
Real-time ray casting of volumetric data
Žiga Lesar

Faculty of Computer and Information Science, University of Ljubljana, Slovenia
Email: ziga.lesar@lgm.fri.uni-lj.si

Abstract—In this paper we present acceleration structures
and techniques for real-time ray casting of large volumetric
data sets, such as those obtained by CT or MRI scans. The
techniques used include adaptive sampling and sparse casting.
To improve rendering quality we use the regula falsi method
and Monte-Carlo ambient occlusion estimation. To enhance the
final rendering we use visual effects - screen-space ambient
occlusion and depth of field. The algorithms have been parallelized
with OpenCL. We compare the results obtained with different
methods - isosurface extraction, maximum intensity projection
and alpha compositing. We tested our methods on medical data
sets, specifically angiograms.

I. INTRODUCTION

Volume rendering is a term for different approaches used
to visualize volumetric data - 3D discretely sampled images
usually obtained by medical imaging or numerical simulation.
A number of different methods are used for the job, includ-
ing splatting [16], texture-based rendering [15], conversion
to triangular meshes (e.g. marching cubes [9]) etc. One of
the oldest and most widely-used is ray casting, introduced in
1982 by Scott Roth [13] and applied to volume rendering in
1988 by Marc Levoy [7]. All of these methods rely on more
or less direct evaluation of the rendering integral, described
in Section III-E. Some of them strive for visual quality of
the rendered image (ray casting), while others aim for speed
and performance (splatting, marching cubes). Although ray
casting is a computationally intensive method, it can be easily
parallelized for execution on the GPU, allowing us to render
high-quality images relatively quickly. With the widespread use
of medical imaging as support in making diagnoses came the
need for fast and quality visualization of acquired data. For this
purpose many acceleration structures have been developed over
the years, most of them exploiting object-space and screen-
space coherence, as well as neglecting irrelevant information.

II. RELATED WORK

One of the methods presented in this paper is isosurface
extraction. Our implementation is based on Hart’s approach
[3], where he used ray casting methods to render implicit sur-
faces. For intersection refinement numerical iterative methods,
such as regula falsi, were used. Sphere tracing [4] was used
to efficiently skip empty spaces. Although fast, it requires
complex preprocessing to compute the distance transform.
This is the main reason why more recent applications use
octrees to encode data and serve as an acceleration structure.
A common approach is to use sparse octrees [6] to reduce
memory consumption. A fast parametric algorithm for octree
traversal is described in [12].

preprocess traverse refine interpolate effects

preprocess traverse accumulate interpolate effects

offline real-time

early ray
termination

Figure 1. A diagram showing how the methods are interconnected to form a
complete rendering framework. The upper half shows the process for isosurface
reconstruction, and the bottom half shows how the case with transparency is
handled. The preprocessing step is done offline, then the data is offloaded
onto the graphics card, where it is rendered in real time. In the traversal step
we traverse the octree with sparse casting and find an intersection, which is
refined with the regula falsi method. The resulting rendering is interpolated
and additional rays are cast where needed. Visual effects are applied at the
end. In the case of transparency, the traversal is repeated using the kd-restart
algorithm.

Often isosurface rendering is insufficient for displaying rel-
evant information. Transparency-based approaches, described
in [11], may be used to map volume values to optical prop-
erties. These properties are then used in optical models to
accurately simulate light transport in transparent materials.
Different methods have been developed to speed up the process,
including early ray termination [5] and sparse casting [8].

III. METHODS

The following sections describe the acceleration structures
and methods used to speed up the rendering process. Figure
1 shows how they are interconnected to form a complete
rendering framework. The methods are suitable for execution
on a graphics card.

A. Sampling

Volumetric data can be thought of as sampling of a contin-
uous signal Φ : R3 → R. The signal has to be band-limited
prior to discretization to avoid aliasing artifacts. Usually we
cannot affect the sampling process, but we can make the best
use of the acquired data by correctly reconstructing the original
signal from the samples.

