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Faculty of Computer and Information Science, University of Ljubljana

ABSTRACT

Recently a growing number of works focus on machine de-
fect detection from anomalous audio patterns. The datasets
for the machine audio domain are scarce and recent methods
that perform well on benchmarks such as DCASE2020 Task
2, rely on auxiliary information such as annotated data from
other training classes in the domain to extract information that
can be used in deep-learning classification-based anomaly de-
tection approaches. However, in practical scenarios, anno-
tated data from the same domain may not be readily available
so annotation-free methods that can learn appropriate audio
representations from unannotated data are needed. We pro-
pose AudDSR, a simulation-based anomaly detection method
that learns to detect anomalies without additional annotated
data and instead focuses on a discrete feature space sampling
method for an anomaly simulation process. AudDSR outper-
forms competing methods that do not rely on annotated data
on the DCASE2020 anomalous sound detection benchmark
and even matches the performance of some methods that uti-
lize additional annotation information.

Index Terms— anomalous sound detection, anomaly
simulation, vector quantization

1. INTRODUCTION

The audio anomaly detection problem typically focuses on
detecting defective machine activity from audio recordings
of that machine. During training no anomalous recordings
are provided and the typical audio anomaly detection mod-
els learn to model an anomaly-free distribution of sound by
training only on anomaly-free recordings. The standard au-
dio anomaly detection benchmark, DCASE2020 [1], provides
recordings of several different machine types and several in-
stances of the same machine type. For each recording the ma-
chine type and machine instance (machine id) are annotated.
These annotations provide significant information about pos-
sible deviations in the sound representation for each machine.
Most top performing methods use these available annotations
of all classes to train a classification network, and use the as-
sumption that the trained network will fail to classify anoma-
lous recordings, making them detectable. Such recordings
can also be used in an outlier exposure [2] process as anoma-
lous samples.

Having a diverse set of annotated data from the same
domain can not often be expected in practice [3], therefore
methods that can detect anomalies without relying on addi-
tional information from such annotated datasets are necessary
and are a promising direction for further research effort. Pre-
vious generative approaches such as autoencoder models [1]
and masked autoencoder models [4, 5] do not require anno-
tated data, but rely merely on their reconstruction capability
to detect anomalies. These reconstruction-based methods
are trained on anomaly-free recordings of an individual ma-
chine instance and are assumed to poorly reconstruct anoma-
lous recordings thus making anomalies detectable purely
through a reconstruction error metric. A known problem of
reconstruction-based methods is that they tend to general-
ize very well, therefore some near-in-distribution anomalous
frames may be accurately reconstructed despite not occurring
in the training set.

In computer vision, anomaly detection has become a very
active research field in recent years. Although some meth-
ods, such as flow-based models [6, 7], are used both in au-
dio and vision-based anomaly detection, methods focusing on
anomaly simulation [8, 9, 10] that are the state-of-the-art on
visual anomaly detection problems have not been previously
used in the audio setting. One of the issues in adapting such
methods for audio anomaly detection is the lack of a well de-
fined anomaly generation process. Additionally, vision-based
methods often rely on large pretrained networks. Large pre-
trained audio backbone networks do not necessarily capture
the nuances necessary for audio machine defect detection, due
to being trained on data from a different domain.

As our main contribution we thus propose AudDSR,
a novel audio anomaly detection model that does not rely
on annotated data but instead first learns a general discrete
representation of machine audio and then simulates realis-
tic anomalies by sampling from the learned discrete feature
space. On the standard DCASE2020 Task 2 dataset [1], the
proposed method outpeforms competing generative audio
anomaly detection models, that do not require additional an-
notations, by approximately 4 percentage points on the stan-
dard metrics. Additionally, AudDSR even reaches the per-
formance of some strong audio anomaly detection baselines
that rely on using additional annotations. The framework of
the proposed method is also extendable which enables it to
incorporate additional information provided by annotations
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in which case it outperforms several recent annotation-reliant
models.

