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Abstract

The paper presents a new compositional hierarchical model for robust music transcription.

Its main features are unsupervised learning of a hierarchical representation of input data,

transparency, which enables insights into the learned representation, as well as robustness

and speed which make it suitable for real-world and real-time use. The model consists of

multiple layers, each composed of a number of parts. The hierarchical nature of the model

corresponds well to hierarchical structures in music. The parts in lower layers correspond to

low-level concepts (e.g. tone partials), while the parts in higher layers combine lower-level

representations into more complex concepts (tones, chords). The layers are learned in an

unsupervised manner from music signals. Parts in each layer are compositions of parts

from previous layers based on statistical co-occurrences as the driving force of the learning

process. In the paper, we present the model’s structure and compare it to other hierarchical

approaches in the field of music information retrieval. We evaluate the model’s performance

for the multiple fundamental frequency estimation. Finally, we elaborate on extensions of

the model towards other music information retrieval tasks.

Introduction

Music information retrieval (MIR) deals with extraction of semantic descriptions from music

in its various forms. As in many related areas, a significant increase in algorithm accuracy and

efficiency has been achieved in recent years for tasks such as melody estimation [1, 2], chord

estimation [3–5], beat tracking [6, 7], mood [8] and genre estimation [9, 10], and pattern anal-

ysis [11–13].

Recently, parallel to other areas, deep learning has been successfully introduced to the

MIR [14, 15]. A deep learning algorithm constructs multiple levels of data abstraction (a

hierarchy of features) in order to model high-level representations present in the observed

data [16]. Several deep learning models have been applied to different MIR tasks, such as

deep neural networks, convolutional neural networks (CNNs) and deep belief networks

(DBNs). One of the first uses of deep architectures for analyzing audio signals was presented

by Lee [17], who applied convolutional DBNs for speaker identification. Later, Hamel and
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Eck [18], evaluated DBNs for genre recognition using a five-layer DBN with three hidden

layers for feature extraction. Since then, deep architectures achieved promising results on a

variety of tasks: Schmidt and Kim [19] used a five-layer DBN for extraction of emotion-

based acoustic features, Pikrakis [20] showed that DBNs can be used for rhythm genre dis-

crimination, conditional DBNs were used by Battenberg and Wessel [21] for drum pattern

analysis, while Schmidt [22] showed that DBNs can be trained to understand rhythm and

melody. Other architectures have also been used, for example recurrent neural networks for

audio chord estimation [5, 23] and convolutional neural networks for key detection [24] and

onset detection [25, 26].

The goal of music transcription is to estimate a music score (notes played) from an audio

signal. Its essential part is the multiple fundamental frequency estimation, where the goal is to

estimate all the fundamental frequencies (corresponding to pitches) in individual time-frames

of a music signal. As an important MIR goal, transcription has been researched since the early

1970s and a variety of approaches have been developed [27–30]. Some approaches use note

hypothesis evaluation based on the signal spectrum [31, 32], while others [33–35] model the

audio signal as a composition of sources. Several approaches are tuned to the transcription of

specific instruments [36–39] or focus on transcribing instrument-specific symbolic data [40].

Several neural-network-based deep approaches were also presented for music transcription

[41–44]. Bock and Schedl [41] used a recurrent neural network model for a piano transcrip-

tion, while Nam et al. [42] combined deep belief networks with support vector machines and a

hidden Markov model for the same task. Rigaud and Radenen [44] proposed a combination of

two deep neural networks for transcription of singing voice.

However, music transcription approaches are rarely evaluated on the real-world recordings,

which may not have been recorded in ideal studio environments or with professional perform-

ers. This is in large part due to the lack of diverse annotated datasets currently available—most

datasets consist mainly of the synthesized recordings, which are easily obtainable, and contain

only a small number of annotated real recordings. Consequently, the robustness of the algo-

rithms may suffer, as they may overfit the small datasets and the instrument timbres, which

leads to poor performance on diverse materials and in the presence of noise.

This paper introduces a novel compositional hierarchical model for the multiple fundamen-

tal frequency estimation (MFFE). The proposed model can be regarded as a novel deep archi-

tecture with unsupervised learning and a transparent structure, which allows for

representation and interpretation of the signal’s content on different levels of complexity. The

model’s main feature is the relativity of learned concepts, which enables construction of com-

pact and robust models. The main contribution of this paper is a model which can perform

robustly on datasets that vary in audio and source quality, with real-time computation and

affordable spatial requirements. This makes the model useful for a wide range of applications

and with music recordings of varying quality.

The presented model is an extension of the model first introduced in [45] for three different

MIR tasks: chord estimation, mood estimation and MFFE. Its structure and learning algorithm

are improved, resulting in higher MFFE accuracy. Additionally, the experimental part is signif-

icantly extended in this paper using four datasets for a cross-dataset evaluation. We also

adapted the model for melodic pattern extraction in the symbolic domain [46], where we eval-

uated it on the JKU PDD dataset. For each musical piece, the model was built independently

and inferred with the same piece. Patterns were represented by activations of parts on the top

layers.

