
ERK'2024, Portorož, 452-455 452

Neural-network-based Volume Compression

Anže Kristan, Matija Marolt, Ciril Bohak, Žiga Lesar
University of Ljubljana, Faculty of Computer and Information Science

E-mail: ak4352@student.uni-lj.si, {matija.marolt, ciril.bohak, ziga.lesar}@fri.uni-lj.si

Abstract
Volumes are a common representation of volumetric data,
but they often result in large data sizes due to their three-
dimensional structure, which can include substantial emp-
ty space or repetitive patterns. This study explores the
use of neural-network-based techniques to compress vol-
umetric data efficiently. We implemented and tested sev-
eral neural network models designed to encode small data
blocks and reconstruct the original volumes. These mod-
els provide lossy compression, with reconstructions dis-
playing various artifacts inherent to block-based approach-
es. Our approach was evaluated against traditional com-
pression methods, demonstrating that our neural network
models achieve significant compression ratios, although
they require extended training periods. The presented
neural-network-based compression is suitable for specific
application domains where exact reconstruction preci-
sion is not critical.

1 Introduction
Volumes are the most common representation of volu-
metric data, capturing values such as color, intensity, or
material density at points on a three-dimensional grid.
Volumes typically arise from various 3D acquisition tech-
niques, including computed tomography [1, 4], magnetic
resonance imaging [17], and 3D ultrasound [6]. Their ap-
plications span medical imaging, material sciences, phys-
ics simulations, and entertainment industries.

Due to their three-dimensional nature, volumes can
require significant storage space, especially with high-
resolution grids or when storing each frame of a simula-
tion or animation as a separate volume. General compres-
sion methods, such as run-length encoding (lossless) [12,
20] and wavelet transform (lossy) [18, 9], attempt to ad-
dress these challenges but often struggle with achieving
high compression ratios without substantial data loss, as
they cannot take advantage of the spatial correlations be-
tween voxels.

In this work, we investigate neural networks for vol-
ume compression, focusing on achieving smaller file sizes
even at the expense of less accurate or slower reconstruc-
tions. Neural networks’ ability to learn complex patterns
presents a promising solution for efficient compression.
We tested various models with different parameters to en-
code small data blocks and reconstruct the original vol-

umes, aiming to surpass traditional methods in compres-
sion ratio.

Our experiments, detailed in Section 4, involved three
different volumes and multiple neural network configura-
tions. We discuss the results, comparing the performance
of neural-network-based compression with conventional
technique (ZIP), and offer conclusions based on our find-
ings. This approach provides a potential tool for effi-
ciently managing large volumetric datasets, particularly
when exact reconstruction is not critical.

2 Related work
One of the currently most well-known and popular for-
mats for sparse volumetric data is the so-called VDB for-
mat [10] available as OpenVDB [15] implementation. It
is a hierarchical dynamic grid structure, similar to a B+
tree, and is most useful when dealing with large, sparse,
and animated volumes, such as level sets and cloud mod-
eling. Jain et al. [3] described a deep learning technique
for compressed volume rendering, maintaining high-qua-
lity rendering capabilities while achieving data compres-
sion, which demonstrates the early integration of neural
networks in volumetric data compression.

Tang et al. [19] introduced an approach for volume
compression via truncated signed distance fields using a
block-based neural network architecture. Their method
demonstrated higher quality outputs for the same bitrate
compared to previous methods. Nagoor et al. [11] pro-
posed a deep neural network with local sampling for loss-
less compression of volumetric medical images, signif-
icantly reducing storage requirements without compro-
mising image quality, which is crucial for medical appli-
cations where data integrity is paramount.

Oblak et al. [13] explored lossy data compression of
volumetric simulation data for web-based vascular flow
simulation visualization, highlighting the feasibility of
fast, real-time remote visualization. Recently, Lesar et
al. [21] presented a web-friendly volume storage and com-
pression solution, balancing compression efficiency with
rapid data access on web platforms.

Building on these concepts, NeuralVDB [5] employs
multiple hierarchical neural networks to compress sparse
data, offering substantial improvements over OpenVDB
with significant reduction factors.



453

3 Methodology
To select and train the best models, we qualitatively eval-
uated the results by visually inspecting the isosurface rep-
resentation using the VPT [8] framework, compressed
size, and training times. We further improved the most
promising models by tweaking their parameters.

The selected models are autoencoders, which encode
each block of the volume (a k × k × k size subsection
of the volume) as a separate code. The block size was
defined as an input parameter (k), which influences the
number of blocks the volume is split into and the size of
the individual layers of the neural network models. The
tested architectures were autoencoders with linear layers
and architectures with handcrafted encodings with linear
decoders.