2. RELATION TO PRIOR WORK

The DCASE2020 is a commonly used audio anomaly de-
tection benchmark [1]. The benchmark contains 6 machine
types with each machine type containing recordings of three
or four machines. These machine instances are labeled with
machine IDs, leading to a total of 23 classes. The top per-
forming methods rely on the annotations of the 23 classes to
learn specific features that are useful for the anomaly detec-
tion task and are difficult to obtain without having a relatively
large annotated dataset from the task domain. Since having
such an annotated dataset available for all practical scenar-
ios is not guaranteed this is a major drawback of such meth-
ods. In flow-based methods [6] a normalizing flow model
is trained on the data of a specific class, while other classes
are used as outliers to adapt the negative log likelihood in
out-of-distribution examples. In the MobileNetV2 [11] ap-
proach the network is trained as a classifier for individual
machine IDs and the softmax score of the correct class is
used as the anomaly score. In STGram [12] additional fea-
tures extracted from the waveform are used to improve the
result. In the top performing method GeCo [4] both the re-
constructive method PAE [5] and a discriminative network
are used. The anomaly score is then the combination of the
reconstruction error by PAE and the discriminative output.
Generative methods that do not require additional annotations
are mostly focused on reconstruction [1, 5, 13] or on density
estimation [14]. Reconstruction-based approaches can either
generalize and also accurately reconstruct anomalous regions
or fail to reconstruct events that are rare but are not consid-
ered anomalies. Our approach, AudDSR, focuses on generat-
ing simulated anomalies by sampling from a discrete feature
space, thus not relying on machine ID annotations but also
avoiding the issues of reconstruction-based methods.

3. OUR APPROACH: AUDDSR

We propose a novel audio anomaly detection model, Aud-
DSR, based on the Audio Dual Subspace Reconstruction [9].
AudDSR is trained in two stages. First, it utilizes a vector-
quantized autoencoder, namely VQ-VAE-2 [15], to learn a
general discrete feature space for the domain of machine
audio recordings. Then, the learned discrete space is used
to sample realistic anomalies from the learned distribution.
A discriminative network is then trained to detect simulated
anomalies and generalizes well to real-world anomalies. Note
that annotations of machine instances are not used to train
AudDSR, thus not requiring such a dataset during training.
In Section 3.1 the first stage of training is described where
the general discrete feature space is learned. In Section3.2,
the architecture of AudDSR is described which is based on
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Fig. 1. The discrete autoencoder architecture of AudDSR.

the visual surface anomaly detection method DSR [9] and in
Section 3.3, the anomaly simulation process is defined.

3.1. Discrete latent space learning

The vector-quantized autoencoder VQ-VAE-2 [15] is used to
learn a general discrete latent space. A two stage architecture
is used to ensure an accurate reconstruction of the input data
x. The complete architecture of the discrete autoencoder used
is shown in Figure 1. The input spectrogram is first encoded
to f1 and f2 by Encoder 1 and Encoder 2, respectively. f1
is then quantized to the nearest vector in codebook V Q1, re-
sulting in the quantized feature map Q1. Q1 is then decoded
and upsampled by the General Decoder Module 1, resulting
in fU , which is then concatenated with f1. The concatenation
is then quantized to the nearest vectors in codebook V Q2 re-
sulting in Q2. Q1 is upsampled by bilinear interpolation to
the shape of Q2, concatenated and input into the General De-
coder Module 2, which produces a reconstruction Xout of the
input spectrogram X . The standard VQ-VAE-2 loss is used
to train the discrete autoencoder:

Lae = λxL2(X,Xout)

+ L2(sg[f2],Q1) + λKL2(f2, sg[Q1])

+ L2(sg[f1],Q2) + λKL2(f1, sg[Q2]), (1)

where L2(·) is the Euclidean distance and sg[·] is the stop
gradient operator. λK is fixed to 0.25 in all experiments fol-
lowing [15].

