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ABSTRACT
In this paper, we aim to improve rendering reflections using environment maps on moving reflective objects. Such
scenarios require multiple reflection probes to be positioned at various locations in a scene. During rendering,
the closest reflection probe is typically chosen as the environment map of a specific object, resulting in sharp
transitions between the rendered reflections when the object moves around the scene. To solve this problem,
we developed two convolutional neural networks that dynamically synthesize the best possible environment map
at a given point in the scene. The first network generates an environment map from the coordinates of a given
point through a decoder architecture. In the second approach, we triangulated the scene and captured environment
maps at the triangle vertices – these represent reflection probes. The second network receives at the input three
environment maps captured at the vertices of the triangle containing the query point, along with the distances
between the query point and the vertices. Through an encoder-decoder architecture, the second network performs
smart interpolation of the three environment maps. Both approaches are based on the phenomenon of overfitting,
which made it necessary to train each network individually for specific scenes. Both networks are successful at
predicting environment maps at arbitrary locations in the scene, even if these locations were not part of the training
set. The accuracy of the predictions strongly depends on the complexity of the scene itself.
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1 INTRODUCTION
Rendering reflective materials presents a formidable
challenge in real-time computer graphics. Our goal is
to render reflections that faithfully mirror the surround-
ings of a moving reflective object while ensuring fast
rendering. Various techniques address this issue, yet
the balance between speed and accuracy remains ever-
present.

At one end of the spectrum, we encounter techniques
yielding highly precise results but demanding con-
siderable time and computational resources, often
unsuitable for real-time applications. Path tracing,
notably improved by the recent advancements in
denoising techniques, serves as a prominent example.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Conversely, there exist techniques capable of fast
but less precise outcomes. By far the most common
approach in practice are environment maps. However,
environment maps capture only the surroundings of a
single point in space (i.e. the reflection probe), which
may result in inaccurate reflections if the location of
the reflection point differs from that of the probe. To
some extent, this issue can be addressed by placing
multiple reflection probes in a scene and then selecting
the closest one at runtime based on the location of
the reflective object. This leads to sharp transitions
between reflections when the selected reflection
probe changes, which can be mitigated by linearly
interpolating neighboring reflection probes. Linear
interpolation, however, leads to noticeable inaccuracies
and distortions in interpolated reflections.

To address these issues, we present two techniques
based on convolutional neural networks (CNNs). In the
first approach, a CNN with a decoder architecture takes
the location of a reflective object as input and outputs an
interpolated environment map at that location. The sec-
ond technique uses a CNN with an encoder-decoder ar-
chitecture. First, the set of reflection probes is triangu-
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lated, yielding a triangle mesh covering the scene. Dur-
ing runtime, three reflection probes that form a triangle
encompassing the reflective object are selected. Their
corresponding environment maps, along with interpo-
lation weights determined by the distance of the reflec-
tive object from the reflection probes, are input into the
CNN. The CNN then outputs the interpolated environ-
ment map for the given location within the scene. Train-
ing both CNNs involves overfitting to specific scenes,
necessitating separate training sessions for each scene.
We evaluate the techniques on several scenes to demon-
strate their performance and accuracy. Results show
that both techniques produce more accurate reflections
than simple linear interpolation, at the cost of computa-
tional complexity.

2 RELATED WORK
Rendering reflections in computer graphics is a richly
explored domain crucial for achieving realistic scenes.
While sophisticated algorithms like path tracing offer
physically accurate illumination, there is a parallel fo-
cus on less computationally intensive methods leverag-
ing ambient images and reflection probes.

Foundational work by Blinn and Newell [3] introduced
techniques for applying textures and reflections to
curved surfaces, elevating rendering quality using
digital signal processing theory and curved surface
mathematics. By incorporating a reflection term
inspired by Phong’s work [9], the authors aimed to
simulate more realistic lighting effects, particularly
on highly polished surfaces. This involves accurately
modeling surface properties and employing precise
normal vectors, along with a subdivision algorithm
to facilitate the simulation of mirror reflections from
curved surfaces.

Structured importance sampling, detailed by Agarwal
et al. [1], offers a technique for illumination rendering
based on surrounding images. It includes algorithms
for sampling lighting textures with visibility consider-
ation and hierarchical layering for surrounding image
sampling, optimizing reflection rendering while reduc-
ing the required samples.