We tested the following architectures:
• linear1: the encoder receives a flattened block as

the input (k3) and is composed of 4 linear layers,
each following layer is half the size of the previ-
ous, except the last layer. The last layer’s output
size (the encoding size) is determined by the pa-
rameter s. The decoder architecture is the same but
in reverse.

• linear2: the encoder receives a flattened block as
the input (k3) and is composed of 4 linear layers.
The output size of each layer is 1

8 -th the input size
for the first two layers, then 1

12 -th, and finally, the
size defined by the s parameter. The decoder archi-
tecture is the same but in reverse.

• coordvarsvd: the encoded features are handcrafted
for each block and are as follows: 3 floats repre-
senting the coordinates of the current block nor-
malized to [0,1], 3 floats representing the mean vari-
ances in (x,y,z) axis of the current block, and finally
3 floats representing the largest 3 singular values of
this block. The decoder has the same architecture
as in the linear1 architecture.

• svd1: similar to coordvarsvd, but only uses the 3
largest svd values as the encoded representation of
each block. It uses the linear1 decoder architecture.

• svd2: similar to svd1, but uses the decoder archi-
tecture of linear2 instead.

All models were implemented in PyTorch [16] and
used Mean Square Error as a loss function (MSELoss)
and Stochastic Gradient Descent (SGD) for optimization.
All encoded values were saved to files as 16-bit floats.

Each model was trained for 50 epochs. The only ex-
ception is the linear1 200ep model, which uses the lin-
ear1 architecture, but was trained for 200 epochs due to
its fast training time. Even at the end of these 200 epochs,
the loss was still decreasing, so there is still room for im-
provement for each model by simply training them fur-
ther.

After we finished investigating the different architec-
tures, we also investigated the effect of the encoding size
(s) on the reconstruction and file sizes for model follow-
ing using the linear1 and linear2 architectures. For this
purpose, the created models were trained for 200 epochs.

Table 1: Details on analyzed volumes.
name shape raw (MB) ZIP (MB)

tooth 103 × 94 × 161 1.48 0.88
bonsai 256 × 256 × 256 16.00 3.14
body 512 × 512 × 226 56.50 8.25

4 Results
We tested several architectures on 3 separate volumes [14]
detailed in Table 1. All volumes are raw binary files con-
taining uint8 values and have to be reshaped to the cor-
rect dimensions. To remove some noise in the volume
data, we filtered out (set to 0) the values below the em-
pirically determined threshold κ for each volume (tooth:
κ = 105, bonsai: κ = 50, body: κ = 0). We then re-
sampled the volume values from [0, 255] → [0, 1]. As
the final preprocessing step before training each neural
network model, we padded the input volume to be divis-
ible by the model’s specified block size parameter k →
[k, k, k]. All computing was done via Google Colab [2]
on the free tier CPU runtime, using Python, PyTorch and
NumPy. The code is available on GitHub [7].

4.1 Tooth
For the tooth volume, several different model architec-
tures and parameters were tested. Table 2 shows the most
promising models, their parameters, encoded file sizes,
decoder file sizes, and MSE of the difference between the
reconstructed file and input file. Table 2 also shows the
times it took to train a model for one epoch (one iteration
over the whole volume), the time to encode and save the
volume to file, and the time to decode and save the vol-
ume to file. Figure 1 shows images of the original volume
and its filtered version used for training and 4 reconstruc-
tions of the following models: linear1 (k = 4) (chosen
for lowest MSE), linear1 (k = 8) (least time consuming),
linear1 200ep (k = 8), svd2 (k = 4) (small file sizes).
Visualizations were done using VPT with the isosurface
extraction renderer, with the same isovalue for each visu-
alization.

Figure 1: From left to right, top to bottom: original tooth
volume, filtered tooth volume, and 4 reconstructions: linear1
(k = 8), linear1 (k = 4), linear1 200ep (k = 8), and svd2.



454

Table 2: Comparison of models for tooth volume, based on kernel size, encoding size (number of floats), the reconstructed volume
MSE, file size of the decoder, file size of the encoded representation, training, encoding, and decoding times.

Name k s MSE decoder (kB) encoded (kB) epoch time (s) enc. time (s) dec. time (s)

linear1 8 8 393.17 682 51 9.5 2.5 2.7
linear1 200ep 8 8 141.60 682 51 - - -

linear1 4 8 136.17 15 400 49.2 9.3 6.6
linear2 8 8 907.28 163 51 13.1 1.8 1.0
linear2 4 8 276.79 7 400 50.8 9.4 6.9

coordvarsvd 4 9 297.17 15 450 46.2 10.2 8.5
svd1 4 3 307.30 15 150 45.3 5.3 9.4
svd2 4 3 301.07 7 150 41.7 5.1 8.7

Figure 2 shows the reconstructed volumes after fil-
tering out low values and then passing them through a
Gaussian blur with the parameters σ = 1 and r = k

2 . The
represented volumes are the original volume (k = 8), the
linear1 (k = 4), linear1 200ep, and svd2.