3.2. AudDSR architecture

AudDSR follows the architecture of DSR [9] and is shown in
Figure 2. The Mel spectrogram of the input, X, is input into
the encoder of the discrete autoencoder, where the quantized
feature maps Q1 and Q2 are extracted. Then, Q1 and Q2 are
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Fig. 2. The architecture of AudDSR. The modules marked in yellow are trainable during the second stage of training. Steps
marked with blue dotted arrows are only done during training.

input into two decoder networks. The general object decoder
maintains the information in Q1 and Q2 and directly recon-
structs the input spectrogram X which may be anomalous at
inference so any potential anomalies are reconstructed in XG.
The general object decoder consists of the General decoder
modules of the discrete autoencoder in Figure 1 and is not
trained in the second stage. The second decoder, the object
specific decoder, aims to restore the anomaly-free spectro-
gram so any potential anomalies are instead restored to their
anomaly-free values in the corrected spectrogram XS . The
resulting spectrograms XG and XS are then concatenated and
input into the Anomaly detection module which outputs a seg-
mentation map of the anomalous sections of X .

Only the Object specific decoder and the Anomaly de-
tection module are trained in the second stage. The object
specific decoder is trained to reconstruct anomaly-free spec-
trograms from synthetically corrupted quantized feature maps
Q1A and Q2A using an L2 loss. The anomaly detection mod-
ule is trained using the Focal loss following [8, 9].

3.3. Anomaly sampling

During training, anomalies are simulated by augmenting the
quantized feature maps Q1 and Q2. First an anomaly map
M is generated by one of two processes. In one process, a
diverse set of anomalous parts of the spectrogram are gen-
erated by thresholding and binarizing a Perlin noise map.
Perlin noise maps are commonly used in discriminative vi-
sual anomaly detection methods [9, 8], but do not accurately
model the anomalies that are occur in spectrograms, where
the anomalies often span across the entire duration of the
recording or only across a specific frequency band. A new
anomaly shape simulation process is therefore defined. First a
frequency band where anomalies will be generated is chosen.
Then, several time segments are chosen in which consecu-
tive frames will be augmented. The chosen time segments
and the frequency band are then marked in the anomaly map
M . M is then resized to fit to the spatial dimensions of Q1

and Q2. Feature vectors of Q1 and Q2 in regions corre-
sponding to positive values of M are replaced with feature

vectors sampled from codebooks V Q1 and V Q2 respectively.
The resulting augmented feature maps containing simulated
anomalies are marked with Q1A and Q2A in Figure 2.

4. EXPERIMENTS

AudDSR is evaluated on the DCASE2020 Task 2 bench-
mark [1] that contains 6 machine types (ToyCar, ToyCon-
veyor, Fan, Pump, Slider, and Valve). Each machine type
consists of recordings of four machines with the exception
of ToyConveyor that contains 3 machines. The recordings
of different machine instances are labeled with machine IDs,
leading to 23 total classes. The AUROC and pAUC metrics
are used for evaluation which are standard for this benchmark.
pAUC is the AUROC with a maximum false-positive-rate of
0.1. The average metrics over all machine IDs for a specific
machine type is reported in all experiments.

4.1. Implementation details

AudDSR takes log-Mel spectrograms as the input with 128
Mel filters, a window size of 1024 and a hop size of 512. The
sample rate of the DCASE2020 benchmark samples is 16kHz.

In the first training stage, the discrete autoencoder was
trained for 20000 iterations with a batch size of 256. The
Adam optimizer was used and the learning rate was set to
0.0002. The goal of the first stage is to learn a general discrete
audio feature space. In the second stage of training, AudDSR
was trained for 10000 iterations with a batch size of 16. The
Adam optimizer was used and the learning rate was set to
0.0002. During training, half of the samples in each batch
were set to contain simulated anomalies, while the rest were
anomaly-free. The anomaly-score for each input spectrogram
was defined as the mean value of the output anomaly map.

