1).

We use the resulting axis from 𝐾 to the center of mass of the cervix
to calculate the rotation angle that aligns the principal axis of the cervix
with the principal axis of the target. We then transform all points in the
point cloud of the uterus accordingly.
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Fig. 9. Volumes with the worst and best evaluation scores with DSC values. The green color represents the prediction of our model, and the orange is the ground truth from our
dataset.
2.3.5. Fine-tuning of rotation and translation
To improve the accuracy of the alignment, we use simulated an-

nealing [85] to iteratively refine the alignment. Starting from a pair of
approximately aligned uteri (from the previous step), we optimize six
parameters representing the translation (𝑡𝑥, 𝑡𝑦, 𝑡𝑧) and rotation (𝑟𝑥, 𝑟𝑦,
𝑟𝑧) of the aligned uterus relative to the coordinate system of the target
uterus

𝑠 = {𝑡𝑥, 𝑡𝑦, 𝑡𝑧, 𝑟𝑥, 𝑟𝑦, 𝑟𝑧}.

We define the energy of the annealed system 𝐸 as the non-overlapping
ratio (NOR):

𝐸(sample, target) = |combined|
|sample| + |target|

where after sampling the point clouds into a uniform voxel grid,
|𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑| represents the number of overlapping points and |sample|
and |target| the number of points in the sampled and target uterus grids,
respectively. A value of 𝑁𝑂𝑅 = 0.5 represents a complete overlap,
while 𝑁𝑂𝑅 = 1 represents two non-overlapping point clouds. There-
fore, our goal is to find a set of translation and rotation parameters
that minimizes the energy function and thus increases the overlap of
the two uteri.

Simulated annealing works iteratively, where in each iteration the
state is changed by randomly selecting a parameter 𝑖 and changing its
value as follows:

𝑠′𝑖 = 𝑠𝑖 + 𝜉 ∗ 𝑡𝑁

where 𝜉 represents a random variable chosen uniformly from the
interval [−0.05, 0.05] for translation and [−0.35, 0.35] for rotation. 𝑡𝑁
represents the neighbor temperature, which is initially set to 100 and
decreases by 1 every 100 iterations, fine-tuning the randomness of the
parameters. At each step, the acceptance probability of a new state is
defined as follows

𝑃 (𝛥, 𝑇 ) =

{

𝑒−
𝛥
𝑇 , 𝛥 ≥ 0

1, 𝛥 < 0

where 𝛥 = 𝐸′ − 𝐸 is the energy difference between the new state and
the previous state and 𝑇 is the current temperature of the system. 𝑇
changes over the course of the algorithm according to the annealing
schedule. In our process, we start at 0.01 and decrease it by 𝛼 = 10−6 in
each iteration until it reaches the value 0, at which point the algorithm
terminates.

3. Results and discussion

3.1. Segmentation

Both networks were trained and evaluated on 141 annotated vol-
umes from four different hospitals, all obtained with ultrasound ma-
chines from the same manufacturer (GE). The dataset was randomly
divided into a training set (116 volumes) and a test set (28 volumes).
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Table 1
Evaluation of the 3D nnU-Net and Swin UNETR segmentation models using the DSC
metric on validation and test set.

nnU-Net Swin UNETR

3D pretrained scratch

Validation Set 0.909 0.860 0.851
Test Set 0.899 0.833 0.816

The training of nnU-Net was performed with five-fold cross-
validation, where each model was trained five times, using 80% of
the volumes of the training set for training and the remaining 20% for
validation. Stochastic gradient descent with Nesterov momentum [86]
with 𝜇 = 0.99 was used for optimization, with an initial learning rate
of 0.01. The learning rate decreased over epochs according to the poly
policy [87], with the power factor set to 0.9. We ran two nnU-Net
models: one operating only on 2D images and a full 3D model. The
model trained on 2D images showed significantly worse performance
(mean DSC of 0.8 compared to 0.9 with 3D on the validation set),
highlighting the advantage of volumetric representation over 2D image
processing, which is why we only evaluated the 3D model with other
datasets. Besides 2D and 3D models, nnU-Net offers a 3D cascade model
where first a 3D U-Net is trained on low-resolution images, and then a
second high-resolution 3D U-Net refines the predictions of the former.
Because the size of our volumes was relatively small, we have not used
this as the low and high resolution models would be basically the same.

With Swin UNETR, we compared two models - one that we trained
from scratch and a model pretrained on CT data [88]. We used the
learning rate of 0.001 and employed the Adam optimizer [89] for
stochastic gradient descent with the default values of 𝛽1 = 0.9, 𝛽2 =
0.999 and 𝜖 = 1𝑒 − 8.

In both cases, we used a compound loss function — a combination
of cross-entropy loss and Dice loss [90] which has been shown to be
more robust and work well on imbalanced data [91]. For the evaluation
during and after training, the Dice coefficient (DSC) was used as the
evaluation measure. The training was conducted using NVIDIA A100
GPU on the HPC system Vega [92].