Ramamoorthi and Hanrahan’s contributions [10] intro-
duced efficient reflection representation with spherical
harmonic reflection maps, allowing for accurate sam-
pling frequency determination based on error analysis
and fast prefiltering methods using spherical harmonic
transformations.Further advancements in reflection ap-
pearance were made through the prefiltering of ambi-
ent images. Kautz et al. [4] presented three algorithms
that unify prefiltering methods, including fast hierar-
chical filtering, machine-accelerated prefiltering, and
anisotropic BRDF model prefiltering. The first algo-
rithm provides approximately 10 times faster prefilter-
ing than the brute force method, while the second, op-

timized for real-time usage, provides accelerated pre-
filtering. Lastly, the third enables the application of en-
vironment map techniques to anisotropic BRDF models
for the first time.

Ashikhmin and Ghosh [2] simplified reflection creation
with simple blurred reflections using OpenGL capabil-
ities, while Křivánek and Colbert [6] developed filter
importance sampling to reduce aliasing errors in real-
time rendering.

Manson and Solan’s fast filtering method [7] utilized
hardware-accelerated trilinear sampling for efficient
cube map prefiltering, optimizing coefficients to main-
tain high-quality results while reducing complexity.

McGuire et al. [8] introduced a novel data structure
called light field probes, and two algorithms for real-
time global illumination computation in static environ-
ments. The ideas from screen-space and voxel cone
tracing techniques were applied to this data structure to
efficiently sample radiance on world space rays, with
correct visibility information, directly within a pixel
and compute shaders. The approach improves tradi-
tional techniques by eliminating artifacts like light leak-
ing and enabling complex illumination effects in real-
time rendering scenarios.

Xia and Kuang [12] presented a novel method for non-
uniform probe placement in probe-based global illumi-
nation algorithms, aiming to reduce memory waste and
improve shading accuracy. The algorithm dynamically
adjusts probe positions based on illumination informa-
tion, by calculating irradiance errors between probes
and shading points and employing gradient descent.
The method achieves similar rendering quality to exist-
ing techniques like DDGI but with fewer probes. How-
ever, the algorithm is currently limited to static scenes
and light sources.

Rodriguez et al. [11] presented a method for global
illumination rendering using illumination textures and
reflection probes, optimizing memory consumption
with adaptive parametrization and introducing reflec-
tion probes to store light paths in the scene for specular
reflections.

Finally, Kopanas et al. [5] introduced a novel approach
for rendering scenes with curved reflectors, termed
Neural Point Catacaustics, using a point-based repre-
sentation and a neural warp field to model reflection
trajectories. By leveraging neural rendering techniques
and efficient point splatting, complex specular effects
can be synthesized from casually captured input photos.
Key contributions include the explicit representation
of reflections with reflection and primary point clouds,
enabling interactive high-quality renderings of novel
views with accurate reflection flow.

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu Vol.32, No-1-2, 2024 

62https://www.doi.org/10.24132/JWSCG.2024.7



3 INTERPOLATION NETWORKS
Our goal was to devise methods for generating accu-
rate environment maps at arbitrary locations in a scene,
used for rendering reflective objects. In this section,
we present two approaches based on CNNs. Both ap-
proaches intentionally leverage overfitting. Our strat-
egy involved training each model with a rich set of
scene-specific data, which facilitated the learning of in-
tricate details and subtleties within test scenes, thus en-
abling the models to adapt effectively to the test scenes.

3.1 First approach: point-based predic-
tion

In the first approach, we provided the CNN with global
coordinates (x,y,z) of a reflective object at its input,
and tasked it with predicting a corresponding environ-
ment map for the given location. The CNN adopts a
decoder architecture, transforming global coordinates
into an RGB image. First, the input passes through
4 fully connected layers, which expand to 384 output
neurons. Subsequently, the CNN features 16 convolu-
tional layers, with batch normalization incorporated af-
ter each layer to ensure stable learning. To achieve the
desired output image resolution of 512× 256 pixels, 5
upsampling layers are inserted after every third convo-
lutional layer, doubling the spatial resolution. ReLU ac-
tivation functions are applied after each fully connected
or convolutional layer. A schematic of the architecture
is shown in Figure 1.

Figure 1: Schematic of the CNN used in the first ap-
proach.

3.2 Second approach: triangulation-
based prediction

In the second approach, we aimed to enrich the net-
work’s input with additional scene context, providing
three environment maps along with interpolation
weights based on the distance from the reflection
probes.
Interpolation weights w1, w2 and w3 for a point x in a
triangle defined by reflection probe locations p1, p2 and
p3 are computed as follows:

w′
1 = (∥p1 −x∥+ ε)−1

w′
2 = (∥p2 −x∥+ ε)−1

w′
3 = (∥p3 −x∥+ ε)−1

w1 = w′
1/(w

′
1 +w′

2 +w′
3)

w2 = w′
2/(w

′
1 +w′

2 +w′
3)

w3 = w′
3/(w

′
1 +w′

2 +w′
3)

We used ε = 10−9 to avoid numerical errors.