Figure 2: Volumes filtered with Gaussian blur. From left to
right, top to bottom: original tooth volume, and 3 reconstruc-
tions: linear1 (k = 4), linear1 200ep (k = 8), and svd2.

Finally, as seen in Figure 3, we examined the effect
of the different encoding layer sizes s. We trained mod-
els of two different architectures with different encod-
ing layer sizes for 200 epochs each. The selected ar-
chitectures were linear1 with parameters (k = 8) and
s ∈ {1, 3, 5, 7}, and linear2 with parameters (k = 8) and
s ∈ {5, 7}. In Table 3 are the MSE losses for the different
models and file sizes (decoder + encoded representation).

Table 3: Comparison of the effect of enc size parameter when
training for 200 epochs.

Model enc size MSE File Size (kB)

linear1
1 1757.65 686
3 477.66 700
5 137.40 713
7 140.50 727

linear2 5 341.75 194
7 171.13 207

Figure 3: Tooth volume with different encoding layer sizes.
From left to right, top to bottom: linear1 (s = 1), linear1
(s = 3), linear1 (s = 5), linear1 (s = 7), linear2 (s = 5),
linear2 (s = 7).

4.2 Bonsai
Due to its size, we tried only a few models for the bonsai
volume. The only model we considered even remotely
successful with compression size and reconstruction vi-
suals was svd2 (k = 4). The MSE for the reconstruction
with this model was 79.92, and the output file sizes were
7kB decoder and 1.5MB encoded file. The training time
for 1 epoch was 6m 56s, the encoding time was 54.9s,
and the decoding time was 1m 19s.

4.3 Body
For the body volume, the only even remotely satisfactory
model was the coordvarsvd (k = 8). The MSE for the re-
construction with this model was 1645.58, and the output
file sizes were 682kB decoders and 2MB encoded files.
The training time for 1 epoch was 5m 3s, the encoding
time was 55.2s, and the decoding time was 59s.

5 Discussion
As we have taken a block-based approach to encoding
the volumes, most of the problems with the reconstruc-
tions are that they lack smooth transitions between recon-
structed blocks. Reconstructions of some models on the
tooth volume achieved similar visual results to the origi-
nal volume, especially after applying Gaussian blur to the
reconstruction. However, as can be seen with the model



455

linear1 200ep, additional training of the models could in-
crease the faithfulness of the reconstruction. Even af-
ter 200 epochs, the loss still diminishes, and the artifacts
present in the reconstruction are less pronounced. We did
not check whether this is true in general or may only be
viable for some combinations of input volumes, models,
and parameters.

There seems to be a large tradeoff between the model’s
kernel size and the size of the model. Larger kernel sizes
lead to faster training, encoding, and decoding times, as
well as smaller encoding file sizes, but they result in larger
decoder file sizes and produce visible artifacts in the re-
construction when the number of training epochs is low.
We also tried architectures utilizing 3D convolutional lay-
ers, which would allow for smaller decoder sizes. How-
ever, visual inspection of the reconstructions from these
models was considered lacking, as there were large gaps
between individual blocks.

An observation made during the training of the mod-
els was that after the first epoch, the general shape of
the volume gets captured. However, it lacks details and
smooth transitions between blocks. However, even after
training for many epochs, the models still produce blocky
reconstructions. Although this can be somewhat reme-
died with Gaussian blur to process the reconstructions,
that can lead to loss of detail in itself. We might also
consider using overlapping blocks.

From the results, we can conclude that selecting an
optimal model depends on the specific input volume. Con-
sidering the long training and decoding time, models with
a smaller kernel size may not be usable in real-world ap-
plications for bigger volumes. Combining this with the
lossy nature of such neural-network-based compression,
a simple zip file might satisfy many use cases since it does
not need to be adapted to each individual volume. More-
over, there is a question of the tradeoff of the electricity
and time spent on training such models for each volume
versus simply using more storage/transfer bandwidth to
hold the zip files of an arbitrary volume.

However, this field may still have potential, as shown
in the related works. One option is to try a different vol-
umetric representation rather than a simple volume. An-
other idea is to try to focus on a single model (that can be
trained quickly and decodes the volume quickly) and an
algorithm to estimate the model parameters for the target
volume automatically.