With a high enough sampling rate - the Nyquist rate - we
are able to reconstruct the original signal exactly by using a
3D analogue of a sinc filter. This is the fundamental process
of Whittaker-Shannon interpolation. However, the interpolation
formula requires taking all the samples into consideration,
since the sinc filter has infinite extent and is non-zero almost
everywhere. This shows to be computationally too expensive.
In practice we use simple approximations of the sinc filter
to achieve good-enough results. Box filter (nearest neighbour
function) and tent filter (trilinear interpolation) are used in
our implementation, as it turns out they are a good trade-
off between speed and resulting image quality. The three978-1-4799-8569-2/15/$31.00 c©2015 IEEE

Authorized licensed use limited to: UNIVERSITY OF LJUBLJANA. Downloaded on September 25,2024 at 11:20:00 UTC from IEEE Xplore. Restrictions apply.

nearest neighbour

sinc filter

linear interpolation

Figure 2. Reconstruction filters, in order of increasing reconstruction accuracy:
nearest neighbour, linear interpolation and the sinc filter. The filters shown are
for the 1D case, but 3D analogues can be obtained with a tensor product.

reconstruction filters are shown in Figure 2. For even smoother
representation of the volumetric structures we preprocess the
volume with a Gaussian kernel to smooth out any unwanted
features in the data.

In the following text the term plain sample is used to denote
sampling with nearest neighbour filtering, as this just means
reading a single value from a location in the volume data array.
In the process of trilinear interpolation sampling we therefore
need 8 plain samples. Because surface normals are often used
for shading, we also need to sample gradients ∇Φ(p). These
are estimated with the central difference formula that takes 6
plain samples into account. Used with trilinear interpolation
and eliminating duplicate plain samples this makes for 32
plain samples, which makes normal sampling a very expensive
process. Gradients could be estimated with a forward difference
formula with fewer plain samples, but it can be shown that this
estimation is inferior in terms of convergence rate.

B. Ray casting

Equipped with volume data and signal reconstruction me-
thods we are able to recover signal values from arbitrary
points in space. However, we have to project those values onto
the projection plane. In our implementation we used the ray
casting method for this purpose. To project a volume onto the
projection plane we need a camera object (P, O, ϕ, α) which
holds a position P and orientation O in space. Field of view
ϕ and aspect ratio α are used to define the region on the
projection plane to be displayed on the screen. We use this
information to cast rays into the scene, sampling the volumetric
data along the way. These samples may be used to find µ-
isosurface intersections - the set of points p ∈ R3, for which
Φ(p) = µ. The value µ is called isosurface value and can be set
at runtime by the user. Isosurface extraction problem is reduced
to a one-dimensional problem of finding zero-crossings when
we use parametrized light rays. Light rays are parametrized in
our implementation as

r(λ) = P + λD̂(i, j). (1)

The vector D̂(i, j) is the unit directional vector of the ray
and can be computed from screen coordinates (i, j). Since it
is unit length, the parameter λ represents the depth and can
be directly written to the depth image after the intersection is
found. The parametrization can be substituted into the signal
representation to obtain

Figure 3. An example of a rendered image with (right) and without (left)
intersection point refinement. Regula falsi with 5 iterations was used.

Ψ(λ)
def.
== (Φ ◦ r)(λ)− µ = 0, (2)

the function used in the intersection refinement step.
While we sample the volume at discrete steps of the pa-

rameter λ, we check whether the sampled value exceeds the
set threshold µ. When this condition is satisfied, we know that
the isosurface intersection point lies between the last two sam-
pling positions and we can stop the ray marching procedure.
However, the intersection point is vaguely defined and can be
further refined using conventional iterative numerical methods
for finding zero-crossings. We have chosen regula falsi, since
its assumption of linearity of the function makes it an ideal
complement to our trilinear interpolation sampling choice. It
is symbolically described in equation (3), where we labeled
the interval containing the intersection point with (ak, bk). The
other (albeit less suitable) choice was Newton’s method, but it
could diverge with imprecise initial estimates. Application of
the method to the isosurface extraction problem is symbolically
described in equation (4). Figure 3 shows the difference in
image quality with and without intersection point refinement.

ck = bk −
Ψ(bk)(bk − ak)

Ψ(bk)−Ψ(ak)
(3)

λk+1 = λk −
(Φ ◦ r)(λk)− µ

(∇Φ ◦ r)(λk) · D̂(i, j)
(4)

After the intersection point is found it can be shaded
using any one of the standard illumination models. We have
implemented the Phong illumination model, as it is easy
to compute and is relatively computationally inexpensive. A
gradient estimate must still be obtained from the intersection
point of every ray to be used in the shading process.