4.2. Results

AudDSR is compared to other top-performing recent meth-
ods on the DCASE2020 benchmark [1]. The results are
listed in Table 1, where they are split between methods that
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Table 1. Performance on the DCASE2020 Task 2 benchmark. Performance in terms of AUC and pAUC are reported. Metrics
where AudDSR outperforms competing annotation-free methods are written in bold.

Methods ToyCar ToyConveyor Fan Pump Slider Valve Average
AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC

Annotation-free

AE [1] 80.90 69.90 73.40 61.10 66.20 53.20 72.90 60.30 85.50 67.80 66.30 51.20 74.20 60.58
IDNN [13] 80.19 71.87 75.74 61.26 69.15 53.53 74.06 61.26 88.32 69.07 88.31 65.67 79.30 63.78
ANP [16] 72.50 67.30 67.00 54.50 69.20 54.40 72.80 61.80 90.70 74.20 86.90 70.70 76.52 63.82
PAE [5] 75.35 69.70 77.58 61.37 72.94 54.37 74.27 62.01 91.92 74.39 95.41 81.24 81.25 67.18
AudDSR 91.89 82.90 78.02 64.60 73.82 64.98 85.91 74.32 90.16 71.54 90.05 70.20 84.97 71.45

Annotation-reliant

MobileNetV2 [11] 87.66 85.92 69.71 56.43 80.19 74.40 82.53 76.50 95.27 85.22 88.65 87.98 84.00 77.74
GlowAff [6] 92.20 84.10 71.50 59.00 74.90 65.30 83.40 73.80 94.60 82.80 91.40 75.00 85.20 73.90
STgram [12] 88.80 87.38 72.93 63.62 91.30 86.73 91.25 81.69 99.36 96.84 94.44 91.58 89.68 84.64

AudDSRannot 93.60 90.65 81.57 71.23 77.46 75.39 88.52 79.16 98.56 93.00 98.90 94.76 90.12 84.59
GeCo [4] 96.62 89.33 74.69 65.82 92.73 85.19 93.09 86.89 98.61 95.26 99.06 95.52 92.47 86.34

rely on machine ID annotations and the methods that do
not. AudDSR outperforms all the annotation-free methods,
even outperforming PAE [5] by 3.7 percentage points in
terms of mean AUC and 4.3 percentage points in terms of
mean pAUC. AudDSR also outperforms MobileNetV2 [11]
in terms of AUC, but falls behind in terms of pAUC. Nonethe-
less AudDSR narrows the gap between Annotation-free and
Annotation-required methods.

Additionally, AudDSR is extendable and can also utilize
additional information if available. In experiment AudDSRannot,
annotated examples from other machine instances of the
same type are used as outliers for training the Anomaly
detection module in addition to the simulated anomalies.
AudDSRannot outperforms MobileNetV2 [11] and GlowAff [6],
achieves comparable performance to STGram [12], but does
not quite reach the performance of the best performing
method GeCo [4]. There is however, room for improve-
ment. The training anomaly map for outlier spectrograms
was simply set to 1 in all regions which may not be ideal. Ad-
ditionally, AudDSRannot does not utilize individual machine
ID annotations and only learns to differentiate between the
in-distribution class and the rest, which does not utilize the
entire information available. This experiment demonstrates
the extendable nature of AudDSR and shows the potential of
AudDSR to work with additional information when available.

4.3. Discrete autoencoder training data

The impact of the dataset used to learn the general dis-
crete representation of the discrete autoencoder is evaluated.
In most experiments the discrete autoencoder is trained on
the entire DCASE2020 Task 2 dataset without taking ma-
chine ID annotations into account. Table 2 lists the mean
AUC and pAUC performance using the discrete autoencoder
trained on the unannotated DCASE2020 data in experiment
AudDSRdcase and on a subset of the AudioSet [17] data in

experiment AudDSRAudioSet. Both achieve comparable per-
formance which demonstrates that training a discrete latent
space for anomaly simulation is robust to the dataset choice.