3.2.1 Architecture
The CNN in the second approach adopts an autoen-
coder architecture. The encoder comprises 5 convolu-
tional layers paired with max pool layers for each of
the three input images. The interpolation weights are
passed through 4 fully connected layers followed by 5
convolutional layers. Subsequently, the encoded data
is passed through the decoder, consisting of 7 convo-
lutional layers. In the decoder, upsampling layers are
inserted after each convolution, except the last two, as
the desired resolution, which was the same as in the
first approach, was achieved at that point. Similar to
the first approach, ReLU activation functions are ap-
plied after each fully connected or convolutional layer.
A schematic of the architecture is shown in Figure 2.

Figure 2: Schematic of the CNN used in the second
approach.

3.2.2 Scene triangulation
Each scene has been triangulated based on a manually
selected set of reflection probe locations. Delaunay
triangulation has been used due to its tendency to
avoid sliver triangles. The selection of reflection probe
locations varied based on the size and complexity of
each scene. In the largest and simplest scene, spanning
from (−400m,−400m) to (400m,400m), 25 reflection
probes were determined, while the second and third
scenes, although smaller in scale but more intricate,
necessitated a denser placement of reflection probes.
Specifically, the second scene, measuring (−5m,6m)
by (7m,23m), had 21 reflection probes, while the
third scene, sized (2m,25m) by (32m,50m), featured
33 reflection probes. Similarly, in the fourth scene,
which spanned from (5.7,−1.9) to (11.7,−28.9), 25
reflection probes were uniformly placed. The fifth
scene, although bigger, spanning from (−45,70) to
(100,−140), had its main focus between coordinates
(−45,8) to (100,−11) and (23,−11) to (40,−140).
Consequently, there was a denser placement of 25
reflection probes within this area to capture the scene’s
intricacies. Similarly, In the first scene, reflection
probes are densely concentrated in the central region,
as it is the most relevant area of the scene, whereas, in

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu Vol.32, No-1-2, 2024 

63https://www.doi.org/10.24132/JWSCG.2024.7



the subsequent three scenes, we aim to distribute the
reflection probes as uniformly as possible across the
entirety of the scene. Figure 3 shows how the scenes
have been triangulated.

At each selected reflection probe, we captured the envi-
ronment map required as input data for the CNN.

Figure 3: Triangulation of used scenes.

3.3 Learning data
Training the CNNs requires a diverse dataset encom-
passing input-output pairs for every scene.

For both approaches, panoramic environment maps
serve as the reference output data, captured at uniform
grid intervals adjusted for scene complexity and size.
Specifically, 600 locations were determined for the
first scene, 250 for the second scene, 805 for the third
scene and 196 for the fourth scene where environment
maps were captured. The fifth scene, however, was
an exception, with 1210 locations not determined
uniformly across the whole scene but only in the most
relevant part, which was from (−45,8) to (100,−11)
and (23,−11) to (40,−140).

In the second approach, reflection probe locations were
also determined, and panoramic images captured at
these points served as input alongside interpolation
weights for the locations of reflective objects.

Careful curation of the training set ensures an accurate
representation of the depicted scene, facilitating effec-
tive network learning.

3.4 Learning procedure
We begin by outlining the training process for both
CNNs before delving into a detailed presentation of
their performance in Section 4.

During each iteration of the network, input data were
first fed through the model to generate predictions in
the form of image data. Then the Mean Square Er-
ror, which was used as a loss function, was computed
from predicted images provided on the CNN’s output
and true images for the given input coordinates pro-
vided in the training set. The Adam optimizer was then
employed to minimize the model’s error.

For both developed CNNs, three key parameters were
determined: the learning rate, batch size, and the num-
ber of epochs. Throughout the training of both net-
works, the learning rate was set to 0.0005. For the first
network, the batch size was set to 32, and the number of
epochs was set to 16,384, while these hyperparameters
were halved for the second network due to the increased
complexity of the input data, which included three ad-
ditional images.

Both models for all three scenes were trained using an
AMD Ryzen Threadripper 1950X 16-Core CPU in con-
junction with an NVIDIA TITAN V GPU.

The learning procedures for each scene are shown in
Figure 4. The loss function values of the last steps are
presented in Table 1 and the training duration for both
CNNs and each scene is presented in Table 2.

Las Value of First Second
Loss Function CNN CNN

First Scene 129.688 81.607
Second Scene 192.072 119.955
Third Scene 391.773 333.901
Fourth Scene 109.982 70.636
Fifth Scene 194.705 *

Table 1: Loss function values for the last step by scenes.