The paper is structured as follows: the proposed model is described in the first Section. The

evaluation of the model is provided in the second Section, followed by discussion. The last Sec-

tion concludes the paper and gives ideas for future work.

Robust Real-Time Music Transcription with a Compositional Hierarchical Model
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Compositional hierarchical model for MIR

The main principle of compositional hierarchical models lies in the hierarchical nature of

our perception of the world. Just like our visual system can discern complex forms by com-

bining basic elements like edges, lines, contrasts and colors into increasingly more complex

percepts, so can our auditory system group frequency components into auditory events,

multiple tonal events into harmonies, their time evolution into melodies and harmonic

progressions.

Hierarchical music representations are intuitive when considering the spectral and tempo-

ral structures in music. The generative theory of tonal music [47] may well be the first exam-

ples of hierarchical music modeling in musicology. Although the model itself mostly relies on

expert rules, the hierarchical structuring is a good fit, since it is based on patterns of human

perception and cognitive processes. Other attempts [48, 49] have been made to empirically

evaluate such hierarchical representations produced by human cognitive processes. The

approaches based on temporal hierarchical structures [50] have been presented, taking human

short-term memory into consideration, while defining a rule-based model for auditory pro-

cessing. Hierarchical models also abound in analysis of music perception from the point of

view of computational biology and neuroscience [51–54].

We propose a compositional hierarchical model designed specifically for music signal pro-

cessing. The model can learn a hierarchical representation of audio signals in an unsupervised

manner, starting from signal components on the lowest layer, up to individual music events

on the highest layers.

The structure of our model is inspired by the research in the field of computer vision, spe-

cifically the learned Hierarchy of Parts (lHoP) model presented by Leonardis and Fidler [55,

56]. Their model represents objects in images in a hierarchical manner, structured in layers,

from simple to complex image parts. The model is learned from the statistics of natural images

and can be employed as a robust statistical engine for object categorization and other com-

puter vision tasks.

We show that a similar approach can also be used for music representation and analysis.

Our model is built on the assumption that a complex signal can be decomposed into a hierar-

chy of building blocks—parts. The parts exist at various levels of granularity and represent sets

of entities describing the signal. According to their complexity, parts can be structured across

layers from the less to the more complex. The parts on higher layers are expressed as composi-

tions of parts on lower layers, analogous to the fact that a chord is composed of several pitches,

and each pitch of several harmonic partials. A part can therefore describe individual frequen-

cies in a signal, their combinations, as well as pitches, chords and temporal patterns, such as

chord progressions. The entire structure is transparent, so that the role of each part can be

observed and interpreted.

The presented model differs from the aforementioned lHoP model in its concept. While it

shares the inspiration for its hierarchical composition of structures and statistical learning, the

CHM was developed from scratch with focus on MIR tasks. The input to the CHM is a spectral

audio representation, which significantly influences its structure. Consequently, the mecha-

nisms for activations, part compositions and layers were redefined to meet the specifics of

such representation. Inhibition and hallucination mechanisms, also inspired by the lHoP

model, were newly defined according to the new model structure. Additionally, an automatic

gain control mechanism that incorporates time dimension into CHM processing was newly

introduced specifically for this model.

Robust Real-Time Music Transcription with a Compositional Hierarchical Model
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Model structure

The compositional hierarchical model consists of the input layer L0 and several compositional

layers fL1; . . . ;LNg. Each compositional layer Ln contains a set of parts fPn
1
; . . . ; PnMg, where a

part is a composition of parts from Ln� 1 and may itself be part of any number of compositions

on Lnþ1. Thus, the compositional model forms a hierarchy of parts, as may be observed in

Fig 1, where connections between the parts represent the structure of compositions.

Compositional layers. Layers fL1; . . . ;LNg contain parts which are compositions of

parts from lower layers. Formally, we define the composition Pni as:

Pni ¼ fP
n� 1
k0
; fPn� 1

kj
; ðmj; sjÞg

K� 1

j¼1
g: ð1Þ

Pni is a composition of K parts from layer Ln� 1—subparts. The composition is governed by

the parameters μ1, . . ., K − 1 and σ1, . . ., K − 1 which model relations between subparts. These rela-

tions are relative, meaning that the compositions are defined by the relative distances (offsets)
between the subpart Pn� 1

k0
and the subparts Pn� 1

k1
; . . . ; Pn� 1

kK� 1
. The offsets are encoded by parame-

ters μ1, . . ., K − 1 and σ1, . . ., K − 1 and always defined relative to Pn� 1
k0

which we denote as the com-

position’s central part. For example, P2
2

in Fig 1 is defined as:

P2
2
¼ fP1

1
; fP1

3
; ð1200; 25Þgg; ð2Þ

where μ and σ are given in cents. It represents a composition of P1
1

with P1
3

spaced approxi-

mately 1200 cents (one octave) apart, where σ governs the allowed deviation from this value.

Since all relationships in the model are relatively encoded, rather than encoding specific

instances of a music concept (e.g. the tone A5), our model learns generalized concepts (e.g. a

tone is a set of frequency components at some relative positions). The benefits of such rela-

tive encoding are discussed in the Relativity and shareability of parts Section. All composi-

tions and their parameters are learnt in an unsupervised manner, as explained in the

Learning Section.