The segmentation results in Table 1 show that the nnU-Net 3D
model performs slightly better than both Swin UNETR models. While
this seems somewhat inconsistent with the performance reported by
Swin UNETR in comparison with nnU-Net in their original paper, the
transformer-based models are known for requiring a lot of data in order
to generalize well and not overfit. This is why it performs worse than
nnU-Net in our case where the available data is not as extensive. The
nnU-Net model performs well on average, with no large differences
between the validation and test datasets, indicating that the model
did not overfit on the training data. Additionally, we evaluated the
nnU-Net model on 10 newly annotated volumes from a hospital not
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Fig. 10. Visual results of the alignment on 10 uterine shapes.
Table 2
Differences in translations and rotations of automatically and manually aligned uteri.
Rotations are given in degrees and translations in voxels.

our ICP CPD

translation X 3.31 7.34 4.31
translation Y 1.25 2.83 0.87
translation Z 0.90 0.77 0.86
rotation X 11.30 79.48 82.06
rotation Y 3.01 4.94 4.50
rotation Z 5.34 61.39 48.33

included in the training or testing datasets. The model maintained a
high performance with a DSC of 0.863, indicating its robustness even
with data from new operators. These additional volumes were acquired
using the same GE ultrasound machine as the training data.

Looking at the three volumes with the lowest evaluation scores in
Fig. 9(a), the model seems to label the boundaries more narrowly than
in the manual annotations. The reason for this could be that, due to
the poorer quality of the scans, the annotator preferred to mark the
boundaries wide rather than too narrow when they were difficult to
recognize in the cross-sections. In the third example, the model labeled
the cervix while the annotator did not. We could even see this as
an improvement, as localizing the cervix was often difficult during
manual labeling because the image quality of the ultrasound decreases
the further you get from the uterine cavity. In addition, there can
be disagreement even among medical professionals about the exact
position of the end of the cervix, which can lead to discrepancies in
labeling. Therefore, the segmentations shown in the figure are not
necessarily incorrect, even if the evaluation scores are low. Fig. 9(b)
shows the volumes with the highest DSC values. It can be seen that the
image quality of the scans is better, the volumes have less noise and
the borders of the uterus are easier to distinguish from the background,
which is why the manual annotations and the automatic segmentations
largely match.

While the reported scores provide an indication of our approach’s
performance, they do not fully capture its true effectiveness and us-
ability. We acknowledge the potential bias in our manual annotations,
especially given that the annotations were performed by a single anno-
tator. To address this, we plan to implement a more comprehensive
annotation process involving multiple annotators. This will help to
mitigate bias and provide a more robust evaluation of our method.

3.2. Alignment

The automatic alignment method was evaluated by qualitatively
comparing a set of 10 automatically aligned uteri with the same set
of manually aligned ones. The manual alignment was made with the
assistance of a domain expert. Fig. 10 presents a visual comparison
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between the automatic and manual alignments from different perspec-
tives. For quantitative comparison, we also evaluated two traditional
shape alignment approaches: Iterative Closest Point (ICP) and Coherent
Point Drift (CPD). Table 2 presents the average differences in transla-
tions and rotations calculated between each pair of automatically and
manually aligned uteri for our approach, ICP, and CPD. The reported
values are based on the same 10 uteri depicted in Fig. 10.

We can see that our approach produced good results both visually
and numerically. The visualization in Fig. 10 shows that the result of
automatic alignment is very similar to manual alignment. The main
difference can be observed in the side view, where curvature reduction
(which was not performed for manual alignment) improved alignment
along the coronal axis. Reduction of the curvature increased the overlap
and smoothness of the combined shape.

Similarly, the numerical results in Table 2 indicate that translation
differences (measured in voxels) are minimal across all axes. Although
looking at translations, the differences between the methods are not
substantial, the advantage of our approach is evident in the rotation re-
sults, where the average degrees of difference are significantly smaller.
The rotations along 𝑌 and 𝑍 axes are small as the initial bounding box
alignment and subsequent refinements align those axes very well. A
somewhat larger difference can be seen on the 𝑋 axis rotation - the
difference mostly arises when aligning smaller uteri inside a bigger one,
as our current optimization metric in the final alignment step does not
discern between the quality of alignment when one of the shapes is
completely encapsulated in the other. Thus, final fine-tuning can, in
some cases, worsen the result as it finds non-optimal solutions that are
metric-wise equally good.

Manual alignment also allowed for more refined adjustments be-
cause we could simultaneously align all of the shapes (not just indi-
vidual pairs), leading to a seemingly more connected surface across the
combined uterus. Our pairwise approach can lead to suboptimal results
as a sample might better align with the target uterus but worse with all
of the others. However, modifying the algorithm to work on an all-to-all
basis instead of all-to-one would significantly increase computational
time. Moreover, it would necessitate repeating the entire alignment
process when new data are introduced — with our current method,
we only need to calculate the alignments of the new uteri to the target
uterus and incorporate the results.

