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Abstract
Modernmusic streaming services rely on recommender systems to help users navigate
within their large collections. Collaborative filtering (CF) methods, that leverage past
user–item interactions, have been most successful, but have various limitations, like
performingpoorly among sparsely connected items.Conversely, content-basedmodels
circumvent the data-sparsity issue by recommending based on item content alone, but
have seen limited success. Recently, graph-based machine learning approaches have
shown, in other domains, to be able to address the aforementioned issues. Graph neural
networks (GNN) in particular promise to learn from both the complex relationships
within a user interaction graph, aswell as content to generate hybrid recommendations.
Here,we propose amusic recommender systemusing a state-of-the-art GNN, PinSage,
and evaluate it on a novel Spotify dataset against traditional CF, graph-based CF and
content-basedmethods on a related song prediction task, venturing beyond accuracy in
our evaluation.Our experiments show that (i) our approach is among the top performers
and stands out as the most well rounded compared to baselines, (ii) graph-based CF
methods outperform matrix-based CF approaches, suggesting that user interaction
data may be better represented as a graph and (iii) in our evaluation, CF methods do
not exhibit a performance drop in the long tail, where the hybrid approach does not
offer an advantage.
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1 Introduction

In recent years, a large share of music consumption has moved to subscription-based
streaming platforms such as Spotify, Apple Music and YouTube Music. With increas-
ingly large catalogs of songs provided by these services, recommender systems (RS)
play a crucial role of matchmaker between content and users.

Regardless of the domain, recommender systems have traditionally been formulated
as models that aim to predict which items different users might prefer. In this case,
recommendation refers to predicting unknown entries in a user–item rating matrix R
where each entry ri j denotes how user i rates item j . Modern recommender systems,
however, are wider in scope and deal with many more related tasks. In the music
domain, these tasks include feed recommendation, playlist generation, related song
recommendation, etc.

Themost widely adopted and successful category of methods used in recommender
systems is collaborative filtering (CF). CF algorithms operate exclusively on user
behavior data in the form of the interactionmatrix R, drawing from the assumption that
similar users prefer similar items (Xiaoyuan and Khoshgoftaar 2009). These methods
are still among top performers in terms of recommendation accuracy. They also carry
many favorable characteristics, such as domain-independence, since no knowledge
about content, only user data, is needed. They do, however, suffer from some crucial
limitations.One is the data sparsity problem,which refers to the fact that CF algorithms
cannot provide reliable recommendations songs with insufficient (sparse) interaction
data—a situation that is particularly common in music catalogs.

A different approach to recommendations is content-based filtering (CBF). CBF
methods compute similarities between items or users based solely on their con-
tent, ignoring user–item interactions. In the field of music recommendations systems
(MRS), “content” in CBF usually refers to metadata such as genre, artist information
or lyrics (Lops et al. 2011; Schedl 2019), while music information retrieval (MIR)
uses “content” to refer to raw music audio and has produced many models that extract
features from audio to effectively solve tasks, such as genre classification, emotion
detection or instrument recognition (Kim et al. 2010; Cramer et al. 2019; Choi et al.
2018). Such approaches do not suffer from cold-start and data-sparsity issues but in
general give less accurate recommendations. Metadata tends to be too broad to suffi-
ciently model user taste (e.g., genre) and gives subpar recommendations. Conversely,
the music audio itself is a rich source of information with the potential to directly
recommend music that is perceptually in line with the user’s taste. Research in this
domain, however, faces the semantic gap—a substantial chasm between the raw audio
signal and perceptual music characteristics that affect human preference (Celma Her-
rada et al. 2006). As such, direct application of CBF to music recommender systems
has been limited.

The limitations of pure CF and CBF have led researchers in the direction of hybrid
recommender systems, which leverage both interaction data and content in an attempt
to mitigate the shortcomings of exclusively using one or the other. This can be done in
various ways, such as combining features learned fromCFwith content-based features
(Vall et al. 2019) or by using content to guide the CF process (Liang et al. 2015).
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Another rapidly growing branch of ML is machine learning with graphs. Graphs
have always been a highly expressive way to represent relational data, but only recent
advances in thefield havemanaged to truly utilize these structures in amachine learning
context. Spearheaded by graph neural networks (GNN)—deep learning architectures
that operate directly on graphs—graph-based methods now provide better solutions
to relational tasks such as predicting protein–protein interactions, physical systems
modeling or suggesting friends in social networks (Hamilton et al. 2017b; Wu et al.
2021).

In the present study we aim to inspect the utility of this new family of methods
in the context of music recommendation, by applying them to a fundamental MRS
task of related song recommendation (i.e., prediction of ground-truth similar pairs of
songs). We consider this a natural first task since a good model of similarity can be,
and often is, the basis for various more complex tasks.

Considering the success of graph-based approaches on many tasks which deal with
relational data, our research question is the following: Can machine learning with
graphs, and GNN in particular, address the shortcomings of previous CF and CBF
approaches in the context of music recommendation?

Music recommendation can be translated to the graph domain by representing a
user–song matrix or a set of user-created playlists as a bipartite graph of songs and
users or playlists, where links denote interaction or membership. By translating user
interaction information to graph topology, graph-based methods can model complex
relations between items and/or users that matrix-based CF approaches might struggle
with. We therefore conjecture that both hybrid methods (GNN) and graph-based CF
methods outperform traditional matrix-based approaches.

Additionally, and unlike other hybrid approaches, GNNs are also intrinsically
hybrid—they form node embeddings by aggregating neighboring nodes’ features
based on graph topology. This means that nodes representing songs can be associ-
ated with audio embeddings to produce hybrid song representations, for example.
We therefore conjecture that the hybrid method, GNN, provides more accurate rec-
ommendations than CBF, while being more successful than CF in handling sparse
data.

While accuracy is how recommenders are usually assessed, it has been pointed out
by many that these metrics do not reflect all characteristics of recommendations that
may be relevant in a real-world setting. Following this rationale, we also study our
results from the perspective of beyond-accuracy objectives and conjecture that looking
beyond accuracy will provide an alternative picture in terms of ranking methods’
performance.

In the present study, we apply a state-of-the-art GNN method, PinSage (Ying et al.
2018) and other graph-based approaches to public Spotify data to explore the utility
of this paradigm in the space of hybrid music recommendation.

Our contributions can be summarized as follows:

• Implementation of a state-of-the-art GNN algorithm (PinSage) in the role of a
hybridmusic recommender, including an ablation study, and as such, an application
of machine learning with graphs to the field of MRS.
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• Anevaluation, in terms of recommendation accuracy, of various graph-basedmeth-
ods on real and current music consumption data against content-based methods
(CBF) and user-data-based methods, including traditional CF, as well as graph-
based approaches.

• An additional analysis of the considered methods in terms of beyond-accuracy
objectives, with an aim to quantify the characteristics of recommender systems in
a more holistic way.

To aid further research on the intersection between ML with graphs and MRS,
we publish the full experimental code,1 including the PinSage implementation. We
also release our novel dataset, a large-scale bipartite playlist–song membership graph,
which we name the Spotify Graph.2

2 Related work

As our study builds on previous work in both recommender systems and graph-based
machine learning, we survey both and position our work in this landscape.

2.1 Music recommendation: tasks and challenges

Music recommender systems (MRS) deal with similar tasks as all recommender sys-
tems (RS). However, due to particularities ofmusic as amedium, such as short duration
of items, sequential consumption, scale of collections, or a highly subjective and vari-
able listening intent, they face some unique challenges.

Tasks Common MRS tasks may be best categorized into recommendations to a user
and recommendations to an item (song) seed. The fundamental task in the first category
could be described as a user feed, where user is recommended songs which they are
predicted to like based on their listening behavior in the past. Playlist generation
involves creating different types of playlists for the user. In the looser sense, these
are collections of songs, while a stricter approach is to consider sequences of songs
where the exact order matters. A significant focus are themed playlists, which adhere
not only to the taste of the user, but also a specific mood, genre or listening context.