Training time Training time
of first CNN of second CNN

First scene 20 h 50 min 26 h 59 min
Second scene 9 h 10 min 10 h 40 min
Third Scene 28 h 2 min 36 h 21 min
Fourth Scene 6 h 53 min 8 h 58 min
Fifth Scene 42 h 9 min 54 h 30 min

Table 2: Training duration for each scene.

4 RESULTS
Our evaluation relies on both quantitative metrics, such
as Mean Squared Error (MSE), and subjective assess-
ments, leveraging the Learned Perceptual Image Patch
Similarity (LPIPS) metric for a comprehensive under-
standing. Both CNNs were trained and tested across
five distinct scenes: a simplistic building environment,
a detailed room 3, a forest 4, a space ship corridor 5, and
a city 6 (see Figure 5).

2 Some initial training steps with significantly different values
are excluded from the graph for better visualization.

3 https://sketchfab.com/3d-models\/the-king-s-h
all-d18155613363445b9b68c0c67196d98d

4 https://www.cgtrader.com/3d-models/exterior/l
andscape/forest-house-scene

5 https://www.cgtrader.com/free-3d-models/scie
nce/other/sci-fi-corridor-6b2e3194-8a54-484
6-a290-5bf473a88a74

6 https://www.cgtrader.com/free-3d-models/arch
itectural/architectural-street/city-scene-719
d674f-97b6-49a1-8399-de7722a60f5e
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First scene Second scene Third scene Fourth scene Fifth scene
Figure 4: Change in the loss function during the training of the first and second CNNs for each scene.2 The training
data for the second CNN for the fifth scene is not presented due to corruption.

Figure 5: Five scenes on which we trained and tested
CNNs.

4.1 Evaluation of predicted environment
maps

To measure the accuracy of the predicted environment
maps, we compared them against actual scenes at spe-
cific points in the room. We assessed both approaches
and also generated interpolated images of reflection
probes using the same spatial triangulation as described
in Section 3. These interpolated images were created
by weighting the pixels of three reflection probes.

For each scene, we selected four distinct points within
the scene for evaluation. Two points were from the
training set (Point A and Point B), and two were out-
side it (Point C and Point D). This evaluation process
provided insights into the models’ predictive accuracy
across various scenarios.

Models were tested on Intel(R) Core(TM) i7-10510U
4-Core CPU and NVIDIA GeForce MX250 GPU.

4.1.1 First Scene: Simple Building

The first scene depicts a simple environment with min-
imal details—a building comprising a floor and eleven
columns against a sky backdrop.

Mean Squared Error

The Mean Squared Error (MSE) values for the first
scene are shown in Table 3.

First Second Interpolated
Point CNN CNN Reflection Probes

Point A 100.38 61.59 418.28
Point B 235.40 247.20 1085.67
Point C 718.93 744.58 1152.46
Point D 428.81 443.50 1451.75

Table 3: MSE values according to the real image of the
surroundings for the first scene.

The first CNN shows slightly higher MSE values for
points inside the training data set, while the second
CNN exhibits marginally larger errors for points out-
side of it. Both CNNs significantly outperform interpo-
lated reflection probes.

To visually represent the disparities between predicted
and actual images, Figure 6 presents error maps, illus-
trating discrepancies for one point within the learning
set and one outside. These maps delineate areas of in-
consistency between predictions and real surroundings.
Correct values are depicted in gray, while errors are in-
dicated by varying colors, with greater intensity denot-
ing larger errors. Error maps reveal fewer errors for
both CNN approaches compared to the interpolated re-
flection probes. The first CNN demonstrates less error,
particularly noticeable on the ground and distant tow-
ers. However, slight variations in sky color are notice-
able in the predictions of the first CNN.

Learned Perceptual Image Patch Similarity

Table 4 shows the Learned Perceptual Image Patch
Similarity (LPIPS) values for the first scene.

First Second Interpolated
Point CNN CNN Reflection Probes

Point A 0.0584 0.0418 0.0868
Point B 0.1172 0.1187 0.1870
Point C 0.1694 0.1795 0.1893
Point D 0.1302 0.1275 0.1993

Table 4: LPIPS values against the real image for the
first scene.

Both CNNs exhibit comparable performance in terms
of perceptual properties such as color, texture, and
shape, outperforming interpolated reflection probes.

4.1.2 Second Scene: Room
The second scene depicts an intricately detailed room
adorned with various decorations.

Mean Squared Error

The MSE values for the second scene are presented in
Table 5.

