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ABSTRACT Cybersecurity research demands continuous monitoring of the dynamic threat landscape to
detect novel attacks. Researchers and security professionals often deploy honeypot networks to intercept
and examine real attack data. However, due to the volume and variety of the collected data, it is very
challenging for security analysts to investigate the attacks, compare their characteristics and infer their
potential connections. To this end, we propose a novel graph-based cyberattack model for storing, analyzing,
and visualizing honeynet-captured attacks as the main contribution of our work. Our model enables attack
graph analysis and presents the attack data analogous to the Cyber Kill Chain framework to enable intuitive
visualizations. We construct the attack graph by decomposing the intercepted attacks into a set of unique
entities (represented as nodes) and actions (represented as edges) and merge them into a global attack graph.
We develop a user-centric, interactive attack analysis and visualization tool that leverages the proposed
model to aid the heuristic cyberattack investigation. We describe the design and technical implementation
of the developed model and visual-interactive tool in detail. Finally, we demonstrate the developed tools
and validate the model in an analysis of real-world attack data captured on our own distributed honeypot
platform. We use the attack model and (sub)graph visualizations to depict attack topologies, identify
recurring attackers, and quantify detected malware types. We also leverage graph data science algorithms to
uncover and rank malware distribution networks, reveal hidden links between the attackers, and cluster the
attack entities to identify potential botnets.

INDEX TERMS Attack modeling, attacker links, big data, botnet detection, cyberattack, cybersecurity,
cyberthreat intelligence, graph data science, graph modeling, honeynet, honeypot, malware distribution
networks, threat modeling, visual analytics, visualization, cyberattack analysis.

I. INTRODUCTION
In order to secure online systems against known threats and
discover new attacks, malicious behavior must be continu-
ously monitored and actively studied. While known attack
methods can be simulated in penetration testing scenarios
to assess system security, novel attack techniques are more
challenging to study. They can either be investigated during
a post-incident forensic analysis on compromised systems
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or intercepted by specialized services, known as honeypots,
to lure the attackers and collect data about their actions. Secu-
rity researchers then analyze the acquired data to understand
the mechanics of attack operations and attempt to model the
attacks to aid their future detection and prevention. During
the analysis, data visualization tools are often used to build
visual attack representations and help reduce data complexity,
discover prominent features, and reveal hidden links.

Honeypots are dedicated systems that resemble the
functionality of production environments and emulate the
behavior of real systems yet expose enough information or
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computing resources to appear attractive to attackers [1].
They include specialized software to log the actions of
the adversaries and alert administrators. Advanced honey-
pot systems also offer highly interactive sandbox environ-
ments inside which the attacker is monitored during the
post-exploitation phase of the attack [1]. Experts then process
and analyze the collected data to assess threats and learn
about potential new attack mechanisms. However, data anal-
ysis can be challenging due to the ever-increasing volume of
recorded events, most of which are performed by automated
bots; this problem is further exacerbated in large distributed
honeypot systems with large numbers of targets.

Since manual examination of massive amounts of recorded
events is tedious and error-prone, automated attack identi-
fication using anomaly detection algorithms is often pro-
posed [2]. This method relies on service or user models
to distinguish between normal and abnormal events or user
behavior and alert of a potential cyberattack. However,
to build reliable attack detection models while minimizing
false positives, a more profound, human-driven investiga-
tion is often required first to understand the objectives of
the cyberattack and model its structure and mechanics [2].
Nevertheless, the volume and variety of the collected data
often make it difficult for security analysts to investigate the
attacks, compare their characteristics, or infer their potential
connections.With this in mind and upon consultation with the
stakeholders in the cyberdefence domain, we propose a novel
attack graph model paired with a modern attack analysis tool
suitable for heuristic cyberattack investigation using a visual-
interactive approach. Our model stores honeypot-collected
attack data in the form of a mathematical graph, while our
attack analysis tool enables human-oriented visualization of
logical attack structure, interactive discovery of cross-attack
entity relations, and automation of attacker community detec-
tion using graph analysis algorithms.