Recommending based on an item seed can come in the form of offering similar
songs (or artists or playlists) to the active item. The notion of modeling similarity
is extensible to many other tasks, such as playlist continuation, where the songs are
chosen based an existing collection provided by the user. In production, this takes
many forms such as autoplay, song radio or extended playlists.

Data sparsityData sparsity refers to the fact that interaction data inmusic collections is
sparse,meaning the number of given ratings ismuch lower than the number of available
votes (if all users interacted with all items). More specifically, music catalogs tend to
follow the power law with relatively few songs (the short head) with many interactions

1 https://github.com/MatejBevec/gcn-song-embeddings.
2 https://github.com/MatejBevec/spotify-graph.
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and many songs (the long tail) with few interactions. This problem is present in all
RS, but is known to be much more severe in music.

Because collaborative filtering (CF) methods, which are most widely adopted, need
plentiful interaction data, data sparsity leads to unreliable recommendations. Often
only popular songs from the short head are recommended well, while the unpopular
majority of the catalog is neglected (Grčar et al. 2006; Xiaoyuan and Khoshgoftaar
2009; Adomavicius and Tuzhilin 2005). Failing to generate recommendations con-
taining lesser-known regions of the catalog may lead to dissatisfaction for users with
even remotely niche tastes. This related problem is usually referred to as popularity
bias.

Evaluation Another major challenge pertains to model evaluation. When it comes
to offline studies, recommender systems have been most commonly evaluated using
prediction accuracy on an offline task. This can mean predicting unseen ratings or
retrieving ground-truth relevant items to a query, possibly respecting the order of
relevance.

Recently, many have claimed that, while a useful indicator, accuracy does not cap-
ture all the different recommendation qualities which might predict the success of
a RS in a real-world setting. To this end, several alternative criteria, such as diver-
sity, personalization or novelty, usually called beyond-accuracy objectives, and their
corresponding metrics, have been proposed to better quantify the full scope of RS
behavior (Kaminskas and Bridge 2017).We agree with this line of thinking and devote
a large part of our study to evaluating the tested methods through this perspective (see
Sect. 4.3.4).

2.2 Collaborative filtering

The most common family of methods used to tackle the described MRS tasks is
collaborative filtering. CF algorithms fall into two categories: memory-based and
model-based. Memory-based CFmethods, also known as neighborhoodmodels (Ning
et al. 2015), compute similarities directly from the user–item matrix. The user’s
unknown ratings are predicted by identifying similar users and inferring from their
ratings of the same items (user-based CF (Ning et al. 2015; Herlocker et al. 1999))
or, given an item, items rated similarly can be queried as similar items (item-based
CF (Ning et al. 2015; Linden et al. 2003; Sarwar et al. 2001)). Shared by early CF
systems, this approach is not scalable and performs poorly on sparse data.

Model-based or latent-factor methods (Koren and Bell 2015) have seen widespread
use especially since their success in the Netflix Prize competition (Bell and Koren
2007). They mine the user–item matrix R to produce dense user and item represen-
tations, called latent factors (Hu et al. 2008). These are usually obtained via singular
value decomposition (SVD) or similar. Recently, neural models, such as autoencoders,
have also been used to extract latent factors (Batmaz et al. 2019). Once computed,
latent-factor models can deal with the scalability problem.

Traditionally, CF methods operated on a matrix of explicit item ratings. Since most
services today do not collect this kind of data, modern recommendation algorithms
instead rely on implicit user feedback, such as purchases, saves, plays or skips (Hu
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et al. 2008). Numerous novel matrix-factorization algorithms, such as alternating least
squares (Hu et al. 2008), Bayesian personalized ranking (Rendle et al. 2009) and
logistic matrix factorization (Johnson et al. 2014), have been developed specifically
to deal with implicit data. In addition to user–item interactions, previous work has
also exploited other associations in a similar manner. In music, and much like in our
present work, playlist–songmembership (Vall et al. 2019) or song–song co-occurrence
in listening sessions (Liang et al. 2016) has been used to infer similarity between songs
(see Sect. 4.1.1).

Regardless of the variant, collaborative filtering methods have been widely suc-
cessful in all domains because they do not need to model the often complex domain
content, but instead let many regular users collaborate to provide expert-like recom-
mendations to each other. This, however, is also one of their largest drawbacks—all
CF methods, even factorization-based, suffer from data sparsity.

2.3 Content-based filtering

The alternative approach to CF is content-based filtering (CBF). Instead of relying on
domain-independent interaction data, CBF methods attempt to extract representations
of users and items directly and use these to compute similarity (Schedl et al. 2015).
Recommendations to a user can be generated by querying items that are similar,
content-wise, to their previously preferred items, without any knowledge of other
users’ habits. The challenge in CBF is to obtain representations that sufficiently reflect
user taste.

In RS research, “content” most commonly refers to high-level textual descriptors,
such as metadata, artist descriptions, genre tags, reviews, etc. (Schedl et al. 2015;
Schedl 2019; Lops et al. 2011). Stemming from the field of information retrieval,
text-based CBF has long been a branch of RS. This approach, however, is generally
not competitive with CF in the music domain because metadata is often either too
general or not readily available. Simple genre labels, for example, are insufficient in
discriminating user tastes, while more expressive data, such as descriptive tags, are
hard to obtain.

The other option is to extract song representations based on the audio signal itself
(Schedl et al. 2015). The difficulty of this challenge is related to the so-called semantic
gap—the gap between raw audio signal and the perceptual music characteristics that
affect user preference (Celma Herrada et al. 2006). While it is relatively easy to build
a model that extracts low-level features, designing systems which “understand” audio
on the level of human perception remains a challenge even with modern approaches.

Bridging the semantic gap is the endeavor ofMusic information retrieval (MIR). The
field has developed numerous powerful models that extract high-level features from
audio in order to solve tasks such as genre classification, emotion recognition (Kim
et al. 2010; Koh and Dubnov 2021) and audio tagging (Plakal and Ellis 2019; Pons
and Serra 2019). MIR researchers have traditionally relied on manually engineered
features, such as mel-frequency cepstral coefficients (MFCCs), but are now largely
transitioning to neural models, which have proven to be well suited for high-level
representation learning (Choi et al. 2018). A seminal deep audio-content-based RS
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was developed by van den Oord et al. (2013), who trained a CNN to predict CF latent
factors for new items in order to mitigate cold start.

Due to the described challenges, CF still generally outperforms CBF on the primary
objective—recommendation accuracy. That is, CBF approaches are less effective at
querying relevant items.

2.4 Hybrid systems

Hybrid systems (sometimes called content-aware or content-powered systems) refer
to RSs, which utilize both interaction data and item content, whether it be the item
itself (e.g., audio) or metadata, to generate recommendations (Schedl et al. 2015).

ThepreviouslymentionedworkbyvandenOord et al. (2013),where latent factors of
newsongswere predicted fromaudio, canbe seen as hybridizationvia switching,where
CF and CBF models are used in different situations. In an example of hybridization
via feature combination, Vall et al. (2019) combine latent factors from playlist-item
CF and features extracted from song audio for the task of playlist continuation. The
authors in Oramas et al. (2017) use audio, CF latent factors and textual metadata
to extract features for both song and artists, which are then combined with a fusion
network to form final song representations. Instead, the work in Liang et al. (2015)
uses audio features as a prior to guide the CF process. The examples above extract
features using a deep neural network pretrained on an audio tagging task.