C. Octree

Since ray casting is computationally a very intensive pro-
cess many acceleration structures and algorithms have been
developed over the years. Octrees turned out to be simple and
efficient, but still easy to implement. An octree is a space
subdivision method which recursively subdivides the volume
into 8 smaller parts by 3 subdivision planes. Level k of
the octree with n elements therefore contains n

8k nodes. Our
implementation does not subdivide the volume to the lowest
level, as the levels use exponentially more memory. We decided
to build the octree structure down to level 3 and traverse the

Authorized licensed use limited to: UNIVERSITY OF LJUBLJANA. Downloaded on September 25,2024 at 11:20:00 UTC from IEEE Xplore. Restrictions apply.

rest of the structure linearly. This way the memory footprint
is insignificant compared to that of the volumetric data array.
Tree nodes can optionally contain additional information of the
volume part. In our implementation we store minimum and
maximum values, which are then used during traversal to skip
the parts of the volume which do not contain the isovalue.
Additionally, the octree nodes store the average value of the
volume part to speed up the rendering process while using
the emission-absorption model, described in Section III-E. To
be able to efficiently search and traverse the octree structure
we have implemented a full octree, as opposed to a sparse
octree. This is also a better choice in the case of volumetric data
with high entropy. The volume bounding box used in octree
construction is scaled so that each of the three dimensions is
a power of 2. This makes octree construction much easier.

The octree structure built from level 3 upward takes up

∞∑
k=3

(
1

8

)k
=

1

448
≈ 0.002232 (5)

of the memory used by the volumetric data array. As each node
contains 3 times as much data as a single volume sample, the
ratio is 3 times as large. Assuming that in the worst case the
octree is 8 times bigger due to scaling, this makes for about
5% of the memory used by the volumetric data array. Most of
the time the actual ratio is a lot lower.

To be able to traverse the tree structure we implemented the
algorithm kd-restart [1]. The algorithm finds a point in space
with recursive subdivision based on the point’s coordinates.
When a new point is needed to be located, the process is
repeated starting from the root node, hence the name of the al-
gorithm. Striving for visualization speed, this method presents
a fairly good trade-off between theoretical and computational
complexity.

Since angiography data contains a lot of empty space, octree
structures are a very efficient method to speed up the ray
traversal procedure, both in terms of space and time complexity.

D. Sparse casting

The main bottleneck of the ray casting algorithm is the
number of rays needed to produce the final image. This
number increases linearly with each dimension of the final
image, making high-definition rendering in real time quite
a daunting task. Sparse casting is a method for simple and
effective reduction of the number of required light rays. It is
an exploitation of screen-space coherence, taking into account
the fact that adjacent pixels hold similar colors most of the
time, or the color changes gradually. The method consists of
two phases. In phase 1 the rays are cast for every k-th pixel on
screen and the colors are obtained for those pixels. In phase
2 the colors are interpolated inbetween those pixels. Since
this produces somehow blurry images (a side effect caused by
interpolation of colors in areas where otherwise sharp features
should be preserved), some of the interpolated pixels must be
replaced with actual light rays. Those pixels can be found by
looking at the magnitude of the local color gradient. Where the
magnitude exceeds a certain threshold, the interpolated pixels
are replaced with light rays.

Figure 4. Rendered image with (right) and without (left) sparse casting.
Objects not wider than k pixels may be not be visible when using sparse
casting, since they lie inbetween the adjacent rays (top). Shading is also
affected due to interpolation (bottom).

In theory the method produces a speed-up of O(k2), but the
additional rays in phase 2 and additional processing required
during the process significantly reduce its benefits. Another
downside of this approach is that we may miss fine features
not wider than k pixels when projected onto the screen. This
may present a problem in some specific domains where fine
precision of the rendering is of great importance, but users are
generally not interested in pixel-perfect images.