The primary contribution of this paper is a novel
graph-based cyberattack model for storage, analysis, and
visualization of captured real-world attacks, either from a sys-
tem of network honeypots or from real production systems.
Our model stores the attack data in the form of attack entities,
their metadata, and attacker actions and enables direct attack
visualization on a graph that is consistent with Lockheed
Martin’s Cyber Kill Chain framework [3], depicting its chain
of events on actual data. We construct the proposed model by
decomposing the captured attacks into a set of unique attack
entities and attacker actions. We model the individual attack
entities as nodes and use edges to demonstrate actions or
entity relations to form the attack graphs for each recorded
attack. We then merge all individual attack graphs from
multiple honeynet nodes into a single global attack graph
to reveal data links between various attack entities, identify
attack patterns, and uncover attacker networks.

The secondary contribution of our paper is a modern
proof-of-concept tool leveraging our proposed cyberattack
model for visual-interactive, heuristic analysis of the captured

attack data. We implement the proposed attack model in
a web-based cyberattack visualization and analysis tool,
enabling interactive data exploration, analysis, and topolog-
ical classification of individual attacks. We then validate the
usefulness of the proposed cyberattack model and the devel-
oped visual analysis tool by performing a practical analysis of
captured real-world attacks. We believe the results obtained
using our tools and methods are significant as they demon-
strate the power of interactive visual analytics designed with
end users in mind, for the detection, analysis, and mitigation
of potential cyberthreats.

The structure of this document is as follows. First,
we review related work on cyberattack data collection, analy-
sis, modeling, and visualization. We highlight the importance
of continuous monitoring of the dynamic threat landscape
and provide insights into the challenges of addressing a wide
variety of cyberattacks with a unified model. We discuss the
limitations of existing approaches to the design of salient,
cognitively effective cyberattack visualizations and analysis
tools. Next, we briefly describe our distributed honeypot
system, which serves as the source of real-world data for our
analyses. Based on that, we propose a novel attack presen-
tation model tailored to real-world datasets and describe its
design and implementation in detail. We focus on developing
an extensible attack data model based on the Cyber Kill Chain
framework and put emphasis on designing user-centric inter-
active visualizations to address the identified shortcomings
of the previous works. Next, we illustrate typical security
analyst use cases and use the developed tools and methods to
demonstrate the identification and analysis of potential cyber
threats. Finally, we conclude with the analysis results, discuss
the encountered challenges and limitations of our approach,
and outline prospects for future work in this area.

II. RELATED WORK
Cybersecurity is the practice of protecting systems, networks,
and programs from digital attacks. It is a broad field of
research concerning many highly specialized topics. These
range from social engineering to hardware vulnerability
exploitation and demand expert knowledge and extensive
research due to the complexity and interdependent nature
of modern technologies. Therefore, existing cybersecurity
knowledge is fragmented across the community of experts
and practitioners in industry, academia, and government sec-
tors [4]. For these reasons, it is challenging to address a
wide variety of cyberattacks with a unified model, let alone
depict them with a single visualization technique. However,
several intelligence-sharing initiatives were started to address
the growing number of cyber threats, and several security
frameworks were developed for attack and defense modeling.

A. CYBERATTACK GRAPH MODELING
Threat and attack modeling are essential parts of cyberse-
curity research. Security professionals use threat modeling
to estimate threats in their specific environments and design
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corresponding cyberdefense strategies [5]. Attack model-
ing attempts to study the actions of threat actors further
and understand the details of the attacks. Modeling, there-
fore, relies on the analysis of adversarial tactics, techniques,
and procedures (TTP) [6], as well as their tools, to under-
stand, detect and deflect the attacks. Models allow for the
generalization of attacks to aid their detection and help
penetration testers simulate or recreate them to assess the
security of their systems. Several cyberattack models exist.
Some are highly specific to individual domains, whereas
others offer a high-level representation of general attack
characteristics. Attack modeling techniques (AMT) include
various implementations of attack graphs and trees, attack
surface modeling methods [7], application of game theory
in network security [8], stochastic cyberattack modeling
[9], agent-based models [10], error-estimation-based denial-
of-service attack modeling [11], differential-equation-based
models [12], as well as the Diamond Model of Intrusion
Analysis [13] and the Cyber Kill Chain among others. In line
with the direction of our research, we primarily focused on
attack graph modeling and the Cyber Kill Chain framework.