2.5 Machine learning on graphs

Recently, machine learning methods applied to graph data have been increasingly
successful in many domains, outperforming previous approaches on tasks, such as
protein–protein interaction, drug-interaction prediction, drug discovery, physical sys-
temmodeling and social networkmodeling.This is largely due to the success ofmodern
representation methods which embed nodes, edges or entire graphs as numeric vec-
tors (Hamilton et al. 2017b). Early methods relied on matrix factorization of the graph
adjacency matrix and were motivated by concepts from network analysis (Yan et al.
2007). The second wave saw random-walk-based methods, which outperform the for-
mer, but remain simple and unsupervised. Methods such as DeepWalk (Perozzi et al.
2014) and node2vec (Grover and Leskovec 2016) are still among the most widely used
node embeddings. Applications of neural network approaches to graph data started
as early as 2005 (Gori et al. 2005) and are now generally referred to as graph neural
networks (GNN). However, these initial approaches did not see much success until
the advent of graph convolutional networks (GCN) (Welling and Kipf 2016), which
apply the concept of convolution to graphs. GCN approaches (Welling and Kipf 2016;
Hamilton et al. 2017a; Ying et al. 2018) are hybrid methods that operate on attributed
graphs where nodes are associated with additional features. They produce a represen-
tation of a node by aggregating feature information from its topological neighbors,
much like image convolution aggregates information from neighboring pixels (Fig. 1).
Modern GNNs, such as GCN and graph attention networks (GAT) (Velickovic et al.
2017), are now generally seen as top performers in the space.

123



M. Bevec et al.

Fig. 1 The notion of convolution on matrix data, such as an image (left), compared to graph convolution
(right)

2.6 Graph-based recommendation

Interaction data inRS is an implicit graph.WhilemostRS approachesmodel user–song
interactions or playlist–songmembership as a matrix, they can also be represented as a
bipartite graph, where edges denote the interaction ormembership, and the recommen-
dation task translates to link prediction. Recently, the rapidly developing graph-based
ML methods, especially the current top performer—GNN, are being applied to rec-
ommendations as well. This has given rise to a new paradigm of RS: graph-based
recommender systems. The motivation as to why graphs are well suited to recommen-
dation is the following:

• Graphs can express complex relations. Translating user interaction information to
graph topologyopens up the problem to graph-basedmethodswith roots in network
analysis, which have the capability to identify different and complex topological
similarities. In particular, random-walk methods and GNN deal well with multi-
hop (sometimes called higher-order) relations, where two nodes are indirectly
connected via intermediate neighbors (Shiwen et al. 2020). Since in a RS setting
most users have interacted with only a small subset of the catalog, matrix-based
CF methods face data-sparsity issues. By considering multi-hop relations, such
users can be linked with many more items. In this way, graph-based methods may
mitigate data sparsity.

• GNN provide innate hybridization. Previous approaches have either (i) predicted
latent factors from content, incorporated it as a prior to matrix factorization or (ii)
combined separately computed CF and content-based features at a later step. CNN,
in particular, offers an entirely different, more integrated hybridization protocol.
Given an interaction graph and content-based node features (e.g., audio embed-
dings representing songs), they produce an embedding for a node (i.e., item) by
aggregating its features and the features of its neighbors. As such, they can be
seen as primarily content-based methods that use interaction data as background
knowledge. This approach to feature aggregation may help bridge the semantic
gap.

Recent research has yielded a variety of graph-based RS approaches. Some
approaches use random walks to approximate a similarity measure and generate
recommendations on the fly. Such methods were among the earliest graph-based
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recommender systems (Gori et al. 2007), although they have seen many advance-
ments recently (He et al. 2016; Eksombatchai et al. 2018; Jiang et al. 2018). Other
approaches can be seen as pure CF models, where the rating matrix is treated as the
adjacency matrix and is factorized using graph-based methods (Monti et al. 2017;
Yang et al. 2018; Zheng et al. 2018; Zhang and Chen 2020). The most relevant to
our work are hybrid systems that rely on node embeddings with GNN. The authors
in Berg et al. (2017) were among the first to apply GNN to the rating matrix in
combination with node features for recommendation. Both Ying et al. (2018) and
Wang et al. (2019) adapt the GNN architecture for the recommendation task while
stressing the importance of capturing higher-order (multi-hop) signals. A number of
following studies further address specific issues of applying GNN to bipartite rec-
ommendation graphs (He et al. 2020; Liu et al. 2022; Liu 2020). Many papers in
this space take a domain-independent angle and instead focus on adapting the GNN
methodology to the recommendation task. They usually evaluate the proposed sys-
tems on various standardized graph datasets, such as MovieLens-1M (GroupLens
2015) (films) or Amazon-book (Iwana 2022) (E-commerce). Some do include smaller
music datasets, such as Last.FM’s, with metadata as node features. Other studies adapt
GNN to application domains, such as social recommendation (Fan et al. 2019) or in-
basket recommendation (Liu et al. 2020). However, to the best of our knowledge, ours
is the first application of GNN for recommendations focusing exclusively on music.
We approach this topic from the music recommendation angle, exploring the potential
of GNN and graph-based ML in general to address crucial domain-specific questions,
such as the CF versus CBF debate and the related questions of data sparsity and the
semantic gap.

We focus our work on PinSage (Ying et al. 2018), a GCN framework developed for
scalable recommendations in production at Pinterest. The platform allows users to save
links accompanied by images, known as pins (items), to thematic boards (collections).
PinSage operates on the resulting board-pin graph and is expected to serve real-time
recommendations to hundreds of millions of users. To achieve this, the researchers
build upon previous GCN concepts:

1. Whereas other GCN methods operate on the entire graph Laplacian, PinSage
dynamically constructs convolutions based on random walks, making its parame-
ter complexity graph-size-independent. This makes the approach highly scalable,
as well as inductive—the model can be trained on a smaller subset of the graph
and does not need to be retrained for new nodes (see Sect. 3.2.1).

2. PinSage also improves recommendation accuracy by adopting (i) importance pool-
ing, wheremore important neighbors contributemore information in a convolution,
and (ii) curriculum training with hard negative examples (see Sect. 3.2.2).
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3 Theoretical framework

3.1 Related song recommendation task

Since our study explores the utility of graph-based methods in MRS from a broad
perspective,we devise our experiment around one of the simplest yetmost fundamental
tasks in music recommendation—similar song prediction. That is, finding similar
music to a single seed (query) song, without any input about the user or context.
This has the advantage of both being able to be framed in the language of the vastly
different algorithms we test, and of being widely applicable to more complex tasks.
For example, it can be used for playlist completion by fetching similar songs to the
existing set with some randomness.

We opt to use consecutive song plays in listening sessions as proxy for similarity.
More specifically, we assume that songs q and i should be considered similar, if they
often appear together in listening sessions. While this may not be an ideal analogy, it
is the data we find available and is inspired by the PinSage paper (Ying et al. 2018).

The algorithms do have access to another source of information, the playlist mem-
bership graph, but only in training. This is not part of the evaluation and can be seen
as background information. This choice, as well, was partially inspired by the exper-
iment design in the PinSage study. Below is a theoretical definition of the proposed
experiment.
We consider the following data:

• A playlist–song graph (G), represented as adjacency matrix G ∈ R
n×m , where

each entry gip is a Boolean value, indicating whether song i is present in playlist
p.

• Audio-content features (F) for each song, represented asmatrix F ∈ R
n×d , where

row Fi is a d-dimensional dense embedding, representing the 30s audio excerpt
of song i .

• A set of song co-occurrences (P), consecutive song plays from users’ listening
sessions. We name these “positive pairs” and represent them as matrix P ∈ R

n×n

where pi j counts the number of times songs i and j appear in such a pair.

Our related song recommendation task is then defined as follows:
Predict song co-occurrences in P. That is, given a pair (q, i) : Pq,i > 0, an

algorithm should include i among its recommendations rq to query q.
To this end, all tested methods utilize one or more of the above data sources to

produce a similarity function sim(i, j) between songs i and j . Embedding methods
first produce dense embeddings V ∈ R

n×d and compute sim(i, j) as the cosine
similarity between the two embedding vectors (cosine(Vi , Vj )). Recommendations
to q are then obtained by querying k nearest neighbors to q with respect to sim. See
Sect. 4 for information about the particular data and methods used.