A simplified method using every second pixel (using k =
2) was implemented for the purposes of our application. A
comparison of sparse casting with full-scale ray casting can be
seen in Figure 4.

E. Emission-absorption model

Apart from isosurface rendering we can also show different
volume structures on the same image. We can achieve that by
introducing an optical model which simulates transparency. We
can think of a transparent volume as a cloud of particles that
absorb and emit light, affecting the light intensity I of the light
ray passing through it. This interaction can be represented in
the form of a differential equation (6) which for every point
in space models absorption κ(λ) and emission g(λ) as two
continuous processes, where λ denotes position along the ray.

dI(λ)

dλ
= g(λ)− κ(λ)I(λ) (6)

The solution to differential equation (6) is the volume rendering
integral, shown in equation (7). The value τ used in the integral
and defined in equation (8) is known as the optical depth and
represents a point’s visibility as viewed from the camera.

I(λ) = I0e
−τ(0,λ) +

∫ λ

0

g(t)e−τ(t,λ)dt (7)

τ(a, b) =

∫ b

a

κ(u)du (8)

For visualization purposes the integral (7) must be discretisized.
Approximation using a Riemann sum for integral evaluation
is a process known as alpha compositing and is described in-
depth in [11]. Its accuracy is directly related to step size, which

Authorized licensed use limited to: UNIVERSITY OF LJUBLJANA. Downloaded on September 25,2024 at 11:20:00 UTC from IEEE Xplore. Restrictions apply.

Figure 5. Comparison of different classification gradients (transfer functions)
applied to the same volume. The transfer function can be used to enhance
different parts of the volume, e.g. vessel walls or the interior of the vessels.

makes this a rather inaccurate method, yet highly efficient
for interactive applications. Image quality issues arising from
inappropriate step size choices can be overcome by using a
better numerical tool, such as Romberg’s method for numer-
ical integration or the Runge-Kutta method for solving the
associated differential equation. However, the Riemann sum is
fast and easy to compute, which makes it a popular choice in
real-time implementations. In our application it is implemented
with front-to-back compositing, which enables us to employ
a technique called early ray termination. Since the samples
underlying the parts of the image of high opacity contribute
little to the visual quality and accuracy of the final rendering,
ray marching can be terminated when a high-enough opacity
has been reached.

The optical properties used in the equations can be obtained
by a transfer function, which maps volume data values to opti-
cal properties, such as the absorption and emission coefficients
κ and g. This process is known as classification and can be
executed efficiently using a precomputed lookup table. Figure
5 shows the resulting image using different transfer functions.

Octrees can be used to help skip empty and homoge-
neous regions of the volume. Homogeneity is estimated in
our application as the difference between the maximum and
the minimum value of the octree node in question. If the
difference is below some user-specified threshold, the node is
treated as homogeneous and is approximated with the average
value stored in the same octree node. However, if the transfer
function changes rapidly between the node’s minimum and
maximum values, the approximation may be far-off.

F. Maximum intensity projection

A special case of the emission-absorption model is maximum
intensity projection (MIP). It is a very fast compositing scheme
where we take the maximum value of the function along
the viewing ray and project it on the screen using a color,
which corresponds to the maximum value. Basically, we are
evaluating the function

I = c(max
λ

(Φ ◦ r)(λ)). (9)

In most cases a simple linear ramp between black and
white is the best choice for the function c. Using interpo-
lation for sampling does not contribute greatly to the final
image quality, so nearest neighbour sampling is enough to
get a good rendering. Optionally we can segment the data -

Figure 6. An example rendering using maximum intensity projection. The
maximum value for each ray is projected onto the screen using a linear ramp
to map intensity to color. The vessels with greater intensities are projected
over the vessels with lesser intensities, despite the latter being closer to the
camera.

in our implementation we used simple thresholding to hide
irrelevant information and low amplitude noise. Compared to
other compositing schemes MIP conveys the least ammount
of depth and surface topology information, but due to its
simplicity and ease of implementation it is still one of the
most popular ways to visualize volumetric data. One may
think shading could possibly enhance the rendering, but since
the projected light intensity is altered during the process, this
essentially defeats the purpose of the method, therefore we are
left with the limited information the method provides us with.
In the case of orthographic projection it is even impossible to
distinguish between left or right and front or back, but this
may be partially overcome by projecting local maxima only.
This modification is known as LMIP and is described in [14].
Nevertheless, MIP may be the perfect method for identifying
the regions of the volume with large magnitude differences
(e.g. vessel walls), especially in automated processing with
computer vision techniques.