The mapping from relatively defined to absolutely positioned concepts (e.g. a generalized

tone concept to the tone A5) is performed during an inference on an input audio signal, by cal-

culating part activations upwards through all the layers (see Inference Section).

A part activation indicates that the concept it represents was found in the input signal. An

activation has two components: a location, which maps the part onto the frequency axis, thus

making it absolute, and amagnitude, representing its strength. A part can activate only if all of

its subparts are activated with magnitude greater than zero (this constraint can be relaxed as

described in the Inference Section). Due to the relative encoding of the concepts in the model,

a part can simultaneously activate at multiple locations, indicating that the concept it repre-

sents was found at several locations in the input signal.

The activation location of part Pni at time t is defined as:

AðtÞL ðPni Þ ¼ A
ðtÞ
L ðPn� 1

k0
Þ: ð3Þ

Thus, central parts of compositions propagate their locations upwards through the hierar-

chy. With respect to the example in Eq 2, when P1
1

is activated at 440Hz, P1
3

at 880Hz, and P2
2

is

activated at 440Hz. Such propagation of the locations through the central parts represents a

very useful indexing mechanism, which enables an efficient top-down analysis of part activa-

tions from the upper to the lower layers, adding to the transparency of the model.

Robust Real-Time Music Transcription with a Compositional Hierarchical Model
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Fig 1. The compositional hierarchical model. The input layer corresponds to the signal components in the

time-frequency representation. The parts on higher layers are compositions of the lower-layer parts (depicted

as connections between parts, parameter μ is given in cents). A part may be contained in several

compositions, e.g. P1
1

is a part of compositions P2
1
, P2

2
and P2

m. Active parts have activation locations displayed

underneath, a part can have several activations on different locations. The entire structure is transparent, thus

we can discern that the activation of P2
2

at 294Hz represents a tone (harmonic series) starting at 294 Hz by

observing the subtree leading from the activation to L0.

doi:10.1371/journal.pone.0169411.g001
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The activation magnitude is defined as a weighted sum of subpart magnitudes:

wj ¼
1 : j ¼ 0

N ðAðtÞL ðPn� 1
k0
Þ � AðtÞL ðPn� 1

kj
Þ; mj; sjÞ : j > 0

8
><

>:

AðtÞM ðPni Þ ¼ tanh 1
K

PK� 1

j¼0
wjA

ðtÞ
M ðPn� 1

kj
Þ

� �

; ð4Þ

where the weights wi are defined by the match between the locations of the subpart activations

and the composition parameters μ and σ.
Input layer. The input layer L0 models a time-frequency representation of the input sig-

nal X. It consists of the single atomic part P0
1
, which is activated at locations of all the frequency

components in the signal at a given time-frame t. Thus, for any frequency bin k, P0
1

is activated

as:

AðtÞL ðP0
1
Þ ¼ f ðkÞ

AðtÞM ðP0
1
Þ ¼ jXtðkÞj;

ð5Þ

where f(k) represents the frequency of the frequency bin k and |Xt(k)| its magnitude.

Relativity and shareability of parts

The proposed model has two important features that set it apart from similar architectures.

The relativity of parts enables a single part to represent an abstract high-level concept

regardless of its location in the input signal. Relative perception naturally occurs in human

learning process. It is an important part of the abstraction of the object of interest, and enables

the formation of a complete percept, regardless of its environment. It minimizes the amount

of memory needed to store the learned concepts and enables their robust identification in pre-

viously unobserved sensory inputs, such as within noisy audio signals and in the presence of

non-musical events.

Relativity is inherent in our model and can be observed in the definitions of part composi-

tion and activation (Eqs 1 and 4). Although the parts are relative and only represent abstract

concepts with no direct absolute representation (e.g. the model cannot encode the pitch G5

explicitly, but only the concept of pitch), the part’s activation at a given location indicates

where and when a given concept appears in the signal. Since this can occur at several locations,

a part can have multiple activations at different locations. This is also shown in Fig 1, where P1
1
,

P1
3

and P2
2

have two activations each, meaning that the concepts they represent are present at

several locations in the signal.

The relative nature of parts that enables the representation of concepts regardless of their

location also enables efficient shareability of the parts. A single part on the layer Ln� 1 may be a

part of several compositions on the layer Ln. Consequently, any two or more Ln� 1 parts may

form a number of different Ln compositions at different offsets. Thus, they may be combined

into several more complex abstractions, themselves relative.

The consequence of relativity and shareability is that the model can very efficiently encode

complex concepts. As an example: a part representing the concept of pitch may be shared by

several compositions on a higher level that encode different intervals. This encoding is general,

compact and efficient if we consider the alternative of encoding all the intervals in an absolute

manner. This is also evident in the evaluation of the proposed model (see Evaluation Section),

where a learned hierarchy with a small number of compositions is shown to be robust and to

Robust Real-Time Music Transcription with a Compositional Hierarchical Model
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generalize well in modeling musical events in audio signals, which differ from the ones used

for training in quality, the amount of noise and the number and the type of sources present in

the signal.