3.2 PinSage

At its core, PinSage is a GCN-based hybrid node embedding algorithm, which, com-
pared to previous GCN approaches, vastly improves the scalability of the system,
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as well as the quality of learned embeddings.. This is mainly due to a new way of
computing convolutions and an improved training procedure. In our work, we follow
(Ying et al. 2018) to implement a simplified version of the algorithm. We see PinSage
as a state-of-the-art GCN methods and a reasonable choice to explore the potential
of hybrid graph-based methods in music recommendation. As such, we are primarily
interested in its promises of improved recommendation quality, rather than the scal-
ability needed at production scale. The following sections briefly describe the model
architecture and training procedure. If this is of no interest, we advise the reader to
skip Sect. 4.

3.2.1 PinSage architecture

Convolution layer PinSage computes embeddings by dynamically constructing local-
ized convolutions around nodes. Assume a given node u and its graph neighborhood
N (u) are represented by some intermediate embeddings, zu and zv,∀v ∈ N (u). A
single convolution operation is then performed as follows:

1. Transform the neighbors’ embeddings zv,∀v ∈ N (u) through a single-layer dense
NN. Then aggregate outputs with a symmetric aggregation function γ , such as a
weighted mean, to obtain a neighborhood vector nu .

nu ← γ {ReLU (Qzv + q) : v ∈ N (u)}

2. Concatenate nu with u’s current embedding zu . Then transform the resulting vector
through another single-layer dense NN.

znew
u ← ReLU (W (concat(nu, zu) + w)

3. Normalize the output vector znew
u .

znew
u ← znew

u

||znew
u ||2

The output of the operation is a representation of u that incorporates both informa-
tion about itself and its local neighborhood (Ying et al. 2018). Note that the two neural
networks and their parameters Q, q, W , w are shared across all nodes in the graph.
The learned aggregation algorithm is therefore identical for all nodes it is applied to,
making PinSage inductive (Fig. 2).

Stacking convolutions Described above is a single convolution operation. Multiple
such convolutions can be applied in sequence to gain information from more distant
nodes. The initial representations are simply node features z0u = Fu ∈ F . Convolutions
are then stacked so that inputs to layer k are the outputs from layer k − 1.

zk
u = convolve(zk−1

u )
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Fig. 2 Computing a single
convolution step (right) for a
node u in a graph (left)

Fig. 3 Convolution stacking for a single-node batch. First, the minibatch computation graph is constructed
(top), then multiple convolution layers are applied to produce the final embedding (bottom)

The output of the final layer K is transformed through a final fully connected NN to
obtain final embeddings Vu ∈ V .

Vu = G2 · ReLU (G1hK
u + g) ∈ V

The stacked convolutions constitute a single feed-forward step and are done in
minibatches. Given a minibatch of nodes u ∈ M , their K -hop neighborhood is first
queried and then the K convolution layers are applied. This process is illustrated
in Fig. 3. Note that while model parameters are shared across all nodes, they differ
between layers. The set of learned parameters is therefore (Qk, qk Wk, wk : ∀k ∈
1 . . . K ), as well as the parameters of the final NN—G1, G2 and g.

Importance pooling PinSage is novel in how it defines node neighborhoods. Convo-
lutions are not performed directly on the playlist–song bipartite graph G. Instead, the
neighborhood of a given node u is defined as “The T nodes that exert most influence on
u” (Ying et al. 2018). Concretely, these are top T nodes with the highest personalized
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PageRank with respect to node u. Personalized PageRank (PPR) is a similarity metric
between nodes u and v in a graph, approximated by taking random walks with restarts
from node u and counting visits to v. Nodes with the largest visit counts are ranked
highest (Ying et al. 2018; Eksombatchai et al. 2018) (see Sect. 4.3.1)3.

This feature, named importance pooling by the authors, has multiple advantages.
Firstly, fixing the number of neighbors in convolutions means the memory footprint of
the algorithm can be controlled. Additionally, pooling combats the noisy nature of a
playlist–song bipartite graph and deals with heterogeneous nodes, since playlist nodes
can simply be skipped over during random walks. Finally, when aggregating features
from neighbors, a weighted sum with respect to personalized PageRank importance
scores can be used. According to ablation studies, this significantly improves the
performance (Ying et al. 2018).

3.2.2 Training procedure

PinSage is a supervised embedding model in a setting where we assume to have a
ground-truth set of positives P , i.e., pairs of similar items (q, p) ∈ P . The model is
trained to keep such positive pairs close in the embedding space. In our case, the pairs
in P are consecutive song listens (see Sect. 4.1.3).

Negative sampling In training, a given positive pair (q, p) ∈ P is extended with an
additional negative n (i.e., an item not similar to q), to form a triple (q, p, n). For a
query q, negatives are all items that are not positives. However, because the resulting
embedding is expected to distinguish between very similar items and only vaguely
similar ones, the notion of hard negatives (i.e., items that are somewhat similar to the
query q, but not as similar as the positive) can be introduced (see Sect. 4.3.2).

Loss functionGiven a triplet (q, p, n), we define our max-margin-based loss function
as follows:

L(zq , z p) = max{0, zq · zn − zq · z p + �} (1)

To achieve a zero loss, the dot product of the positive pair zq , z p has to be larger than
the dot product of the negative pair zq , zn by at least a margin �.

4 Experiment

4.1 Data

4.1.1 Spotify graph

When discussing “user data” or “user interaction data” in the context of RS, we are
referring to the information about user behavior in relation to provided content. This

3 Note that PPR is used in two ways during this study—as a training mechanism within PinSage and as a
standalone recommendation algorithm among other baselines.
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interaction data is usually in the form of user–item interactions or ratings, but we
can also consider how users organize items, such as songs, into collections, such as
playlists, especially whenmodeling item similarity. Due to often diverse listening pro-
files, we cannot conclude that two songs are similar if they are liked by the same user.
There may be a stronger assumption, however, that users will organize songs into a
playlist because they deem somehow similar, whether it be genre, mood, era or some-
thing else. This rationale is embraced by the researchers at Pinterest (Eksombatchai
et al. 2018; Ying et al. 2018), where pins are considered similar if they often coappear
in boards, and even Spotify is speculated to be adopting playlist–song co-occurrence
as the basis for their CF algorithms (Pastukhov 2022).

Following this motivation, we use Spotify data to construct a bipartite playlist–
song graph G (Fig. 4), where nodes represent either songs or public playlists and
edges denote whether a given song is present in a given playlist. We refer to this
dataset as the Spotify Graph.

At the time of writing, Spotify is the world’s most popular music streaming service,
with over 206 million users and a 31% market share (Mulligan 2021). Fortunately,
they make some of their data available via the public Spotify API. Since we aim to
collect a random and representative sample of the entire catalog, and the API does
not offer a direct way for random retrieval, we opt to build our dataset by querying
the search endpoint for collections using short random queries. However, the search
endpoint is ranked and introduces a heavy recency and popularity bias. To alleviate
this, we randomize the search offset (the index of the first returned item) between zero
and the maximum of 1000 for every query. This ensures not only the most popular
and recent songs are collected.

The resulting dataset includes the described playlist–song graph G as a list of
edges, song metadata, such as artist, title, popularity, etc. and, importantly, a publicly
available 30 s excerpt of each song’s audio, which we use to compute content-based
node features F . The resulting dataset exhibits the expected popularity distribution,
where node degree (number of playlists in which a given song is present) is power-law
distributed. The dataset statistics are presented in Table 1 and Fig. 5.