Lallie et al. [14] argue that graph-based attack modeling is
the most popular choice in academic literature. The attack
graph model was first proposed in 1998 [15] and has since
become one of the most widely used security tools. Attack
graphs and trees may simulate attack steps and paths used
by the attackers to invade the network [16]. They may depict
exploitation co-dependencies and attack steps [17] or display
network topology and form a basis for evaluating attack
vectors and assessing network security [18]. However, attack
data acquisition can quickly accumulate large amounts of
information, making it difficult to store and visualize it as
a graph. Therefore, approaches toward graph modeling must
be scalable [19] and use carefully crafted visualization to
deliver salient information and reduce graph complexity [14],
[20]. High-level attack representations, such as the Cyber
Kill Chain framework, avert this issue by trading details on
attack data for a generalized image of attack execution. The
Cyber Kill Chain breaks down Advanced Persistent Threat
(APT) attacks into seven crucial execution steps (Reconnais-
sance, Weaponization, Delivery, Exploitation, Installation,
Command & Control, and Actions on Objectives) to provide
a temporal insight into the course of the attack. It has a
proven track record, and has been used by the United States
Department of Defence for many years [5].

Researchers, therefore, classify modeling methods, secu-
rity metrics, and attack graphs into different categories.
Sheyner [21] describes scenario graphs, attack graphs, and
network attack graphs. Idika [22] categorizes primary and
secondary network security metrics and discusses condition-
oriented, exploit-oriented, and condition-exploit-oriented
attack graphs. Recent reviews of attack graph modeling offer
even further categorization by graph types and properties
(attack trees, fault trees, state graphs, exploit dependency
graphs, logical attack graphs, multiple prerequisite attack

graphs, Petri nets, Bayes attack graphs) [23] and graph algo-
rithms used for data analysis (graph path algorithms, node
importance sorting algorithms, Markov models, Bayesian
networks) [14], as well as graph generation methods and their
visual syntax [16].

Many studies focus on attack graph generation for cyber-
attack analysis and network security assessment. Noel and
Jajodia [24] used attack graph analysis to aid optimal IDS
sensor placement in a network and prioritize IDS alerts.
They predicted all possible attack paths to reach critical
assets and minimized the number of required sensors while
maintaining coverage of the whole network. Kotenko and
Stephashkin [18] used network hosts and attack actions
to compose combined graph objects, such as routes and
threats. They suggested a new approach to network secu-
rity level evaluation using qualitative risk assessment and
quantitative computation on the basis of Bayesian net-
works. Wang et al. [25] developed an attack graph-based
probabilistic security metric for multi-step attacks exploit-
ing multiple vulnerabilities. To do so, they considered the
attacker’s activity status and modeled the causal relationships
between vulnerabilities to form an attack graph. Similarly,
Noel et al. [26] addressed the limitations of models relying
on individual security metrics and combined vulnerabil-
ity interdependencies to analyze all potential attack paths
through a network and provide ametric of overall system risk.
Poolsappasit et al. [27] proposed a risk management frame-
work using the Bayesian Attack Graphs (BAG) to quantify
the chances of network compromise at various levels. They
based their metrics on the Common Vulnerability Scoring
System (CVSS) and used the acquired information to develop
a security mitigation and management plan. Further, Saw-
illa and Ou [28] addressed the size and complexity of the
attack graphs, which often prevented humans from fully
comprehending the conveyed information. They did so by
distilling the amount of information in a graph with the
newly proposed AssetRank algorithm, a generalization of
Google’s PageRank [29], to assess the importance of the
graph vertices representing vulnerabilities and attacker priv-
ileges. Huang et al. [30] also studied attack graph distillation
to achieve a reasonable balance between the completeness of
the graph and its usefulness. Their iterative method reduced
the dependency attack graphs for moderately sized enter-
prise networks to an 85% smaller critical attack surface.
Wang et al. [31] studied the use of attack graphs to develop
a risk assessment metric for exploitation of yet unknown
vulnerabilities (zero-day attacks). They developed the k-zero
day safety metric and defined a zero-day attack graph com-
posed of known and unknown exploits. Their metric was
based on the count of the number of vulnerabilities required
to be successfully exploited to compromise a network asset.
A higher vulnerability count implied better security due to the
lower likelihood of their presence.