Learning

The model is constructed layer-by-layer with unsupervised learning on a set of input signals,

starting with L1. We view the learning as an optimization problem, where we aim to find a

minimal set of compositions for the learned layer, which will explain the maximal amount of

information present in the input data. The learning process is driven by the statistics of part

activations which capture regularities in the input data.

To formalize the problem, we first define the coverage of a part’s activation at the time t as a

set of L0 activations (spectral components) which have caused the activation. This set can be

obtained efficiently by observing the tree formed by the activated subparts through indexing

encoded in the locations of their central parts down to the layer L0 as:

AðtÞC ðPni Þ ¼ [
K� 1

j¼0
AðtÞC ðPn� 1

kj
Þ

AðtÞC ðP0
1
Þ ¼ fk : f ðkÞ 2 AðtÞL ðP0

1
Þg:

ð6Þ

The coverage of the entire layer Ln is the set of spectral components in the input data,

which all the parts in the layer cover:

AðtÞC ðLnÞ ¼ [p2Ln
AðtÞC ðpÞ ð7Þ

The goal of learning a new layer Ln is to minimize the amount of uncovered information in

the input data and, on the other hand, to limit the number of parts added to the layer, which

can be expressed as:

minð
X

t

X

k=2AðtÞC ðLnÞ

jXtðkÞj
2
þ ljLnjÞ; ð8Þ

where λ is a regularization factor which balances between the number of parts and the ade-

quacy of the coverage.

The problem of finding an optimal coverage is a special case of the well-known set cover

problem, which is NP-complete. We therefore approximate the solution by using a greedy

algorithm, which incrementally adds compositions to the new layer. With each iteration the

algorithm chooses a composition that covers the largest amount of uncovered data. The entire

learning algorithm is composed of two steps: finding new candidate compositions and adding

compositions to a new layer.

Finding candidate compositions. When learning the layer Ln, we first need to form a set

of new compositions, which will be considered for inclusion in the new layer. We perform

inference on the training set up to the layer Ln� 1, and then observe the co-occurrences of Ln� 1

part activations over the entire training set. The co-occurrences provide information on the

parts, which frequently activate simultaneously and are thus believed to form a common con-

cept. We calculate the histograms of co-occurring activations according to distances between

activation locations. New compositions are formed from parts where the number of co-occur-

rences exceeds a learning threshold τL. The composition parameters μ and σ are estimated

from the corresponding histogram (Fig 2) and each new composition is added to the set of

candidate compositions C.

Robust Real-Time Music Transcription with a Compositional Hierarchical Model
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Selecting compositions. Due to the NP-completeness of the set cover problem, we use a

greedy approach to select a subset of compositions from the set C, which leaves a minimal

amount of information in the training set uncovered (according to Eq 8). In each iteration, a

composition from C, which contributes the most to the coverage of the training set, is selected

and added to the new layer. This ensures that only compositions which provide enough new

information with regard to the currently selected set will be added. The selection is stopped

when either: a sufficient percentage of information in the learning set is covered (according to

the threshold τP), or no part from the candidate set adds enough to the coverage of informa-

tion (according to τC). The algorithm in Fig 3 outlines the described approach.

The learning proceeds layer-by-layer, starting at L1, until the complexity of the layer parts

achieves the desired complexity of modeled musical events, depending on the underlying

problem. The chosen values of thresholds and their impact on training are described in the

Evaluation Section.

Inference

Inference is the process of calculating part activations on an input signal according to Eqs 3

and 4. Inference is calculated bottom-up and layer-by-layer, whereby the time-frequency

representation of the input signal serves as the input of the layer L0. The observed locations

and magnitudes of activations yield insight into the analyzed signal through the concepts that

the activated parts represent and can be used as features for further processing.

In this Section, we describe three additional mechanisms that can be used during an infer-

ence to increase the predictive power and robustness of the model: hallucination, inhibition
and automatic gain control.

Hallucination. When calculating activations, the default model behavior is very conserva-

tive—a part is activated only if all of its subparts are activated (Model structure Section). Hallu-
cination relaxes this condition and enables the model to produce activations even in the case of

Fig 2. Co-occurrence histogram for an L2 part. The normalized co-occurrence histogram represents the distribution of distances (offsets)

of L2 subparts that activate simultaneously. The distances are shown relative to a chosen central L2 part.

doi:10.1371/journal.pone.0169411.g002
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Fig 3. Greedy algorithm for the selection of compositions from the candidate set C. Compositions that

add the most to the coverage of information in the learning set are prioritized.

doi:10.1371/journal.pone.0169411.g003
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incomplete (missing, masked or damaged) input. The model generates activations of parts,

which most fittingly cover the information, present in the input signal, where fragments,

which are not present, are “hallucinated”. The missing information is thus extrapolated from

the knowledge acquired during learning, encoded into the model structure.

Hallucination changes the conditions under which a part may be activated. It is governed

by the parameter τH, which can be defined per layer. By hallucination, the part Pni is activated

when the percentage of positive spectral components it covers exceeds the τH:

jfk : k 2 AðtÞC ðPni Þ ^ jXtðkÞj > 0gj

jAðtÞC ðPni Þj
� tH: ð9Þ

If we set τH to 1, we obtain the default behavior (all of the covered spectral components

must be present in the signal for parts to activate), while lowering of the parameter value leads

to an increased number of activations across all layers.