4.1.2 Node features

Songs in G are associated with high-level real-valued features Fi (see Sect. 3.1),
extracted from either song metadata or the audio signal itself. We consider three
modern deep audio embeddings designed for different MIR and multimedia tasks:

1. L3-Net (Arandjelovic and Zisserman 2017): Look, Listen and Learn (L3) is a
self-supervised joint image and audio embedding, trained on the task of video–
audio correspondence. A given video frame and a 1s audio segment are encoded
by separate GNN models and fed to a fusion layer, whose task is to determine
whether the inputs correspond, i.e., they were extracted from the same segment of
the same video. The jointly trained image and audio encoder can then be used to
produce embeddings. The authors use a subset of AudioSet depicting musicians
playing instruments as traning data. Furthermore, L3-Net (Cramer et al. 2019)
improves the performance by switching to Mel-frequency spectrograms for audio
input.
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Fig. 4 A playlist–song graph,
where songs (left) are associated
with playlists (right)

2. VGGish (Plakal and Ellis 2019): A deep audio embedding, inspired by the
VGGNet convolutional image classification architecture (Simonyan and Zisser-
man 2015). It is trained to predict video tags from the Youtube-8M (Google
Research 2022) dataset based on audio alone.

3. MusicNN (Pons and Serra 2019): Another convolutional model trained for music
audio tagging.UnlikeVGGish,MusicNNdoes not naively apply a computer vision
architecture to audio, but instead employs amusically motivated CNN architecture
as proposedbyPons et al. (2016). Themodelwe employ is pretrainedon theMillion
Song Dataset (MSD).

4.1.3 Song co-occurrences

PinSage requires a ground-truth set of positives P—pairs of assumed-similar items
for training. In the case of Pinterest, researchers opt to use “pairs of pins (q, i), where
a user interacted with pin i immediately after she interacted with pin q” (Ying et al.
2018). Accounting for some noise, such item co-occurrences are assumed to model
similarity, whether it be visual, categorical or semantic.

In the domain of music, similar information can be gathered from listening sessions
datasets which log users’ listening history over time and where consecutive song plays
within a small enough time interval can be seen as item co-occurrences. However, this
comes with a number of challenges. Firstly, there is no reason to assume that all
consecutive song listens indicate similarity to the same degree that consecutive pin
interactions do. Secondly, since music consumption is often passive, such as in the
case of autoplay, the resulting data can quickly fall victim to algorithmic confounding.
A potential solution is offered by the recently released Spotify’s Music Streaming
Sessions Dataset (Brost et al. 2019) which additionally provides metadata about the
type of interactions, such as “autoplay.” This would enable the filtering of entries to
only include manual interactions and possibly alleviate the algorithmic confounding
issue. Unfortunately, the described dataset anonimizes included songs and is therefore
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Table 1 Basic dataset statistics Property Value

# songs in G 112050

# playlists in G 53092

mean song degree 3.9

median song degree 1

# positive pairs 1853537

mean co-occurrence freq. 16.5

median co-occurrence freq. 4

Fig. 5 The distribution of node degree (i.e., number of playlists) for songs in G (a) and the distribution
of the number of co-occurrences (i.e., a row sum in P) for songs in P (b). The log–log scale exposes the
former to be almost perfectly power law distributed with an exponent of approximately −2, while the latter
distribution is less skewed, even constant for items with under 10 co-occurrences

not applicable to our scenario, since we require public IDs to query audio excerpts
and to refer to our playlist–song graph G.

We define our set of song co-occurrences P based on a different listening sessions
dataset, the LFM-1B (Schedl 2016), collected from the Last.fm streaming platform.
Acknowledging the described caveats, we define our related song recommendation
task as consecutive LFM-1B song listens.

Specifically, songs listened to consecutively by the same user within a 30min win-
dow are considered positive pairs. Since the LFM-1B dataset is collected from a
different streaming platform, Last.fm, we link entries to our Spotify Graph by match-
ing songs as (title, artist) tuples. We filter the dataset to include only the intersection
between the songs in the graph G and the positives P , meaning all songs in G are
represented in the training data P and vice versa. To ensure this, the number of pairs
in P is an order of magnitude higher than the size of the graph, since the same songs
appear in multiple pairs. The dataset statistics are presented in Table 1 and Fig. 5.
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Table 2 Key hyperparameters of the trained (base) PinSage model

Node features Epochs Learning rate Decay Batch size Positive pairs (P)
L3-Net 30 10−4 0.95 128 LFM-1b

T Layers In dim Hidden dim Out dim Hard negatives

3 2 512 512 128 False

4.2 Implementation details

We follow the theoretical framework from Sect. 3.2 to implement our variation of
PinSage, as applied to the music recommendation task. The system ingests the node-
feature-attributed graph (G and F) and produces node (song) embeddings (V ), which
are used to generate recommendations downstream.

At each training step, a batch of triples containing a query, a positive and a negative
(q, p, n) is sampled. The query q and the positive p are similar songs. Normally, this
is a co-occuring song pair from P ((q, p) : Pq,p > 0). In the “PPR positives” variant,
the positive p is instead one of the top-three most similar songs to query q according
to PPR in the playlist–song graph G.

In third place, the negative sample n is a song not similar to q. We differentiate
between an easy negative (a random song, completely dissimilar to q barring chance)
and a hard negative (a song ranked between 10 and 100 according to PPR with respect
to q—only somewhat similar). Normally only easy negatives are used. In the “hard
negatives” variant, every other training triple contains a hard negative.

Given the sampled batch, loss is computed as the mean max-margin loss (see
Sect. 3.2.2) over all (q, p, n) triples. The node features as well as the node PPR neigh-
borhoods are precomputed to speed up training.

The overview of the entire system is illustrated in Fig. 6.
The model is trained for 30 epochs at a learning rate of 10−4, a 0.95 per epoch

decay factor and a 10−5 margin. Surprisingly, we find the inclusion of hard negatives
in training to decrease performance in our case (see Sect. 4.3.2). We also find that
the L3-Net audio embeddings perform best as node features. The L3-Net embedding
dimension and thus the PinSage input dimension is 512. The hidden dimension is set
to 512 and the output (embedding) dimension to 128. We use two convolutional layers
and a rather small neighborhood size (T = 3). Interestingly, larger neighborhoods do
not show any performance gains (Table 2).
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Fig. 6 Overview of the system. A playlist–song bipartite graph, attributed with audio-based features, is
fed through the PinSage model to generate node embeddings. A recommendation list is then obtained by
computing cosine similarity to a query embedding and retrieving nearest neighbors

4.3 Evaluation

We evaluate the PinSage model against various baselines on the related song recom-
mendation task as defined in Sect. 3.1. As described, all models are trained on one or
more of the following data sources: audio excerpts and extracted features F , playlist–
song graph G and a training set of positive pairs P . A holdout test set from P is
reserved for evaluation. The split is 70–30%.

4.3.1 Baselines

In the context of recommendations systems, PinSage is somewhat unique with regard
to training and evaluation data. In abstract terms, the model ingests node features
F as input, uses the playlist–song graph G as background information to define
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neighborhoods when building convolutions and is trained in a supervised manner on
the set of song co-occurrences P . The latter, P , also serves as ground truth in the
evaluation task (related song recommendation).

Due to this fact, there are not many directly analogous baseline methods available,
whether it be from the field of RS or graph-based ML. We take note of this caveat
and choose to evaluate various user-data-based recommendation options, as well as
content-based methods. The former are either graph-based or CF systems, while the
latter are deep audio embeddings. As control, we include a baseline which produces
random recommendation lists.

User-data-based methods.We cover both unsupervised graph-based methods, which
use the playlist–song graph G and the more traditional matrix-based CF methods, that
either leverage the song co-occurrence matrix P or the matrix form of G.