The second CNN shows lower errors in most cases, es-
pecially within the training set. Both networks outper-
form interpolated reflection probes.
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First Second Interpolated
Point CNN CNN Reflection Probes

Point A 134.81 114.39 952.968
Point B 178.43 134.51 1410.76
Point C 1075.77 995.61 1273.71
Point D 613.60 633.00 1197.21
Table 5: MSE values for the second scene.

Visualizations of error maps confirm the superiority of
our approaches over interpolated reflection probes, par-
ticularly within the training set. Although the advan-
tage diminishes slightly for scenarios outside the train-
ing set, our approaches consistently outperform the in-
terpolated probes. The correlation between the error
maps and mean squared error values further validates
the robustness of our approaches.

Learned Perceptual Image Patch Similarity

Table 6 displays the LPIPS values for the second scene.

First Second Interpolated
Point CNN CNN Reflection Probes

Point A 0.1750 0.1538 0.2494
Point B 0.1673 0.1448 0.2401
Point C 0.2535 0.2418 0.2074
Point D 0.2238 0.2030 0.2565

Table 6: LPIPS values for the second scene.

Our approaches show a significant perceptual advan-
tage over interpolated reflection probes on training set
data. However, this advantage decreases with out-of-
sample data, especially in the third case, where the
LPIPS metric for interpolated reflection probes is lower
than for our methods.

4.1.3 Third Scene: Forest

The third scene depicts a forest teeming with trees of
various sizes, low shrubbery, and scattered rocks. Dom-
inated by green hues, the scene boasts intricate details.

Mean Squared Error

The MSE values for the third scene are listed in Table 7.

First Second Interpolated
Point CNN CNN Reflection Probes

Point A 517.92 498.21 1876.48
Point B 367.71 338.59 1269.22
Point C 686.12 799.88 1203.10
Point D 805.69 832.67 1961.62
Table 7: MSE values for the third scene.

The second CNN performs better within the training
set, while the first CNN is better for points outside the
training set, contrary to visual impressions favoring the
second approach. Both outperform interpolated reflec-
tion probes.

Analyzing the error maps reaffirms the superior per-
formance of our approaches over the interpolated re-
flectance probes, although this distinction is less appar-
ent in the actual images, especially within the forested
regions.

Learned Perceptual Image Patch Similarity

Table 8 presents the LPIPS values for the third scene.

First Second Interpolated
Point CNN CNN Reflection Probes

Point A 0.3055 0.2653 0.2802
Point B 0.2720 0.2491 0.2043
Point C 0.3491 0.3284 0.2769
Point D 0.3316 0.2998 0.3088
Table 8: LPIPS values for the third scene.

The LPIPS values show less pronounced deviations,
with interpolated reflection probes performing compa-
rably to the CNNs.

4.1.4 Fourth Scene: Spaceship Corridor

The fourth scene depicts a small spaceship corridor
characterized by predominant grayscale hues.

Mean Squared Error

The MSE values for the fourth scene are shown in Ta-
ble 9.

First Second Interpolated
Point CNN CNN Reflection Probes

Point A 129.08 57.90 1031.44
Point B 111.29 67.39 1413.32
Point C 1303.07 1519.17 1394.56
Point D 856.83 1001.12 1321.07
Table 9: MSE values for the fourth scene.

The second CNN shows lower MSE for points within
the training set. Surprisingly, the first CNN presents a
marginally lower MSE for points outside the training
set. Moreover, in these cases, the MSE of interpolated
reflection probes is not substantially greater.

Error maps reveal more errors in the first CNN’s pre-
dictions than the second’s within the training set, and
even more in interpolated reflection probes. Outside
the training set, error maps are similar for all three ap-
proaches.

Learned Perceptual Image Patch Similarity

Table 10 shows the LPIPS values for the fourth scene.

The second CNN demonstrates superior perceptual per-
formance, with both CNNs exhibiting better perceptual
characteristics than interpolated reflection probes.
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First Second Interpolated
Point CNN CNN Reflection Probes

Point A 0.1309 0.0878 0.2248
Point B 0.0991 0.0663 0.2193
Point C 0.2361 0.2334 0.1886
Point D 0.2317 0.1908 0.2405

Table 10: LPIPS values for the fourth scene.

4.1.5 Fifth Scene: City
The fifth scene depicts a cityscape with diverse build-
ings and two main thoroughfares, which were the focal
points for both network training endeavors.

Mean Squared Error

The MSE values for the fifth scene are presented in Ta-
ble 11.

first second interpolated
point CNN CNN reflection probes

Point A 168.45 214.49 2470.10
Point B 236.60 265.06 2303.81
Point C 578.39 476.49 3016.37
Point D 468.92 337.91 1169.55
Table 11: MSE values for the fifth scene.