G. Visual effects

Visual effects, such as gamma corrention, tone mapping,
brightness and contrast adjustments, often enhance the ren-
dering by making it more visually appealing. More complex
effects, such as screen-space ambient occlusion and depth
of field, which were implemented in our application, may
emphasize different features in the image facilitating depth
perception and spatial comprehention.

Ambient occlusion is a way of approximating global illu-
mination effects of local surface proximity. In object-space
it can be computed by approximating the local accessibility
integral, shown in equation (10), for example with a Monte-
Carlo estimator. In equation (10), N̂ is the surface normal, ω̂
is the solid angle, and Vp,ω is the visibility function, which
equals 1 when the point p is visible from ω, and 0 otherwise.

Ap =
1

π

∫
Ω

Vp,ω(N̂ · ω̂)dω (10)

Nevertheless, it is still a computationally expensive task to es-
timate the integral accurately at every intersection point, hence
a screen-space version has been developed to reduce complex
object-space operations and sampling to simpler queries in
image space. The screen-space ambient occlusion (SSAO)
algorithm has been developed with speed in mind, with its main

Authorized licensed use limited to: UNIVERSITY OF LJUBLJANA. Downloaded on September 25,2024 at 11:20:00 UTC from IEEE Xplore. Restrictions apply.

Figure 7. An example rendering with (right) and without (left) screen-space
ambient occlusion. Parts of the image which are occluded by the structures
in the foreground appear darker. The effect is more noticeable with camera
animation.

Figure 8. An example rendering with (right) and without (left) depth of field.
The structures which are far from the focal distance appear blurred, mimicking
the effect of a camera lens. The effect should redirect viewer’s attention to
focused regions of the rendering.

advantage being independence of scene complexity. It is though
directly dependent on the size of the final rendering. It works
by estimating the accessibility integral (10) by examining the
local neighbourhood of the pixel in question. As the algorithm
requires the depth of the samples, a depth image must be pro-
vided, which is often the case in deferred rendering approaches.
If, according to the depth image, the nearby pixels are closer
to the camera than the pixel currently being processed, the
pixel shoud appear darker as if it’s occluded. To avoid black
spots on overlapping objects that are otherwise far appart a
threshold for the queries should be provided by the user. An
example rendering with the SSAO effect is shown in Figure 7.

Depth of field (DOF) is a technique that further enhances
depth perception and spatial comprehension by simulating the
lens of a camera. A lens can precisely focus only objects at
focal distance from the camera, so other parts of the scene
appear blurred in the final rendering. Since a human eye
naturally seeks differences in the percieved image, blurred out-
of-focus parts of the image should redirect user’s attention
to focused parts, holding relevant information. Focusing may
be additionally emphasized by darkening defocused objects.
Furthermore, the focal distance can be dynamically adjusted
based on the depth image.

Our implementation uses depth information acquired from
the depth image to determine the distace from the focal point.
In phase 1 of the algorithm, the rendered image is blurred. The
resulting image is then used in phase 2 where it is interpolated
with the original (sharp) image with the interpolation factor
being the distance from the focal point. Figure 8 shows an
example of the effect.

Figure 9. Octree traversal loop iteration count. A darker color means more
iterations. Clearly the rays in close proximity of the isosurface require many
more iterations than those passing through it. Rectangular artifacts are visible
in the figure, as a result of octree traversal.

IV. RESULTS

We have implemented the algorithms described in Section
III with Java for the host application and OpenCL for image
synthesis. While we are striving for portability, efficiency is
still a big issue, especially with the code written in OpenCL
which is generally slower than native solutions (e.g. CUDA).