• node2vec (Grover and Leskovec 2016) An unsupervised node embedding algo-
rithm which aims to preserve node neighborhoods as defined by biased random
walks. The biased walks ensure that the produced representations accommodate
different notions of similarity within graphs. We do not apply node2vec directly to
the bipartite graph G, but to its track projection, i.e., a homogenous graph where
two nodes (tracks) are connected if they coappear in at least one common playlist
in the original bipartite graph and the weight of the edge is the number of such
coappearances.

• Personalized PageRank (PPR) (Eksombatchai et al. 2018) A flexible node simi-
larity measure drawing from the notion of PageRank. It is approximated by taking
random walks from a node q and counting visits to nearby nodes.

1: x ← q
2: while i < n do
3: if rnd() < α then
4: x ← q
5: else
6: x ← randomChoice(neighbors(x))

7: end if
8: visi ts[x] ← visi ts[x] + 1
9: i ← i + 1
10: end while

The most visited nodes are taken as q’s nearest neighbors. These are theorized as
nodes that exert most influence on a but can be seen in practical terms as the nodes
most easily reachable from q, possibly in different ways. This same algorithm
is used within PinSage when querying node neighborhoods (see Sect. 3.2.1). A
heavily optimized variation is also the basis of Pixie (Eksombatchai et al. 2018),
another recommender at Pinterest.

• Playlist–track CF (Hu et al. 2008) a model-based CF where track latent factors
(embeddings) are obtained by factorizing the playlist–track membership matrix
(i.e., the graph adjacency matrix G). We choose alternating least squares (ALS)
as the factorization algorithm since it consistently outperforms BPR (Rendle et al.
2009) and LMF (Johnson et al. 2014) in our tests.
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• Track–track CF (Hu et al. 2008) A model-based CF where track latent factors
(embeddings) are obtained by factorizing the track–track co-occurrence matrix
(i.e., the set of positive pairs P). As such, this approach is supervised to predict
co-occurrence pairs but does not access the graph structure. We again use the ALS
algorithm.

Content-based methods. We also consider baselines that only use content (the audio
signal) to represent songs. These are the same deep audio embeddings that we use as
node features: L3-Net (Arandjelovic and Zisserman 2017),VGGish (Plakal and Ellis
2019) and MusicNN (Pons and Serra 2019). See Sect. 4.1.2 for more details.

4.3.2 Ablation study

In addition to comparing to baselines, we also conduct an ablation study to gain
insight into what features of the PinSage model and its training might contribute to
performance. Below we refer to the tested variants as they are named in the Results
Sect. 5.

• PPR positives. In its base form, PinSage is a multimodal model trained on the
evaluation task (predicting pairs in P), butwith access to background data a playlist
graph G and content features F . Here, we reconsider the choice of training data,
replacing song co-occurrences from LFM-1B with positive pairs sourced from the
graph G itself by taking pairs of similar songs according to PPR (see Sect. 4.1.3 for
more detail). This effectively institutes a transfer learning setup. Themodel has not
been trained on the evaluation task and will only perform well if representations
learned only from G are general enough to apply to predicting similar pairs in P .

• Hard negatives. In half of all query-positive–negative (q, p, n) training triples, the
negative is not an easy negative (random song), but a hard negative (a somewhat
similar song, see Sect. 4.2). The idea to introduce a much harder learning objective
should result in a more fine-grained notion of similarity, where very similar songs
can be discriminated from only vaguely similar songs.

• VGGish, MusicNN and Random. Since GCN produce embeddings by aggre-
gating node features F , we conjecture that the choice of the content embedding
is a key factor. Besides the base PinSage variant, which uses L3-Net, we also
test VGGish and MusicNN as node features. Additionally, we conduct a control
experiment with random features, which can be seen as removing content.

• Short training and Overparametrized. Finally, we examine two more training
parameters which have most strongly correlated with performance in our pre-
liminary testing. We consider a short training procedure (five epochs) and an
overparametrized model with five convolution layers, a hidden dimension of 1024
and an embedding dimensions of 256.

4.3.3 Accuracy metrics

A ground-truth pair of similar songs (q, i) : Pq,i > 0 consists of a query track q and
one ground-truth relevant item (i.e., a similar song) q. Given q, a recommendation
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algorithm generates a ranked list of top-k relevant song recommendations rq . Across
all pairs in P , an effective algorithm should include i among its recommendations r
often and ideally rank it near the top. To quantify this notion, we compute twometrics:
hit-rate and mean reciprocal rank (MRR).

• Hit-rate. A flat metric: the ratio of all test pairs (q, i) : Pq,i > 0, where i is among
top K recommendations.

hit-rate @k = 1

n

∑

Pq,i >0

{
1, if i ∈ rk

q

0, otherwise
(2)

• Mean reciprocal rank (MRR). A rank-aware metric: the average inverse rank of
i in recommended lists.

MRR = 1

n

∑

Pq,i >0

1

rank(i, rq)
(3)

4.3.4 Beyond accuracy

As described in Sect. 2.1, we aim to evaluate the characteristics of the studied methods
in a holistic manner, beyond simple accuracy metrics. To get insight into the recom-
mendations generated by our baselines, particularly in relation to their handling of
data sparsity and their performance in the long tail, we inspect the following metrics.

• Intra-list diversity. Ameasure of the expected dissimilarity between items within
a single recommendation list. It is computed as cosine dissimilarity between rec-
ommended items based on some features. In our case, these are audio-content
embeddings F . Sometimes referred to as diversity, this metric quantifies how var-
ied the produced recommendations tend to be.

• Inter-list diversity. A measure of expected dissimilarity between recommenda-
tions to different users or queries. It is computed as cosine dissimilarity between
one-hot representations of recommended lists. Sometimes referred to as person-
alization, this metric can imply recommendations that are tailored to a particular
user or query, as opposed to being generic. It is additionally related to the notion
of serendipity—the ability to recommend new, unknown, but relevant items.

• Coverage. The ratio of items, among all available, themodel is able to recommend.
Low coverage usually indicates an inability to deal with the long tail. A model
which only ever recommends, e.g., a small subset of popular songs, might still
exhibit a decent average prediction accuracy due to the high frequency of short
head queries. Still, such a system is obviously unfavorable, since it completely
ignores the majority of the music catalog.

• Average recommended degree. The average node degree, in G, across all recom-
mended songs. Since node degree (i.e., the number of playlists the song appears
in) approximates song popularity, high average recommended degree indicates a
preference for popular recommendations
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• Low-degree accuracy. An accuracymetric, hit-rate orMRR, evaluated on a subset
of only low-degree queries.Weuse a threshold degree of< 2. Thismetricmeasures
performance when recommending to songs in the long tail. We track low-deg MRR
and sparse MRR, meaning MRR evaluated on queries with few co-occurrences in
P .

5 Results

This section presents the results of the conducted experiments.We evaluate the success
of the considered methods both in terms of recommendation accuracy and in terms
of beyond-accuracy objectives. The presentation of results is followed by an in-depth
discussion in the next section (Table 3).

AccuracyLooking at accuracy scores—hit-rate andMRR—graph-basedmethods per-
form best. Personalized PageRank can be observed as the top performer overall, with
leading scores on all metrics except MRR. Second overall is node2vec, another unsu-
pervised graph method, followed by our implementation of PinSage. These three
methods show an average rank of 1.2, 2.2 and 4.2, respectively. Notably, the Pin-
Sage variation using PPR training positives (i.e., is trained only on graph G without
knowledge of the evaluation task P , see Sect. 4.3.2) sometimes outperforms the base
model with minimal differences overall. The two matrix-based CF methods, track–
track CF and playlist–track CF, lag somewhat behind, but considerably outperform the
content embeddings. Surprisingly, this is not consistent across all metrics, the distinct
exception beingMRR, where content-basedmethods performwell, with VGGish even
scoring best (Table 4).