The first CNN outperforms the second CNN for points
within the training set, while the second CNN shows
slightly better performance for points outside the train-
ing set. Both CNNs significantly outperform the inter-
polated reflection probes across all points.

For this scene as well, error maps were calculated, re-
vealing fairly similar results between our first and sec-
ond approaches for points within and outside the train-
ing set. Conversely, error regions for interpolated re-
flection probes are considerably larger and more intense
for all points compared to our approaches.

Learned Perceptual Image Patch Similarity

Table 12 shows the LPIPS values for the fifth scene.

first second interpolated
point CNN CNN reflection probes

Point A 0.1261 0.1395 0.3036
Point B 0.1733 0.1607 0.3338
Point C 0.2074 0.2120 0.2697
Point D 0.1936 0.1933 0.2564
Table 12: LPIPS values for the fifth scene.

From a perceptual standpoint, both of our approaches
are fairly equivalent across all points, exhibiting signif-
icantly superior performance compared to interpolated
reflection probes.

4.2 Performance Evaluation Results
In addition to assessing prediction performance, we
gathered runtime data for both CNNs to evaluate their

suitability for rendering reflections in real-time. To-
tal execution time (including pre-processing and post-
processing) and prediction time were measured over
1000 consecutive predictions, from which the average
time per prediction was calculated.

Regarding speed, the first network exhibited superior
performance, with an average total execution time of
approximately 173 milliseconds with a prediction time
of about 95 milliseconds. In contrast, the second net-
work had a total execution time of around 333 millisec-
onds, with a prediction time of approximately 295 mil-
liseconds.

We also compared their performance in real-time exe-
cution in the Unity game engine. Specifically, we eval-
uated rendering speed, measured in frames per second
(FPS) Table 13.

Speed First CNN Second CNN Reflection Probe
Renderings 6-10 FPS 0.7-2 FPS 5-150 FPS

Table 13: Rendering speed comparison for different re-
flection rendering approaches.

The second approach’s CNN proved to be unsuitable
for real-time applications due to its slow performance.
While the real-time reflection probe demonstrated ex-
cellent efficiency in the simplest scene, achieving a con-
sistent rendering speed of approximately 150 FPS, it
struggled in more complex scenes. In these scenarios,
the first CNN performed comparably to the real-time
reflection probe, but with smoother transitions between
reflections, making it the preferred option for real-time
applications.

5 DISCUSSION
In this section, we critically analyze the outcomes and
metrics discussed in Section 4. We explore the advan-
tages and drawbacks of each approach, consider their
respective applications, and propose avenues for future
enhancement.

Both approaches were trained and tested on five differ-
ent scenes. We initiated the development of both ap-
proaches with the first and simplest scene. This scene
provided insight into the promising direction of our ap-
proach, as we successfully trained the networks for a
straightforward and repetitive environment. For the sec-
ond scene, we selected a room filled with intricate de-
tails to assess the ability of the networks to learn such
features. The third scene depicted a diverse environ-
ment rich in detail but predominantly characterized by
a single color. Here, we aimed to evaluate the ap-
proaches’ effectiveness in reproducing details in such
environments. With the same objective, we trained the
fourth scene, albeit significantly smaller than the third
and featuring a different dominant color. This enabled
us to assess the influence of dominant color and scene
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Figure 6: The upper half illustrates the prediction results of the two networks alongside the actual environment map
and the interpolated reflection probes for all five scenes. In each scene, the first column showcases the outcomes
for the point included in the training set, while the second column displays the outcomes for the point not included
in it. The lower half displays error maps corresponding to the rendered results.

size on the results. Finally, the fifth scene contains nu-
merous details, which are uniformly distributed and ex-
hibit regular shapes throughout the scene (unlike the
second scene, where details are unevenly distributed
and irregular). Here, we aimed to investigate the im-
pact of detail distribution and shape on the results.

5.1 Evaluation of results
We analyzed the effectiveness of the networks in var-
ious aspects, including prediction performance, color
accuracy, and real-time processing.

Initially, we examined the fidelity of the surroundings’
depiction, assessing whether objects were accurately
represented and the level of detail in each depiction.
Notably, the images generated by the second approach
rendered buildings, especially those outside the training
set, less accurately compared to the first network (Fig-
ure 7). Despite this, both networks performed similarly
in rendering objects in other scenes. However, the sec-
ond network’s predictions exhibited more detail, likely
due to the additional input data.

The first approach demonstrated superior proficiency
in predicting details of rectilinear shapes, particularly
when such shapes were in stark contrast with their sur-
roundings, which was most pronounced in the first and
fifth scenes.

