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ABSTRACT
We present a research tool for user preference elicitation that col-
lects both explicit user feedback and unobtrusively acquired facial
expressions. The concrete implementation is a web-based user in-
terface where the user is presented with two music excerpts. After
listening to both, the user provides a pairwise score (i.e. which of
the two items is preferred) for each pair of music excerpts. The nov-
elty of the demo is the integration of the unobtrusive acquisition of
facial expressions through the webcam. During the listening of the
music excerpts, the system extracts features related to the facial
expressions of the user several times per second. The interaction
runs as a web application, which allows for a large-scale remote
acquisition of emotional data. Up to now, such acquisitions were
usually done in controlled environments with few subjects, hence
being of little use for the recommender systems community.
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1 INTRODUCTION
This demo addresses elicitation of user preferences. Preference elici-
tation deals with retrieving user feedback about items. The feedback
is usually provided in the form of explicitly entered ratings of some
numerical form (e.g., one to five stars) or signals of implicit prefer-
ences, such as click, preview, purchase etc. Furthermore, feedback
can be acquired as a single judgment or in the form of pairwise com-
parison [4]. These forms of feedback reflect the opinions of users
about items. However, these opinions are not based only on rational
thinking but are often fast, intuitive and emotionally charged, as de-
scribed by the two-systems model [3]. This model describes human
decision making as an aggregation of a fast, emotional (System I)
and a slow, rational, cognitive process. When the preferences are
acquired explicitly, content-based recommender systems [6] exploit
well the rational part, i.e. the relationship between item characteris-
tics and expressed user preferences. Still, the relationship between
the user’s emotional state and the expressed preference and its im-
pact on the performance of recommender systems is a less explored
area. Research on emotions-based recommender systems have been
done on a smaller scale [1, 9] as the acquisition of such data has
been traditionally difficult.

In recent years, the unobtrusive acquisition of emotional user
responses has become more accessible. Algorithms, that take ad-
vantage of multiple modalities, such as facial expressions, voice and
physiological responses, have become robust and accurate [7]. Fur-
thermore, a number of off-the-shelf products have become available,
such as the Affectiva API1.

This demo showcases a tool for researchers in the form of a web
interface, which allows preference elicitation both in the forms of
(i) explicit comparison of item pairs and (ii) unobtrusively acquired
affective responses of users. The added value of extracting facial
features, related to emotions, from the web camera allows to pursue
new research directions: (i) development of unobtrusive acquisition
of user ratings from facial expressions and (ii) new multidimen-
sional models of user preferences.

1https://developer.affectiva.com/
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2 TECHNICAL DESCRIPTION
The demo user interface is available at the URL https://recsys.m
usiclab.si/PairwiseComparisonsStudy/ while a video walkthrough
is available at the URL http://www.inf.unibz.it/~tkalcic/RecSysD
emo2017Walkthrough/. It is written in PHP using the CodeIgniter
framework and using JavaScript on the client side. The information
flow is shown in Fig. 1. The facial expressions are acquired through
the webcam video stream. The stream is sent to the Affectiva API
directly using Javascript. In this way our server is not burdenedwith
proxying the multiple video streams. The Affectiva API returns to
the web browser a JSON file containing the extracted facial features.
The sampling frequency is not constant through time but in practice
it fluctuates around 11 frames per second. The features are then
sent from the web browser to our server and stored in a database.
The database also stores the user-entered pairwise scores and other
user characteristics, acquired through pre- and post-questionnaires,
such as personality and the Music Sophistication Index [5].

The music excerpts are taken from the Moodo dataset [8], which
consists of 200 snippets of songs, each lasting approximately 15
seconds. The songs are not widely known to the general public,
which reduces the popularity bias. The selection of song pairs for
comparison was done randomly, however, we used a weighting
schema to simulate the short-head, long-tail effect.

Eachmusic comparison, which is defined by the tuple (user , sonд1,
sonд2, score ) contains several database entries. The pairwise score
score is on the scale {−2,−1, 0, 1, 2}, where −2(2) means the user
preferred the left-most (right-most) song and 0 means both songs
were equal. Each entry within the same comparison contains the
facial features acquired at a sampling point while the user was
comparing the two items. In the study conducted up to this point,
we had 27 users (10 males, median age 27 years) who completed
the interaction. On average, each user compared 9.4 pairs of songs.
The average comparison lasted 27.9 seconds. The average facial
features sampling frequency was 11.2 times per second. Hence, for
each comparison we had on average 312 database entries with facial
features.

From the Affectiva API we collect a total of 47 features for each
video frame. Examples of concrete features are

• appearance: gender, age, glasses, ethnicity
• low-level facial features: innerBrowRaise, browFurrow,

noseWrinkle, upperLipRaise, lipCornerDepressor, eyeClo-
sure, chinRaise, jawDrop etc.

• emotions: joy, sadness, disgust, contempt, anger, fear, sur-
prise, valence, engagement

The low-level facial features and the emotions are integers on
the scale [0, 100].

Beside the pairwise music preference elicitation part, the users
are asked to fill-in a pre- and post-questionnaires. In the pre-questionnaire,
we inquired about the user demographics, while in the post-questionnaires
we inquired about the user personality (using the TIPI questionnaire[2])
and the Music Sophistication Index (using the MSI [5] question-
naire).
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Figure 1: Demo flow: the user listens to two music snippets
and then provides a pairwise score. During the listening to
the music, a web camera streams the video to an API that
extracts the facial features.

3 IMPLICATIONS FOR RECOMMENDER
SYSTEMS RESEARCH AND FUTUREWORK

The demo presented in this paper is targeted primarily at researchers,
who are interested in advanced preference elicitation techniques.
The data collected with this system allows to pursue new research
directions, such as (i) development of unobtrusive acquisition of
user ratings from facial expressions and (ii) new multidimensional
models of user preferences.

An open issue is privacy. Systems, that extract sensitive infor-
mation, such as emotions, should be carefully designed, but this is
beyond the scope of this demo.
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