6 Conclusion
Compression of volumetric data is challenging, and many
ways exist to tackle it. The results of the use of different
deep models with diverse sets of parameters explored in
this work are inconclusive and do not provide us with a
definite answer on their usability. As shown, it all de-
pends on the speed of training/encoding/decoding, the
compression factor, and the accuracy of the reconstructed
volume desired in a particular use case.

Acknowlegment
This research was conducted as part of the basic research project
Cell visualization of unified microscopic data and procedurally
generated sub-cellular structures [project number J2-50221],
funded by the Slovenian Research and Innovation Agency (Javna
agencija za znanstvenoraziskovalno in inovacijsko dejavnost RS)
from the state budget.

References
[1] C. R. Crawford and K. F. King. Computed tomography scanning

with simultaneous patient translation. Medical Physics, (17):967
– 982, 1990.

[2] Google colab. https://colab.research.google.com.
[3] Somay Jain, Wesley Griffin, Afzal Godil, Jeffrey W Bullard, Ju-

dith Terrill, and Amitabh Varshney. Compressed volume render-
ing using deep learning. In Proceedings of the Large Scale Data
Analysis and Visualization Symposium, pages 1187–1194, 2017.

[4] W. A. Kalender, W. Seissler, E. Klotz, and P. Vock. Spiral vol-
umetric CT with single-breath-hold technique, continuous trans-
port and continuous scanner rotation. Radiology, (176):181 – 183,
1990.

[5] Doyub Kim, Minjae Lee, and Ken Museth. Neuralvdb: High-
resolution sparse volume representation using hierarchical neural
networks, 2024.

[6] D. Krakow, J. Williams, M. Poehl, D. L. Rimoin, and L. D. Platt.
Use of three-dimensional ultrasound imaging in the diagnosis of
prenatal-onset skeletal dysplasias. Ultrasound in Obstetrics and
Gynecology, 21(5):467–472, 2003.

[7] Anže Kristan, Matija Marolt, Ciril Bohak, and Žiga Lesar. Neural-
network-based volume compression. https://github.
com/UL-FRI-LGM/NN-based-volume-compression.

[8] Žiga Lesar, Ciril Bohak, and Matija Marolt. Real-time interac-
tive platform-agnostic volumetric path tracing in webgl 2.0. In
Proceedings of Web3D, 2018.

[9] Stéphane Mallat. A wavelet tour of signal processing: The Sparse
Way. Elsevier, 2009. 3rd Ed.

[10] Ken Museth. Vdb: High-resolution sparse volumes with dynamic
topology. ACM TOG, 32(3):1–22, 2013.

[11] O. H. Nagoor, J. Whittle, J. Deng, B. Mora, and M. W. Jones.
Lossless compression for volumetric medical images using deep
neural network with local sampling. In 2020 IEEE ICIP, pages
2815–2819, 2020.

[12] Mark Nelson and Jean-Loup Gailly. The data compression book
2nd edition. M & T Books, New York, NY, 1995.

[13] Rok Oblak, Ciril Bohak, and Matija Marolt. Web-based vascular
flow simulation visualization with lossy data compression for fast
transmission. In Augmented reality, virtual reality, and computer
graphics : proceedings, pages 3–17, 2018.

[14] Open scivis datasets. https://klacansky.com/
open-scivis-datasets/.

[15] Openvdb. https://www.openvdb.org.
[16] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan,

Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison,
Luca Antiga, and Adam Lerer. Automatic differentiation in py-
torch. 2017.

[17] P. A. Rinck. Magnetic Resonance in Medicine. The Basic Text-
book of the European Magnetic Resonance Forum. 9th edition,
volume 9.1. TRTF, 2016.

[18] Gilbert Strang and Truong Nguyen. Wavelets and filter banks.
SIAM, 1996.

[19] Danhang Tang, Saurabh Singh, Philip A Chou, Christian Hane,
Mingsong Dou, Sean Fanello, Jonathan Taylor, Philip Davidson,
Onur G Guleryuz, Yinda Zhang, et al. Deep implicit volume com-
pression. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 1293–1303, 2020.

[20] Ian H Witten, Alistair Moffat, and Timothy C Bell. Managing gi-
gabytes: compressing and indexing documents and images. Mor-
gan Kaufmann, 1999.

[21] Žiga Lesar, Ciril Bohak, and Matija Marolt. Blocky volume pack-
age : a web-friendly volume storage and compression solution. In
Proceedings of WSCG 2023, pages 213–221, 2023.

https://colab.research.google.com
https://github.com/UL-FRI-LGM/NN-based-volume-compression
https://github.com/UL-FRI-LGM/NN-based-volume-compression
https://klacansky.com/open-scivis-datasets/
https://klacansky.com/open-scivis-datasets/
https://www.openvdb.org