Our implementation is capable of rendering volumes of
dimensions up to 5123 in real time. We achieve speeds of
up to 20 frames per second, depending on the volume and
the transfer function. Using sparse casting together with an
octree and kd-restart traversal we can achieve around 20%
speedup in comparison with uniform ray marching. The octree
is in fact a major contribution to visualization speed, but
traversing the structure takes quite a lot of time and the whole
process might slow down the application when there is a lot of
geometry to be rendered on the screen. The slowdown is most
noticeable when light rays travel close to (but not through)
the surface, as this causes the algorithm to traverse the tree
down to the lowest levels. This phenomenon can be seen
in Figure 9. We are planing on employing a better traversal
algorithm in the future, for example the one found in [12],
since finding the closest intersection quickly is still the worst
bottleneck in our implementation. Intersection point refinement
and shading actually take a lot less time than tree traversal, but
our implementations of those algorithms are still unoptimized.

We also find visual effects quite visually appealing. The
computation takes only a fraction of a second, but still the
results are extremely positive. This encourages us to implement
a wide variety of effects in the future, hopefully further
improving the final rendering in terms of better perception as
well as easier customizability.

To assess the performance of our application and the qual-
ity of the implementations of individual algorithms we have
conducted a performance analysis and evaluation. We have

Authorized licensed use limited to: UNIVERSITY OF LJUBLJANA. Downloaded on September 25,2024 at 11:20:00 UTC from IEEE Xplore. Restrictions apply.

done two separate experiments: (1) an experiment with a static
view, where camera position was fixed for 45 seconds at
a resolution of 1024 × 1024; (2) an experiment with view
animation, where the camera was in a circular trajectory around
the volume for 100 seconds at a resolution of 512 × 512.
We have used volumetric data from an open on-line data
set http://www.volvis.org/. The experiments were
executed on a machine with two Intel Xeon E5-2620 2.0 GHz
processors, 32 GB RAM and an NVIDIA Quadro K5000 4 GB
RAM graphics card, with the Microsoft Windows Server 2008
R2 operating system. Average FPS rates for individual tests in
this setup are presented in Table I.

Table I
PERFORMANCE ANALYSIS

dof sparse ssao recon
Static
with 15.70 14.48 15.64 16.75
without 16.15 16.11 16.20 16.04
Dynamic
with 14.25 16.84 14.33 15.93
without 14.63 14.23 15.02 14.74

It is evident that adding visual effects screen-space ambient
occlusion (ssao) and depth of field (dof) does not take much
additional computational time while improving the final render-
ing of the image significantly. Sparse casting (sparse) seems to
be beneficial in most cases, but under certain conditions it may
perform poorly (e.g. in the static test). Another great improve-
ment is using a simpler reconstruction filter in regions where
accurate reconstruction is not a concern (recon). The effect of
switching between linear interpolation and nearest neighbour
sampling seems to have a positive impact on performance.

V. CONCLUSION AND FUTURE WORK

In this work we presented the possibilities for accelerating
the ray casting procedure. GPU execution itself is a major
improvement over CPU implementations, taking the parallel
nature of ray casting into account. This comes at a price though,
as GPUs are not designed for executing complex branching
and control flow statements, meaning we have to avoid those
as much as possible. Despite these limitations we can still
make GPU ray casting efficient by exploiting coherence and
neglecting irrelevant information, for example by early ray
termination, octrees and sparse casting. While this slightly
affects rendering quality it effectively reduces the amount of
required samples and operations needed to produce the image.

We are in fact only scratching the surface of what is possible.
Future improvements in the form of advanced hierarchical
structures (e.g. hashed octrees, [10]) could further minimize
the number of iterations in the ray marching loop. We could
also use the same hierarchy for adaptive sampling as described
in [2]. Screen-space coherence could further be improved by
beam optimization [6]. Employing a C-buffer [17] can enable
us to benefit from temporal coherence to increase performance
of ray casting with smooth camera animations. Better numer-
ical methods for integral evaluation and differential equation
solving would directly improve image quality in exchange for
rendering speed.