There is room for improvement of the proposed alignment method.
When reducing the curvature, we only displace points on the 𝑧-axis,
which can result in some deformations, especially when curvature is
high. However, most of the samples in our dataset exhibit low or
moderate levels of curvature, so the deformations don’t have a large
influence on the final result. Fig. 11 illustrates curve reduction in two
uteri with low to moderate levels of curvature and the deformation
caused by the flattening step. To improve our method further, we could
also introduce improved optimization metrics in the final fine-tuning
step, as only looking at the number of non-overlapping points is not
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Fig. 11. Uteri point clouds and their flattened shapes after curvature reduction.
Original point clouds are presented with orange and flattened shapes with green color.

Fig. 12. Visualization of the overall shapes of the uterus for the general population
(left) and the combined group of women with recurrent spontaneous miscarriages
and unexplained infertility (right). The darker green color shows a lower density of
boundary points, whereas the brighter yellow and orange present higher density.

optimal. We could consider a measure that incorporates more shape
information, such as graph matching of the medial scaffold as presented
by Chang et al. [93].

Alignment enables us to visualize the overall 3D uterine shape,
as shown in Fig. 12. The visualization was done with Avizo3D [94]
and shows the overall shape of the uterus for the general population
(normal uteri) on the left and the overall shape of the remaining two
groups (women with recurrent spontaneous miscarriages and women
with unexplained infertility) on the right side.

The visualizations presented are not intended to draw definitive
conclusions at this stage due to the limited data available. However,
preliminary results indicate that the overall uterus shape resembles the
letter 𝑑𝑒𝑙𝑡𝑎, a characteristic typically observed in a healthy uterus. Our
primary focus and the focus of the initial study wasn’t on comparing
different groups, but rather on establishing the shape of a normal
uterus. With that in mind, the limited data available makes it difficult
to draw distinctions between the two groups. Furthermore, the others
group itself includes distinct subgroups with potentially opposing char-
acteristics. Their inclusion, coupled with the limited data size, could
easily mask individual variations, leading to an overall shape that is
very similar to that of the general population. Fig. 13 visualizes the
overall shape of automatically aligned uteri for both groups, highlight-
ing areas of boundary density. Consistent with our expectations, the
cervix exhibits the most pronounced variability, while the body-cervix
region, particularly in the general population (red zones), demonstrates
greater morphological consistency.

In future work, we plan to employ SSMs or some other approaches
to derive more meaningful mean shapes than those obtained through
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simple averaging. This will enable us to capture and analyze shape
variations within a population more effectively, providing deeper in-
sights into the underlying anatomical differences and identifying and
quantifying subtle shape differences that may be clinically significant.

Future efforts will also prioritize acquiring additional and less bi-
ased data, particularly for the others group, potentially subdividing it
into its constituent subgroups. Only then will we be able to draw more
precise conclusions about potential shape differences, classifications,
and their clinical implications. This will enable the true potential
of our alignment method in understanding and diagnosing uterine
abnormalities, ultimately improving clinical outcomes.

4. Conclusion

In this study, we present an approach for the automatic segmen-
tation and alignment of uteri in 3D ultrasound data, which can be
a valuable tool for research and diagnostics in medicine. The main
contributions of our work include a manually annotated dataset, a
model for automatic uterus segmentation, and a novel approach for the
automatic alignment of segmented 3D uteri.

To our knowledge, the presented segmentation model is the first
of its kind for this type of data. The segmentations are accurate, with
an average Dice coefficient of 0.863 on the test dataset. A qualitative
investigation also confirmed the accuracy of the segmentations. The
presented alignment algorithm can be used to observe the average
uterine shape of the general population, which has already attracted
great interest in the medical community. We have also made the
annotated dataset of 3D ultrasound volumes (UterUS) available to the
public, along with the trained segmentation model.

However, there is still plenty of room for improvement. We plan
to enhance both the segmentation model and the final uterus reference
model as more data is collected as part of the NURSE research initiative.
We also aim to refine the manual annotations, as occasional errors still
negatively impact the training of the segmentation model despite expert
review. Involving multiple annotators and experts in the annotation
process could improve the model’s accuracy, although this work is time-
consuming and costly. Additionally, as discussed in Section 3.2, a larger
dataset will enable us to explore deep learning alignment methods that
may prove more robust than the proposed approach.

There are numerous other promising avenues for future research
in this field. These include gathering a more geographically diverse
dataset, conducting longitudinal studies to observe how uterine shape
changes over time, and incorporating other modalities such as 4D
ultrasound. While these opportunities are full of potential, they are not
our immediate priority at this time.

We hope that this work will lead to new insights in the field of
gynecology. The initial feedback from participants in the NURSE multi-
center study has been very positive. The preliminary results presented
at the 32nd Annual Meeting of the ESGE (European Society for Gyne-
cological Endoscopy) in Brussels show overlapping data on the shape
of the uterine cavity in the general population. A new visualization
and representation of the normal shape of the uterus would allow
gynecologists to detect and surgically correct potential pathological ab-
normalities more quickly, potentially shortening the time to conception
and reducing the rate of spontaneous miscarriages.
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Fig. 13. Overall shape (overlayed boundaries of aligned uteri) for the general (on the top) and others (on the bottom) groups shown as an octo slice from XY, YZ, and XZ
orientations (left, middle and right, respectively).
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