By allowing activations in the presence of incomplete input, hallucination not only enables

the model to fill-in the missing information, but also to yield the alternative explanations of

the input signal. Namely, different parts of the model can explain the same fragments of infor-

mation in the input. Hallucination boosts these alternative representations and enables the

model to produce multiple explanations of the same input.

Inhibition. Inhibition performs the hypothesis refinement by reducing the number of

part activations on individual layers. It provides a balancing factor in the model by reducing

redundant activations, similar to lateral inhibition in the human auditory system [57].

Although the learning algorithm penalises parts redundantly covering the signal, some redun-

dant parts are always present. During inference, each layer may therefore produce multiple

redundant activations covering the same information in the input signal (hallucination also

adds to the number of such activations).

The activation of the part Pni is inhibited when different parts on the same layer cover the

same spectral components in the input signal, but with a higher activation magnitude:

9fPnj ::P
n
kg : ^

jAðtÞC ðPni Þ n [fA
ðtÞ
C ðPnj Þ::A

ðtÞ
C ðPnkÞgj

jAðtÞC ðPni Þj
< tI

8AðtÞM ðPnj::kÞ > A
ðtÞ
M ðPni Þ

8
>>><

>>>:

; ð10Þ

where τI controls the amount of inhibition. Such control is needed, as complete inhibition of

redundant parts’ activations is undesirable, due to the robustness the activations provide in a

form of competing hypotheses about the information in the input signal. For example, a value

of 0.5 will cause an activation to be inhibited if half of its coverage is already covered by stron-

ger activations of other parts.

Alongside the hypothesis refinement, the removal of redundant activations also reduces

noise in the input signal, which is usually manifested in a number of low-magnitude activa-

tions of parts on various layers. In combination with hallucination, inhibition provides an effi-

cient way to control the explanatory power and robustness of the proposed model.

Automatic gain control. The model presented so far is time-independent. It operates on

a time-frame-by-time-frame basis, where each time-frame in the time-frequency representa-

tion is processed independently from others. The automatic gain control mechanism (AGC)

was introduced in the inference process in order to model short-time dependencies between

frames. It operates on principles similar to automatic gain control contrast mechanism in

human [58] and animal [59] perceptual systems. The mechanism allows linking of part activa-

tions through time by introducing time dependencies between activations.

Robust Real-Time Music Transcription with a Compositional Hierarchical Model
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The operation of the AGC is defined with a four-state finite state machine, as shown in Fig

4. AGC changes the activation of a part in the following manner: when the part is activated at a

new location, and its activation persists, activation magnitude is initially boosted to accentuate

the onset and later suppressed towards a stable value (see Fig 5).

The four AGC states represent: (A) normal part behavior, (B) onset, (C) sustain and (D)

decay state. Transitions between the states are conditioned on the density of part activations θ
within the time windowW, which for the part Pni at the time t is defined as:

y ¼
1

W
k½Aðt� Wþ1Þ

M ðPni Þ; . . . ;AðtÞM ðPni Þ�k0
: ð11Þ

α1 and α2 are thresholds that control transitions between the states. The magnitude of a part

Fig 4. A finite state machine implementing the AGC mechanism. State A represents the normal behavior of a part, state B the boosting

(onset), state C the sustain and state D the decay of the activation magnitude.

doi:10.1371/journal.pone.0169411.g004

Fig 5. An abstract representation of AGC influence on part activations. Without AGC, activation magnitudes may notably fluctuate,

especially towards the end of an event. AGC boosts the onset of an event and later keeps the activation magnitude on a fixed level until the

offset.

doi:10.1371/journal.pone.0169411.g005
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activation for the individual states is calculated as:

AðtÞM ðPni Þ ¼

AðtÞM ðPni Þ : A;D
Pt

f¼t� Wþ1
Aðf ÞM ðPni Þ : B

tS : C

8
>>><

>>>:

; ð12Þ

where τS represents a constant activation magnitude in the sustain state.

The mechanism operates on all layers; it has a short-term effect on lower layers and longer-

term effect on higher layers (the window sizeW increases for each consecutive layer) in line

with the complexity of concepts represented on different layers. The mechanism’s effect on the

activation magnitude is shown in Fig 5. AGC stabilizes activations, boosts event onsets and

produces an overall smoother model output with less fluctuation.

Evaluation

Our proposed model is applicable to different MIR tasks in the audio domain, as presented in

[45], as well as in the symbolic domain [46]. In this section, we demonstrate its usefulness for

the multiple fundamental frequency estimation (MFFE), where the goal is to estimate which

fundamental frequencies are present in the signal at individual time-frames.

Choice of parameters

Our model has several parameters, which influence learning and inference. We first evaluated

the sensitivity of the proposed model to different values of its two most significant parameters:

τH and τI. Results in Fig 6 show that the model performance for MFFE is mostly stable, apart

from extreme values. If τH that controls hallucination is set to a low value, the amount of acti-

vations increases drastically, as parts are allowed to hallucinate almost freely and vice-versa.