Ray casting of volumetric data in real-time therefore remains
a difficult problem, requiring complex methods and algorithms
to produce solutions capable of quality interactive visualization.
With ever-improving graphics hardware we are confident that
more advanced illumination techniques will soon be suitable
for real-time applications even on low-end hardware. It is in
fact already possible to achieve impressive results with top-
edge hardware.

ACKNOWLEDGMENT

The angiography data sets are courtesy of Özlem Gürvit,
Institute for Neuroradiology, Frankfurt, Germany, and are avail-
able for download at http://www.volvis.org/. We also
gratefully acknowledge the support of NVIDIA Corporation
with the donation of the Quadro K5000 graphics card for this
research.

REFERENCES

[1] Tim Foley and Jeremy Sugerman. KD-tree acceleration struc-
tures for a GPU raytracer. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, vol-
ume 45, pages 15–22, 2005.

[2] Enrico Gobbetti, Fabio Marton, and José Antonio Iglesias Guitián.
A single-pass GPU ray casting framework for interactive out-of-core
rendering of massive volumetric datasets. The Visual Computer, 24(7-
9):797–806, 2008.

[3] John C. Hart. Ray tracing implicit surfaces. In SIGGRAPH ’93
Course Notes: Design, Visualization and Animation of Implicit Surfaces,
volume 1, 1993.

[4] John C. Hart. Sphere tracing: a geometric method for the antialiased
ray tracing of implicit surfaces. The Visual Computer, 12(10):527–545,
1996.

[5] Jens Krüger and Rüdriger Westermann. Acceleration techniques for
GPU-based volume rendering. In Proceedings of the 14th IEEE Visual-
ization 2003, pages 287–292, 2003.

[6] Samuli Laine and Tero Karras. Efficient sparse voxel octrees. IEEE
Transactions on Visualization and Computer Graphics, 17(8):1048–1059,
2011.

[7] Marc Levoy. Display of surfaces from volume data. IEEE Computer
Graphics and Applications, 8(3):22–37, 1988.

[8] Marc Levoy. Volume rendering by adaptive refinement. The Visual
Computer, 6(1):2–7, 1990.

[9] William E. Lorensen and Harvey E. Cline. Marching cubes: A high res-
olution 3D surface construction algorithm. ACM SIGGRAPH Computer
Graphics, 21(4):163–169, 1987.

[10] Daniel Madeira, Esteban Clua, and Thomas Lewiner. GPU octrees and
optimized search. In Proceedings of the 8th Brazilian Symposium on
Games and Digital Entertainment, pages 73–76, 2009.

[11] Nelson Max. Optical models for direct volume rendering. IEEE
Transactions on Visualization and Computer Graphics, 1(2):99–108, June
1995.

[12] Jorge Revelles, Carlos Ureña, and Miguel Lastra. An efficient parametric
algorithm for octree traversal. In Journal of WSCG, volume 8, pages
212–219, 2000.

[13] Scott D. Roth. Ray casting for modeling solids. Computer Graphics and
Image Processing, 18(2):109–144, February 1982.

[14] Yoshinobu Sato, Nobuyuki Shiraga, Shin Nakajima, Shinichi Tamura,
and Ron Kikinis. Local maximum intensity projection (LMIP): A
new rendering method for vascular visualization. Journal of Computer
Assisted Tomography, 22(6):912–917, 1998.

[15] Allen Van Gelder and Kwansik Kim. Direct volume rendering with
shading via three-dimensional textures. In Proceedings of the 1996
symposium on Volume visualization, pages 23–30. ACM, 1996.

[16] Lee Alan Westover. Splatting: a parallel, feed-forward volume rendering
algorithm. Doktorska disertacija, University of North Carolina, 1991.

[17] Ilmi Yoon, Joe Demers, Taeyong Kim, and Ulrich Neumann. Accelerating
volume visualization by exploiting temporal coherence. In Proceedings
of IEEE Visualization, pages 21–24, 1997.

Authorized licensed use limited to: UNIVERSITY OF LJUBLJANA. Downloaded on September 25,2024 at 11:20:00 UTC from IEEE Xplore. Restrictions apply.