Experiment AUC pAUC

AudDSRdcase 84.97 71.45
AudDSRAudioSet 84.86 71.61

Table 2. The impact of the discrete autoencoder training
dataset on the anomaly detection performance.

5. CONCLUSION

We present AudDSR, an audio anomaly detection method
that does not rely on an annotated classification dataset of the
same domain for accurate anomaly detection. It focuses on
generating simulated anomalies in a discrete feature space to
learn an anomaly detection module that is capable of general-
izing to real-world anomalies. On the standard DCASE2020
Task 2 anomaly detection benchmark, AudDSR achieves
state-of-the-art results outperforming all methods that are
not annotation-reliant on both AUC and pAUC metrics by
approximately 3 and 4 percentage points, respectively. The
AudDSR framework is flexible and with a slight modification
to the training process, AudDSR can also incorporate the
additional annotation information. In this case it achieves
excellent results and outperforms most annotation-reliant
methods. In future work, the concept of AudDSR could be
extended to waveform-based pretrained quantized features
spaces such as EnCodec [18] which may improve results or
offer interesting insights.
Acknowledgement This work was supported by Slovenian
research agency programs L2-3169, J2-2506, P2-0214. Vit-
jan Zavrtanik was supported by the Young researcher pro-
gram of the ARRS.

1469

Authorized licensed use limited to: UNIVERSITY OF LJUBLJANA. Downloaded on September 25,2024 at 10:42:40 UTC from IEEE Xplore.  Restrictions apply. 



6. REFERENCES

[1] Yuma Koizumi, Yohei Kawaguchi, Keisuke Imoto,
Toshiki Nakamura, Yuki Nikaido, Ryo Tanabe, Harsh
Purohit, Kaori Suefusa, Takashi Endo, Masahiro
Yasuda, et al., “Description and discussion on
DCASE2020 challenge task2: Unsupervised anoma-
lous sound detection for machine condition monitoring,”
arXiv preprint arXiv:2006.05822, 2020.

[2] Dan Hendrycks, Mantas Mazeika, and Thomas Diet-
terich, “Deep anomaly detection with outlier exposure,”
in International Conference on Learning Representa-
tions, 2019.

[3] Kota Dohi, Keisuke Imoto, Noboru Harada, Daisuke Ni-
izumi, Yuma Koizumi, Tomoya Nishida, Harsh Puro-
hit, Ryo Tanabe, Takashi Endo, and Yohei Kawaguchi,
“Description and discussion on DCASE 2023 challenge
task 2: First-shot unsupervised anomalous sound detec-
tion for machine condition monitoring,” arXiv preprint
arXiv:2305.07828, 2023.

[4] Xiao-Min Zeng, Yan Song, Zhu Zhuo, Yu Zhou, Yu-
Hong Li, Hui Xue, Li-Rong Dai, and Ian McLough-
lin, “Joint generative-contrastive representation learning
for anomalous sound detection,” in ICASSP 2023-2023
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2023, pp. 1–5.

[5] Xiao-Min Zeng, Yan Song, Li-Rong Dai, and Lin
Liu, “Predictive autoencoders are context-aware un-
supervised anomalous sound detectors,” in National
Conference on Man-Machine Speech Communication.
Springer, 2023, pp. 101–113.

[6] Kota Dohi, Takashi Endo, Harsh Purohit, Ryo Tanabe,
and Yohei Kawaguchi, “Flow-based self-supervised
density estimation for anomalous sound detection,” in
ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2021, pp. 336–340.

[7] Marco Rudolph, Tom Wehrbein, Bodo Rosenhahn, and
Bastian Wandt, “Asymmetric student-teacher networks
for industrial anomaly detection,” in Proceedings of the
IEEE/CVF Winter Conference on Applications of Com-
puter Vision, 2023, pp. 2592–2602.

[8] Vitjan Zavrtanik, Matej Kristan, and Danijel Skočaj,
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