High values produce few activations, so in both cases performance suffers. Similarly, a low

value of τI (inhibition) results in a large number of part activations and subsequently worse

performance.

Other parameters also have well defined roles and effects. The model is invariant to changes

of τP above approximately 0.75 due to limitations imposed by τC. High values of the latter

result in small part candidate sets and insufficient coverage of the signal. AGC parameters α1

and α2 influence the stability of activations over time and only affect the performance if set to

extreme values.

Because the model is not very sensitive to values of its parameters, we did not tune them

specifically for each experiment, but chose to set them to common-sense values and keep

them constant for all experiments. The input layer L0 was based on a constant-Q transform

with 345 frequency bins between 55 and 8000 Hz (48 per octave), a step size of 10 ms and a

maximal window size of 100 ms. Training and the inference parameters τH, τI, τP and τC
were set to values 0.7, 0.5, 0.9 and 0.005 respectively and AGC parameters to α1 = 0.2 and

α2 = 0.5.

Experiment

To evaluate the model for the multiple fundamental frequency estimation, we trained three

layers of compositions on top of L0, as described in the previous Section. A four-layer struc-

ture was sufficient for the model to learn a robust representation of pitch, as shown in our

results.
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Training is performed in an unsupervised manner on a training dataset. To assess how dif-

ferent training datasets influence the structure of the model, we trained the model on several

large and small datasets: three small datasets consisting of individual isolated instrument

sounds (piano, flute and guitar), two medium-sized datasets of popular music (the Beatles and

Queen albums) and a large dataset of polyphonic piano music. A comparison of the learned

structures showed that the size of the learned models did not vary significantly. All models

contained a small number of compositions on all layers (in total between 50–60), with very

similar structures. The average Jaccard index per layer was 0.586 and 0.381 for L1 and L2

respectively. It was higher for models trained only on individual instrument samples (0.764

and 0.56) or only polyphonic music (0.778 and 0.522). Only identical parts were counted when

calculating the index, although other parts were also similar (e.g. compositions that have three

out of four subparts and offsets in common). Such small size and similarity of the learned

models is the consequence of two features of the proposed model: relativity and shareability,

which enable learning of generalized concepts, such as pitch, encoded in small models, which

can be trained on small datasets.

We therefore decided to perform all our experiments on a model trained on individual

Bösendorfer model 225 (From the EastWest Ultimate Piano Collection) piano notes (these

were not included in the testing datasets), which makes training fast, but still yields good

results. The learned model contained only 23, 12 and 16 parts on layers 1, 2 and 3 respectively.

The amount of parts on L3 layer did not exceed those on L1 and L2, as could be expected in

compositional models, because regularization during the learning process balances the cover-

age and the amount of generated parts per layer.

To use the model for MFFE, we exploited its transparency, which enabled us to interpret

the activations of parts on the layer L3 and directly map them onto the frequency axis, thus

Fig 6. Piano transcription performance on the AkPnBcht folder from the MAPS dataset with different τH and τI values. The x axis

represents parameter values, the y axis the F1 score.

doi:10.1371/journal.pone.0169411.g006
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extracting a set of fundamental frequencies at each time-frame. No additional supervised

machine learning models were therefore used for estimation of fundamental frequencies.

To assess the robustness of the learned pitch concepts, we tested the model for MFFE on

four distinct datasets: MAPS M [60], containing piano-synthesized MIDI files, MAPS D, con-

taining recordings of the Disklavier [60], Su & Yang dataset [61], containing mixtures of piano

and string instruments, and a dataset of folk songs sung by choirs of 2–4 singers (available at

osf.io/f7h3r).

For all datasets, we compared our results to three other methods: DNMF decomposition of

the time-frequency representation [38], where DNMF was trained on 70% of the dataset and

tested on the remaining 30%, the Klapuri’s multiple F0 estimation method [29] and two

approaches presented by Benetos and Weyde [27, 62]. For the Klapuri’s method, we used 30%

of the annotated dataset to fine-tune the salience threshold parameter.

Results are given in Table 1. They show that the proposed model learns a robust representa-

tion of pitch and has good generalisation power, as it yields consistent results on different data-

sets. While other approaches, such as DNMF or Benetos’, achieve better scores on some

datasets, they overfit the timbres they were trained on (e.g. DNMF was trained on the majority

of the MAPS dataset), so their performances in cases where timbre is not so well defined (e.g.

the folk song dataset containing choir singing) are poor.

Although trained only on piano notes, the proposed model unsupervisedly learned the con-

cept of pitch in a robust manner, without (over)fitting to specific templates of a single instru-

ment. It is the most accurate of all compared approaches on the folk song dataset, where it

demonstrates its robustness. A singing transcription is difficult for most algorithms based on

harmonic templates (which include all compared algorithms), as the vocal timbre changes not

only between songs (different performers), but also within a song (different vowels, stress etc.).