Furthermore, the second network demonstrated supe-
rior color prediction, particularly in scenes with similar
color tones between objects and the background (Fig-
ure 8). For instance, in the first scene, the sky and build-
ing’s colors closely resemble each other, with the sec-
ond network providing more accurate predictions. Con-
versely, the first network struggled with color nuances,
especially apparent in the forest scene. The second net-

Figure 7: The figures illustrate the rendering of the first
scene at the point, which was not part of the training
set. The first image is the real image at that point, the
second is the prediction of the first CNN, and the third
is the image predicted by the second CNN.

work’s enhanced color perception also contributed to its
ability to capture finer details.

Figure 8: The images in the first column depict actual
surroundings, while those in the second column repre-
sent predictions made by the first CNN, and those in
the third column depict predictions made by the sec-
ond CNN. The images reveal an error in recognizing
the correct lower hues by the first network.

In general, both approaches exhibited fairly compara-
ble success in predicting environment maps at points
outside the training set. However, the small amount
of training data was evident in the second and fourth
scenes, where the first approach performed relatively
poorly. Consequently, it can be inferred that an unde-
sirable degree of overfitting occurred. This assertion is
further supported by the MSE values, which are very
small for points within the training set but significantly
larger for points outside the training set.
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Effective utilization of our approaches requires careful
scene design and consideration of lighting placement
before data capture and network training. Retraining
the CNN after any scene changes is crucial to main-
taining accurate and realistic reflections. Additionally,
careful placement of static objects and lighting effects
ensures their influences are accurately captured in the
training data and reflected in predictions.
Despite these considerations, a significant drawback of
our approaches remains the absence of reflective object
shadows in rendered reflections. Since the training data
is captured without it being present in the scene, its
shadows are not included, preventing the rendering of
self-reflections and reflections between multiple reflec-
tive objects. This limitation persists even with meticu-
lous scene design and data capture planning. Moreover,
reflections of other non-static objects in the scene and
their shadows are not present in the captured training
data, as we cannot predict their spatial positions in ad-
vance at the time of data acquisition.
From a speed perspective, the first network outper-
formed the second due to processing less data. While
the second network’s additional input led to more de-
tailed predictions, it came at the cost of slower process-
ing.
Overall, both approaches have demonstrated the capa-
bility to predict and depict the surroundings of a given
point in the scene fairly accurately, albeit sometimes
with a lack of detail. Compared to traditional ap-
proaches such as using the nearest reflection probe or
interpolating between reflection probes in the scene to
depict reflections, our approaches predict and depict the
environment of the object more accurately. However,
it is notable that these predictions sometimes portray
fewer details, resulting in slightly blurred surroundings.
Regarding speed, both approaches are slower than tra-
ditional methods, although the first approach has a suf-
ficiently fast rendering speed. When compared to real-
time reflection probes, which also accurately depict the
environment of the object and produce cleaner render-
ings with more details, our approaches excel particu-
larly in complex environments where real-time reflec-
tion probes may falter, especially during the movement
of reflective objects, where transitions between differ-
ent rendered reflections are highly noticeable and sharp,
a limitation not present in our approaches.

5.2 Usability of models
The CNN developed in the second approach proves un-
suitable for real-time applications. Conversely, the first
approach’s network is well-suited for real-time applica-
tions like gaming, where heavy computational tasks are
minimal, allowing for swift network predictions. On
the other hand, both CNNs are valuable for rendering
reflections in animations or design tools, offering qual-
ity results within reasonable processing times.

From the perspective of the quality of predicted
environment maps and rendered reflections, our ap-
proaches are most useful for reflective objects that lack
pronounced reflective properties (such as wrinkled or
rough surfaces), where finer details in the rendered
reflections are not crucial. However, their reflections
contribute to creating a realistic appearance of the
scene, where our approaches excel in providing gener-
ally accurately depicted surroundings in reflections and
smooth, natural transitions between different areas of
the environment as the reflective object moves through
the scene.

Both approaches excel in environments with static
scenes, making them ideal for rendering moving
objects against a relatively stable backdrop. However,
they are less effective for static objects with pro-
nounced reflective properties, such as mirrors, where
traditional reflection probes are more appropriate. Our
approaches shine when rendering scenes where moving
objects significantly enhance visual realism, such as
characters or vehicles traversing a static environment,
contributing to a lifelike visual perception of the
surroundings.