Most recent attack graph modeling surveys were con-
ducted by Zeng et al. [16], reviewing attack graph analysis
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methods from the perspective of data processing in 2019,
Lallie et al. [14] surveying attack graph and attack tree visual
syntax approach in 2020, and Tayouri et al. [23] surveying
attack scenario coverage of MulVAL [32] extensions in
2022. The authors of the latter conducted a systematic lit-
erature review of 938 papers and identified four new major
attack graph generation tools in the last 10 years. Namely,
in 2013, Holm et al. [33], [34] presented a graph-based tool
for quantitative cyber security analysis of enterprises. Their
publications reviewed the shortcomings of the earlier security
estimation tools, such as NetSPA [35] and MulVAL. They
described the developed Cyber Security Modeling Language
(CySeMoL) and an attack graph tool tailored formodeling the
critical infrastructure in power distribution networks. In 2021,
Nadeem et al. [36] presented SAGE, an intrusion alert-driven
attack graph extractor for cyber threat intelligence. Their
proposal did not rely on vulnerability information for the
derivation of attack graphs; rather, it constructed them from
the intrusion alerts on a temporal and probabilistic basis. The
solution was evaluated on open-source datasets in order to
analyze the distributed multi-staged attacks. In the same year,
Li et al. [37] constructed a knowledge graph extractor to col-
lect different aspects of attack techniques and enhance attack
behavior graphs from cyber threat intelligence reports. Their
solution, AttacKG, was heavily based on aggregated data
from threat intelligence feeds and the MITRE ATT&CK [38]
platform. Moreover, Li et al. [39] recently worked on deep
learning approaches to threat detection using system logs.
They proposed DeepAG, a framework for the detection of
attack sequences, and the construction of attack graphs for
attack path prediction. Asvija et al. [40] used BAG to address
the security of platform virtualized infrastructures in cloud
environments. They used the reported attacks on virtualized
systems to encapsulate all possible attack paths on the virtu-
alization stack. They then modeled the identified threats as
a Bayesian attack graph and derived the exploit probabilities
based onCVSS scores. Similarly,Wang et al. [41] proposed a
CVSS-based multi-factor risk assessment model using attack
paths to model an attacker’s capability and estimate the
probabilities for successful vulnerability exploitation. Lastly,
Malzahn et al. [42] presented automated vulnerability test-
ing via executable attack graphs in a virtual environment to
enhance the reproducibility and consistency of risk analyses.

B. ATTACK GRAPH VISUALIZATION AND ANALYSIS TOOLS
Graphs are used to visualize network elements and their
connections [43], display attack paths [44], and visualize
malware distribution networks [45]. However, their usabil-
ity often decreases with the increasing number of network
nodes [19]. Geospatial representations allow for IP address
mapping to their geographical origin or destination and assist
in the real-time visualization of cyber threats [46]. Scatter
plots are used for port activity visualization [47], whereas
parallel plots may reveal anomalous network traffic pat-
terns [48]. Security visualizations, therefore, encompass a

wide range of varied data presentation techniques and may
entail fundamentally very different objectives.