It is therefore difficult to capture the timbre with a template, which results in poor transcrip-

tion performance, especially in terms of precision. In addition, these songs originate from field

recordings of folk music that are performed by amateur singers and recorded in everyday envi-

ronments with portable audio equipment. Thus, they significantly differ from the studio-level

or synthesised recordings. The CHM, with its multilayer representation, hallucination, inhibi-

tion and AGC mechanisms, achieves performance comparable to other datasets, while the

compared methods perform significantly worse (Kruskal-Wallis test χ2 = 56.8, p< 10−11).

Error analysis

We analysed the model’s output with respect to the manually annotated ground truth to assess

the most typical errors made by the proposed model. Four types of errors are frequent: offset

localisation, semitone errors, harmonic (octave) errors and pitch fluctuation.

Table 1. Comparison of CHM, DNMF, Klapuri and Benetos approaches. F1 scores in %, running times and memory usage for 1 minute of audio for differ-

ent datasets and different transcription methods are shown. F1 scores are frame-based scores calculated in accordance to MIREX MFFE evaluations [63].

Dataset CHM DNMF Klapuri [29] Benetos [27] Benetos [62]

MAPS MIDI 52.6 61.6 56.0 56.7 56.7

MAPS D 51.8 57.1 52.5 50.1 62.6

Su & Yang 48.9 32.6 48.0 40.3 55.6

Folk song 49.3 35.0 31.8 27.5 16.2

Average F1 50.7 46.6 47.1 43.7 47.8

Running time (s) 6.2 5.7 19.4 188.1 87

RAM Usage (MB) 63.8 120.0 43.2 1914.2 716.5

doi:10.1371/journal.pone.0169411.t001
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Offset localisation errors frequently appear in recordings with strong reverberation,

where an event is prolonged and is detected after the instrument stopped playing. The AGC

mechanism may additionally prolong the detected offsets, so the combination of both fac-

tors reflects in longer durations of identified events, as shown in Fig 7-A. The singer’s

vibrato can cause the detected pitch to shift up or down in individual frames, which may

cause semitone errors, as the groundtruth usually reflects the desired and not the actual

pitch within a time-frame (Fig 7-B). Octave and other harmonically related errors are a

common source of errors for most algorithms due to sharing of harmonics between har-

monically related tones. CHM is no exception, especially in recordings where instruments

contain many strong harmonic components (Fig 7-C). Voice fluctuations are commonly

present in singing, especially when singers sing a capella (without a support of instruments).

Pitch may fluctuate at onsets of syllables, resulting in the spread of energy over several semi-

tones, similar to vibrato, which leads to pitch estimates that differ from the ground truth, as

may be observed in Fig 7-D.

Fig 7. The most frequent errors produced by the CHM. Ground truth annotations are displayed in green, the CHM activations are shown

in grey. Activations that are not aligned with the ground truth represent false positive errors. Additionally, false negatives are outlined with

blue color.

doi:10.1371/journal.pone.0169411.g007
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Discussion

The proposed CHM model offers a novel approach to music information retrieval and analy-

sis, specifically for the music transcription. It provides a compact hierarchical representation

of the content of a music signal through activations of learned concepts over several layers. We

demonstrated its effectiveness by using a model learned in a completely unsupervised manner

for the multiple fundamental frequency estimation. This was possible due to the model’s trans-

parency, where part activations can be interpreted meaningfully and projected to the input

layer.

When compared to specialized approaches, the proposed algorithm may not perform as

well as the current state of the art, which is expected, as it is not tuned for a specific task. For

comparison, one of the best MAPS M transcription scores is 77.1%, reported by Weninger

et al. [37]. His approach differs significantly from ours—it is based on a support vector

machine classifier, which was trained on a large portion of the MAPS dataset (approx. 80% of

the dataset).

The deep network approaches for MFFE [41–44] also typically use a large proportion of the

dataset for training. Bock and Schedl [41] evaluated a recurrent neural network model on four

piano music datasets, including MAPS MIDI and MAPS D. They reported a high F1 score (up

to 93.5%) for note onset detection; however, they also used a significant amount of the datasets

for training and validation (approximately 75% and 9.4% on average per dataset for training

and validation respectively). Nam et al. [42] reported results for 30 second excerpts from the

MAPS dataset (74.4% frame-level F1 score) by using roughly 60% of the dataset for training

and 25% for validation.

The reason for this large proportions of training samples is that MFFE datasets are relatively

small. This is due to the fact that annotations require expert knowledge and a significant

amount of time. The annotations can thus not be crowdsourced, as for example in image label-

ling, where deep networks are very successful. It thus becomes necessary to include a signifi-

cant amount of the available data into a training set, retaining only a small portion (down to

10% in several cases) for testing. Results are assumed to generalize over the whole dataset, and

there is no information on how these models would perform on more diverse datasets, and for

instruments with different timbres.

In comparison, our model was trained on only a small set of 88 piano key samples not pres-

ent in the MAPS dataset. Although the CHM does not reach the accuracy of such tuned

approaches, it is able to generalize and perform well in a variety of cases where the source is

not so well defined, as shown in our evaluation on the Su & Yang and Folk song datasets. We

may therefore conclude that the CHM extracts timbre-invariant features from the audio signal,

which, combined with a robust inference mechanism, lead to a stable performance in various

scenarios.