Looking at accuracy in sparse areas, low-deg MRR and sparse MRR show no
observable performance drop among long tail queries overall, even in user-data-based
methods, with most even scoring marginally higher. The only exception is track–track
CF, which scores significantly lower on sparse MRR. It should be noted that results are
not entirely conclusive, with sometimes inconsistent rankings across metrics. Still, it
is clear that graph-based methods on average provide better accuracy by a significant
factor (from 10% to 100%), and that accuracy does not drop-off due to data sparsity,
even for CF-based methods.

Beyond accuracy Beyond-accuracy scores provide further insight into the evaluated
recommenders. The L3-Net audio embedding exhibits lowest intra-diversity, while
track–track CF recommends most diverse lists. Conversely, track–track CF scores
lowest in inter-diversity,whileCol-trackCFandnode2vec comeupon top (i.e., provide
most “personalized” recommendations). Although the differences here seemmarginal,
the value of 0.87, reached by track–track CF, corresponds to a cosine similarity of 0.13,
which is about 65 times more than that of node2vec (0.002) and 130 times more than
the expected similarity between two random lists (0.001). Coverage indicates that all
methods except track–track CF access approximately the entire catalog. The latter still
covers 80%, which is far from just the short head. There are also significant differences
in mean recommended degree. PPR gives by far the highest-degree recommendations
(i.e., the most “topologically” popular songs), with mean degree of 9.4. Conversely,
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node2vec on average recommends nodes with degree of 2.1, which is lower than the
graph average and lower than all content-based methods (Table 5).

Ablation studyThebasePinSagemodel, described inSect. 4.2, shares the top two ranks
with the variation that uses PPR positive pairs instead of LFM-1B co-occurrences for
training. Close behind is the variant using VGGish features, which appear closely
matched with L3-Net. On the contrary, MusicNN embeddings perform far worse.
Here, this difference is far more substantial compared to the when these embeddings
are used directly as baselines. The addition of hard negatives, it emerges, does not
only not improve performance, it significantly decreases it.

6 Discussion

The observed results can be summarized as follows. PinSage is among the most accu-
rate methods overall with an average rank of 4.2 and is, across metrics, comparable
with, but not better than, the best user-data-based methods. The top performers in
question are the unsupervised graph-based approaches—PPR, and to a lesser extent,
node2vec—which significantly outperform the traditional matrix-based CF models,
evenwhen trained on identical data. This difference, which is significant and consistent
across all metrics, is in agreement with our secondary hypothesis that graph-based
methods can better utilize information from user interaction data.

Surprisingly, it can also be observed that unsupervised methods, trained only on the
graphG, outperform the supervisedmethods, trained on the evaluation task: predicting
co-occurrence pairs in P . This holds true not only for PPR and node2vec, but also
to some extend for PinSage, where the variation trained on PPR-similar song pairs
extracted from G scores better on some metrics and is at least comparable to the base
model, trained on P . Even when looking at matrix-based CF, the col-track model
outperforms the track–track model on multiple metrics. This might suggest playlist
membership to be an effective source for mining song similarity that generalizes well
to other MRS tasks, and that in some situations, this sort of similarity-first transfer
learning is an effective strategy.

The results suggest that even user-data-based methods exhibit no significant per-
formance decrease when recommending to songs in the long tail. As such, there is
also no change in the ranking—graph-based methods remain the top performers. The
exception is track–trackCF,which expectedly performs poorlywhen recommending to
queries with sparse co-occurrence data, i.e., on the sparse MRR metric, where it scores
approximately three to four times lower than in the general case. In terms of mean
recommended degree, some user-data-based methods do recommend predominantly
popular songs but others do not. This decidedly contradicts our primary hypothesis
that PinSage, a hybrid method, stands to outperform user-data-based methods in the
long tail, where the latter ought to perform poorly.

Beyond-accuracy metrics expose certain patterns that accuracy scores do not.
Track–track CF unsurprisingly generates most (internally) diverse recommendation
lists in contrast to audio embeddings, which recommend sonically similar songs. How-
ever, track–track CF and PPR stand out as the worst in terms of personalization. PPR
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especially exhibits a mean recommended degree of 45.0, meaning it recommends
predominantly very popular songs. This is reflected in its low inter-diversity. Unlike
track–track CF, however, PPR still manages to cover the entire catalog, showing that
inter-diversity and coverage do not always correlate. In contrast, node2vec generates
recommendations with a mean degree of 2.1, significantly lower than even the graph
average. That is, node2vec recommends predominantly unpopular long-tail songs. Yet,
exactly PPR and node2vec are the top performers in terms of accuracy. This suggests
that personalization does not correlate, neither positively nor negatively, with recom-
mendation accuracy on our evaluation task. In fact, nor do other beyond-accuracy
metrics. This suggests that looking beyond accuracy indeed reveals patterns and that
accuracy does not and highlights methods that could have been disregarded due to the
former. Whether this translates to a real-world user experience remains unanswered
within the offline setting.

Contrary to our intuition, the audio embeddings L3-Net and VGGish perform well,
even taking the third and first spot, respectively, on M R R. In terms of this measure,
they are comparable with the user-data-based and even hybrid approaches. This is
remarkable, since L3-Net is trained on an unrelated self-supervised video–audio cor-
respondence task and is not at all fine-tuned on our evaluation task, nor on any other
recommendation task. Yet, the embedding manages to capture sonic similarity on per-
ceptual level, which translates to good kNN recommendations, seemingly “bridging
the semantic gap.” Also of note is that even L3-Net and other content-based methods,
which are “unaware” of which songs are popular, recommend marginally more pop-
ular songs (mean degree of 4.2) than the graph average (3.9). This suggests both that
modeling task-agnostic song similarity is a good base for transfer learning, and that
modern audio embeddings do, in some sense, cross the semantic gap and are useful
for this task.

Also worth noting is the fact that PinSage is well balanced in terms of beyond-
accuracy metrics. It covers the entire catalog, exhibits high personalization, and, in
contrast to PPR, gives recommendationswith amean degree close to the graph average.
PinSage, too, is faster at inference compared to PPR and is inductive unlike node2vec,
which requires a re-computation on the entire graph when new nodes are added. It also
shows consistent accuracy—its lowest rank among accuracy metrics is 6, not far from
its average rank of 4.2. This indicates a robust approach that does not fail in certain
situations or in terms of certain qualities.

Recommendation examples
Tables 6 and 7 showcase examples of recommendations generated by some of the

evaluated methods. Recommendations to If You’ve Got Love by Dave Mason, a folk
rock song, demonstrate differences between the content-based methods and methods
with access to user data (Table 6). PinSage and PPR recommend similar songs within
roughly the same genre and era. Considering the discussed semantic gap, the L3-
Net audio embedding, too, captures perceptual similarity remarkably well. Naturally
though, it is not constrained by categories like era or language. Milk and Toast and
Honey and Incondicional sound somewhat similar to the query, but one is a 2000s pop
song and the other is a contemporary Latin pop song. This may be of note, since users
may or may not prefer recommendations constrained within their familiar category,
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Table 6 Recommendations to a
70s folk rock song

(a) PinSage (base)

If You’ve Got Love

Dave Mason

It’s Like You Never Left

Substitute

Clout

Since We’ve Been Gone

You’re Not Alone

Chicago

The Very Best of Chicago

Rosanna

TOTO

The Essential Toto

Foreplay

Boston

Greatest Hits

(b) L3-Net

If You’ve Got Love

Dave Mason

It’s Like You Never Left

Saturday in the Park

Chicago

Chicago IX

Incondicional

Prince Royce

Phase II

Be Mine Tonight

Th’ Dudes

Right First Time
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Table 6 continued (b) L3-Net

Milk and Toast and Honey

Roxette

The 30 Biggest Hits

(c) Track–track CF

If You’ve Got Love

Dave Mason

It’s Like You Never Left

The Way You Make Me Feel

Michael Jackson

Bad 25th Anniversary

Papa Don’t Preach

Madonna

True Blue (Reissue)