5.3 Possible improvements
5.3.1 Enhancing robustness through incorporat-

ing varied object heights

Currently, both approaches are trained solely on scenes
where the main activity occurs within a single plane,
and the reflective objects move only at a single height
(varying only in x and z coordinates). Consequently,
both networks are trained with constant y coordinates.
It would be worthwhile to further generalize the ap-
proaches and make them more robust by incorporating
different y coordinates in the training data, thus teach-
ing them to predict reflections for objects at varying
heights. In such a scenario, the first CNN would not
require additional upgrades, while the second approach
would need some adjustments, primarily considering a
different spatial decomposition.

5.3.2 Enhanced prediction quality

To elevate prediction quality, augmenting network com-
plexity by integrating additional fully connected or con-
volutional layers could enhance adaptability to train-
ing data. However, caution is warranted as increased
complexity may elongate prediction times. Advanced
CNN layers like capsule and dynamic layers offer po-
tential replacements for traditional convolutional lay-
ers, enabling better adaptability to training data with-
out significant model slowdown. Moreover, employ-
ing sophisticated loss functions such as perceptual or
contrastive loss could further refine predictions by pre-
serving content and style fidelity. Also, post-processing
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techniques like noise reduction, sharpening, and con-
trast enhancement could refine predicted images, aug-
menting overall quality.

5.3.3 Model speed optimization
Implementing model compression techniques like
pruning and quantization reduces model size and
prediction times, albeit with potential prediction
quality trade-offs. Model caching, wherein predicted
images for known inputs are stored to circumvent
redundant predictions, offers an efficient strategy for
recurrent input scenarios, albeit with increased memory
overhead.

5.3.4 Realistic reflections
Exploring methods to prefilter environment maps for
more realistic reflections akin to mirror reflections
could enhance scene realism.

The absence of self-shadows in object reflections could
be addressed via prerendering shadows in training data,
possibly using shadow mapping techniques.

6 CONCLUSION
In this paper, we endeavor to enhance existing methods
for rendering reflections, particularly those reliant on
reflection probes. One of the foremost challenges with
these methods lies in rendering reflections as reflective
objects move within a scene, and in mitigating the jar-
ring transitions between disparate reflection probes.

To address this issue, we introduce two novel meth-
ods leveraging convolutional neural networks (CNNs)
to generate environment maps at specific points within
a scene. Both methods demonstrate success in predict-
ing scene surroundings, seamlessly blending reflections
as objects move through the scene. Particularly in com-
plex environments, the first method outperforms real-
time reflection probes provided by the Unity game en-
gine, offering smoother and more natural transitions be-
tween reflections. However, due to its slower process-
ing speed, the second method’s comparative evaluation
remains unfeasible for real-time applications. Notably,
the resolution of predicted environment maps varies
with scene complexity, rendering the current methods
more suitable for rendering blurred reflections.

Future research avenues may explore enhancing image
resolution in complex scenes and optimizing method
speed. Furthermore, exploring pre-filtering techniques
for environment maps could enhance the realism of ren-
dered reflections.
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[6] Jaroslav Křivánek and Mark Colbert. Real-time
shading with filtered importance sampling. Com-
puter Graphics Forum, pages 1147–1154, 2008.

[7] Josiah Manson and Peter-Pike Sloan. Fast fil-
tering of reflection probes. Computer Graphics
Forum, pages 119–127, 2016.

[8] Morgan McGuire, Michael Mara, Derek
Nowrouzezahrai, and David Luebke. Real-time
global illumination using precomputed light field
probes. In ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, page 11,
February 2017. I3D 2017. URL: https:
//casual-effects.com/research/
McGuire2017LightField/index.html.

[9] Bui Tuong Phong. Illumination for computer gen-
erated pictures. In Seminal graphics: pioneering
efforts that shaped the field, pages 95–101. 1998.

[10] Ravi Ramamoorthi and Pat Hanrahan. Frequency
space environment map rendering. In Proceed-
ings of the 29th Annual Conference on Com-
puter Graphics and Interactive Techniques, page
517–526. Association for Computing Machinery,
2002.

[11] Simon Rodriguez, Thomas Leimkühler, Siddhant
Prakash, Chris Wyman, Peter Shirley, and George
Shirley. Glossy probe reprojection for interac-
tive global illumination. ACM Transactions on
Graphics (TOG), pages 1–16, 2020.

[12] Bo Xia and Fen Kuang. Non-uniform
illumination-guided probe placement. In ICETIS
2022; 7th International Conference on Electronic
Technology and Information Science, pages 1–4,
2022.

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu Vol.32, No-1-2, 2024 

70https://www.doi.org/10.24132/JWSCG.2024.7

https://casual-effects.com/research/McGuire2017LightField/index.html
https://casual-effects.com/research/McGuire2017LightField/index.html
https://casual-effects.com/research/McGuire2017LightField/index.html