Real-time performance

An added feature of the proposed approach lies in the small sizes of learned models, which are

consequences of part relativity and shareability. The computational complexity of inference

with such small models is low, so CHM can be used for transcription in real-time scenarios.

Table 1 lists running times and memory consumption of all compared algorithms for one min-

ute of audio measured on a system with 16GB RAM and an Intel Xeon E5520 2.26GHz proces-

sor using a single thread. The CHM and DNMF are the fastest, with approximately ten-to-one

ratio of audio length over processing time, followed by Klapuri (approx. three-to-one ratio).

Both approaches by Benetos and Weyde with 1.5-to-three and one-to-three ratio are not usable

in real-time scenarios, as next to high running times, they also require the entire audio file for
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processing. The memory consumption of the proposed approach is also low—it uses approxi-

mately half the memory in comparison to DNMF, and around 50% more than Klapuri’s

approach.

In addition, the approach is parallelizable, as parts on a layer can be inferred independently

and thus in parallel. The speed, small memory consumption and robustness of our approach

make it suitable for real-world use, and applicable within embedded systems and mobile

devices with multiple cores and low processing power per core.

Conclusion and future work

We introduced a compositional hierarchical model for music information retrieval and music

analysis. We showed how the model is used for music transcription and evaluated its ability to

perform in real-time. This ability enables the usage of the model for a number of real-world

applications and platforms, such as embedded and mobile systems. The model is constructed

by unsupervised learning on a set of audio recordings and contains compositions of parts

reflecting the statistical regularities in the learning set, encoding simple concepts on lower lay-

ers and complex concepts on higher layers. The model’s transparency enables insights into the

model’s structure and consequently into the music concepts represented by individual parts,

such as pitch partials, pitches and harmonies. The relativity and shareability of parts enable a

compact representation of the learned concepts, while robustness is achieved by incorporating

inhibition, hallucination and AGC mechanisms, as presented in the Inference Section.

A different deep architecture

The compositional hierarchical model shares some similarities with deep learning architec-

tures. It is similar in terms of learning a variety of signal abstractions on several layers of gran-

ularity. The learning procedure is similar: the structure is built layer-by-layer. However, unlike

most deep architectures, CHM is learned in an entirely unsupervised manner, so no annotated

dataset is needed for training and validation. In addition, several aspects of the model set it

apart from other architectures.

Transparency is manifested in the compositional nature of the model. Parts are composi-

tions of subparts and their activations are directly observable and interpretable (each activation

can be projected to the input layer and its effect observed). In contrast, most other neural-net-

work-based deep architectures offer no clear explanation of the underlying feature extraction

process and the meaning of the extracted features, with the exception of convolutional neural

networks, which partially and indirectly offer explanations of their nodes [64]. Transparency

enables the model to be used directly as a classifier by observing and interpreting part activa-

tions, as we show in our evaluation task.

In addition, the hallucination and the inhibition mechanisms facilitate the production of

alternative explanations of the input during inference. By suppressing the most prominent

explanation, the model can produce alternative hypotheses previously suppressed by this

explanation. Combined with transparency, this makes the model a suitable music analysis tool,

where signal contents can be visualized and interpreted as activations of high-to-low level con-

cepts encoded by the model, which may also be interactively manipulated to obtain alternative

hypotheses.

Relativity and shareability of parts enable efficient encoding of the learned concepts and

lead to a small number of parts needed to represent complex concepts. A part in the proposed

model is defined by the relative distance between its subparts and can be activated on different

locations along the frequency axis. Therefore, the large amount of layer units that, for example,

convolutional networks need to cover the entire range of frequencies, is not necessary.
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Relativity is accompanied by part shareability: parts on a layer may be shared by many compo-

sitions on higher layers. Although this feature is similar to other deep representations, relativ-

ity takes shareability a step further: a set of subparts may form several new relative

compositions on a higher layer representing different entities and may thus be efficiently

reused. The learned models therefore contain a small number of parts, which also enables the

use of small datasets for training a small number of trainable parameters, which lead to a very

fast inference. This is also evident in the presented evaluation, where a small set of samples was

used to train a three-layer model that performed well on several different datasets.

Future work

The model is general and can be used for audio-based as well as symbolic MIR tasks, including

automated chord estimation and mood estimation [45], symbolic pattern discovery [46] and

multiple fundamental frequency estimation presented in this paper. For the latter, the model

serves both as a feature extractor, as well as a classifier. We also demonstrated the model’s

robustness to varying timbres and audio signals which were recorded in suboptimal

conditions.

The proposed approach is naturally expandable to the time domain, which we already dem-

onstrated by its application to the symbolic pattern discovery task [46]. In our future work, we

aim to further develop the model as a general purpose model for music information retrieval

and music analysis. Future work includes stacking of models applied to the audio and symbolic

domains, thus introducing a single model which covers different MIR tasks and is suitable for

real-world application. We intend to extend the model to encode long-term temporal depen-

dencies of music events, thus encoding concepts such as melodic lines, chord progressions and

rhythmic patterns. Such a unified framework which models the spatial (frequency) and tempo-

ral structure of music events should improve performance for a variety of MIR tasks and

potentially eliminate the need for additional temporal processing stages, such as the hidden

Markov models.
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