Hungry Heart

Bruce Springsteen

The River

Someone Else Not Me

Duran Duran

Pop Trash

(d) PPR

If You’ve Got Love

Dave Mason

It’s Like You Never Left

Country Road

James Taylor

Greatest Hits

Daydream Believer

The Monkees

The Best of The Monkees
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Table 6 continued (d) PPR

Love Street

The Doors

Waiting for the Sun

Never Ending Song

Delaney & Bonnie

Rhino Hi-Five

Table 7 Recommendations to a
contemporary techno song

(a) Pin Sage (base)

Ping Pong

Plastikman

Closer

Marionette

Mathew Jonson

Marionette

Cornish Acid

Aphex Twin

Richard D. James Album

Congenial Endeavor

Adam Beyer

Congenial Endeavor

Stop Your Hate

Maceo Plex

Sweating Tears EP

(b) L3-Net

Ping Pong

Plastikman

Closer
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Table 7 continued (b) L3-Net

My Stupid (Edit)

Extrawelt

My Stupid

Prisma

Boris Brejcha

Feuerfalter

Zunder

Marek Hemmann

Bittersweet

Qawwali

Pinch

Qawwali

(c) Track–track CF

Ping Pong

Plastikman

Closer

Last Train to Lhasa

Banco De Gaia

Last Train to Lhasa

Polyrytmi

Carbon Based Lifeforms

Interloper

Blaze It

Bone Thugs-N-Harmony

The Art of War: WW 2
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Table 7 continued (c) Track–track CF

14:31

Global Communication

76:14

(d) PPR

Ping Pong

Plastikman

Closer

Krakpot

Plastikman

Krakpot

Marionette

Mathew Jonson

Marionette

Stop Your Hate

Maceo Plex

Sweating Tears EP

Beauty & the Beast

Sven Väth

Beauty & the Beast

especially when it comes to language. Track–track CF stands out with a selection
of two pop songs, a pop rock and a new wave song. All of these can be classified as
errors. In fact, this exact selection is recommended to many different unrelated queries
and appears to be (one of) the constants this method devolves to in some areas of the
query space. This is to some extent reflected in a low inter-diversity score—a subset
of recommended lists are identical.

In the case of Ping Pong by Plastikman (Table 7), PinSage and PPR identify its
well delineated niche of contemporary techno. Surprisingly, the content-based L3-Net
recommendations line up almost exactly with this category, perhaps hinting at a genre
truly defined by its sonic properties and not by its topological position. Based on our
observation, this trend is common among modern instrumental genres. Track–track
CF gives more similar recommendations in this example, with only one complete
offshot: Blaze It, an R&B song. Still, the other three tracks are sonically somewhat
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further from the query compared to the other recommendations, which may indicate
intra-list diversity in this case.

In summary, some but not all of these observed patterns are to some extent reflected
in beyond-accuracy metrics. Hardly any of the above, thought, could be inferred from
the accuracy metrics. For example, the relatively common case where track–track CF
degenerates to entirely irrelevant recommendations is not exposed in the accuracy
scores, although it might be the hidden cause for a lower score. Neither is the fact
that L3-Net frequently recommends across languages. Both of these characteristics,
however, could be considered deal-breaking issues by many users.

7 Conclusion

In this study, we deployed a graph convolutional network, PinSage, in the role of a
hybrid music recommender and assessed it against several audio-content-based and
collaborative filtering baselines, both matrix-based and graph-based. The methods
were evaluated on a related song recommendation tasks and reviewed not only on
grounds of prediction accuracy, but also in terms of beyond-accuracy metrics.

Our results suggests that

(i) Graph-based CF methods significantly outperform matrix-based CF approaches
and are themost accurate. This supports our first conjecture and strongly suggests
that graphs are the preferable means of representing user interaction data.

(ii) PinSage is competitive with the best baselines in terms of accuracy, as well as
exhibits several favorable characteristics. In the scope of our evaluation task,
however, the performance of user-data-based methods does not deteriorate in
the long tail. As such, hybrid methods, represented by PinSage, do not offer a
data-sparsity advantage in this case.

(iii) Beyond-accuracy evaluation reveals qualities that accuracy and highlights rele-
vant differences betweenmethods that may have otherwise gone unnoticed. Still,
a qualitative examination shows the limitation of offline studies in general—there
are significant behaviors that even beyond-accuracy metrics fail to reflect.

We conclude that graph-based approaches are indeed effective in the music recom-
mendation domain, where they completely outperform the currently most widespread
approaches (matrix-based CF). As such, we believe these approaches can represent
a potential future direction of MRS. GNN, the hybrid methods represented in our
work by PinSage, are among the most attractive even among graph-based approaches.
However, our results cannot lead us to conclude they are the current top performers in
MRS. We especially cannot conclude that the GNN hybridization offers an advantage
over CBF and CF approach in terms of, e.g., handling sparse data. These findings and
shortcomings spawn a number of potential research directions.

The benefit of using graphs to represent user data in RS, which our study exposes,
should be systematically evaluated. Studying various sources for user interaction
graphs (e.g., playlist membership, song co-occurrence and user–item interactions),
as well as the entire range of graph-based methods from simple node similarity coef-
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ficients to GNN would reveal where the value of this modality lies and how to most
efficiently utilize it.

We also believe that GNN (and PinSage) are flexible methods, which might offer
even more than are study demonstrates. We are especially interested in utilizing dif-
ferent modalities, such as images (e.g., album covers) and texts (e.g., song metadata
and artist descriptions) as node features. Similarly, alternative GNN architectures and
training protocols may be tested.

Finally, this study indicates what has been discussed in the literature before—
offline studies and corresponding accuracy metrics are severely limited in assessing
the “real-world” performance of recommender systems (Kaminskas andBridge 2017).
Among all, the unexpected results in the long tail suggest that the conducted evaluation
task does not reveal the whole picture. We believe that, in order to better gauge the
contribution of hybridization with GNN, the evaluation setup ought to be upgraded,
either with a user study or by carefully redesigning the offline study. Counterfactual
evaluation, which aims to mimic A/B testing, might be a promising direction. The
answers to these questions, presented by our study, would potentially help establish
graph-based methods as the new paradigm in music recommendation.
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Marko Tkalčič is associate professor at the Faculty of Mathematics, Natural Sciences and Information
Technologies (FAMNIT) at the University of Primorska in Koper, Slovenia. He aims at improving person-
alized services (e.g. recommender systems) through the usage of psychological models in personalization
algorithms. To achieve this, he uses diverse research methodologies, including data mining, machine
learning, and user studies.

Matevž Pesek is an assistant professor (PhD) and a researcher at the Faculty of Computer and Informa-
tion Science, University of Ljubljana. He received his B.Sc. in computer science in 2012 and his PhD in
2018. He is a member of the Laboratory of Computer Graphics and Multimedia since 2009. His research
interests are biologically-inspired models, deep architectures including compositional hierarchical mod-
elling and music multimodal perception, including human-computer interaction, and visualization for
audio analysis and music generation.

123


	Hybrid music recommendation with graph neural networks
	Abstract
	1 Introduction
	2 Related work
	2.1 Music recommendation: tasks and challenges
	2.2 Collaborative filtering
	2.3 Content-based filtering
	2.4 Hybrid systems
	2.5 Machine learning on graphs
	2.6 Graph-based recommendation

	3 Theoretical framework
	3.1 Related song recommendation task
	3.2 PinSage
	3.2.1 PinSage architecture
	3.2.2 Training procedure


	4 Experiment
	4.1 Data
	4.1.1 Spotify graph
	4.1.2 Node features
	4.1.3 Song co-occurrences

	4.2 Implementation details
	4.3 Evaluation
	4.3.1 Baselines
	4.3.2 Ablation study
	4.3.3 Accuracy metrics
	4.3.4 Beyond accuracy


	5 Results
	6 Discussion
	7 Conclusion
	References