Williams et al. [49] presented an interactive tool for sim-
plified tracing of the attackers’ paths and an intuitive under-
standing of the attack graph based on the underlying network
topology. Their solution was based on NetSPA for graph
generation and a Java application for its visualization. It
scaled to networks with thousands of hosts. Xie et al. [50]
proposed network security evaluation with two-layered attack
graphs. They represented the host access graph in the upper
layer and composed the lower layer of host-pair attack graphs.
Their proposition addressed the intelligibility of graphs in
large networks and focused on reducing the time for their
computation. They presented an overall network security
evaluation using grayscale images. Chu et al. [51] developed
a tool named NAVIGATOR for the visualization of network
assets, attacks, graphs, and operational recommendations.
The tool allowed for network state visualization, as well as
visualization of client-side, server-side, credential-based, and
trust-based attacks. In 2015, Angelini et al. [52] presented
PERCIVAL, a visual analytics environment for situational
awareness and security event monitoring. Their visualization
allowed for monitoring of attack progress and evolution. One
year later, MITRE Corporation introduced CyGraph [53],
a graph-based analytics and visualization system for cyber-
security. Their system captured incremental attack and vul-
nerability information, as well as security events within a
network environment. It correlated the captured data and built
a predictive model of possible attack paths to provide an
overall picture for situational awareness in cybersecurity. The
system was based on TVA/Cauldron [54] and offered lay-
ered visualizations of stored attack graphs. In 2019, Angelini
et al.presented a new visual analytics solution for multi-
step cyber attack detection [55]. The solution was aimed
at assisting security operators, improving network security
using attack analysis, and identifying suitable mitigations.
Furthermore, Leichtnam et al. [56] proposed STARLORD,
a data representation model and visualization approach for
linked security exploration of heterogeneous sources in a 3D
graph. Their solution used clustering to select data for visu-
alizations and highlighted links between malicious events.
Peryt et al. [45] used graphs to visualize malware distri-
bution networks based on top-level-domain data collected
fromGoogle Safe Browsing reports. Tsigkas et al. [57] lever-
aged abstract graph representations to visually analyze spam
campaigns, while Fowler et al. [58] proposed a graph and
heatmap-based detection of security threats by visualizing a
large volume of dynamic network data.

Attack graph visualizations were extensively reviewed
by Lallie et al. [14] in 2019 and Ikuomenisan and Morgan
in 2022 [59]. Lallie et al. [14] reviewed the visual syntax
design theory and conducted a systematic literature review
of 370 papers on attack graphs to quantify the employed
visualization methods and visualized constructs. Their anal-
ysis identified 181 attack graph visual syntax configurations.
Their reviewed design theories included the use of Bertin’s
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visual variables [60], Miller’s law [61], The Primary and Sec-
ondary Notation Theory [62], The Physics of Notations [63],
Petre’s visual distance [62], and the Gestalt theories [64].
On the other hand, Ikuomenisan and Morgan [59] reviewed
visualization practices and commonly used methods for the
discovery and communication of attack patterns based on
honeypot data [59]. They screened 218 papers using the
PRISMA methodology and evaluated 37 papers with higher
impact. They reviewed visualization frameworks for forensic
honeypot data analysis and visual analysis pipelines for the
transformation of raw input data into visual components.
Ikuomenisan and Morgan [59] observed that a significant
number of honeypot papers conducted summary statistics of
static data (IP address, port, packet size), visually analyzed
attack data only using simple graphical methods (line, bar
and pie charts) and did not follow basic visualization princi-
ples and best practices in their use of color [59]. Similarly,
Lallie et al. [14] revealed the absence of standardization,
ambiguous semantics, and inadequacy of scientific approach
towards the visualization design based on cognitive theories,
concluding that many AMTs have not undergone an effective
design process [14]. Ikuomenisan and Morgan [59] outlined
rare implementations of customized visualization techniques
(Hilber-curve for honeypot data analysis [65], honeypot
driven cyber-incident monitor [66], bipartite graph visualiza-
tion applied to IDS alerts [67], visualization of actionable
knowledge for DRDoS mitigation [68]) as a positive devel-
opment for pattern discovery and perceptual experience and
called for further research in the field. Lallie et al. [14] noted
that ineffective design leads to cognitively inefficient systems
and attributed the fragmentation of efforts to the immaturity
of the research field. They further indicated that methods
for formal evaluation of the diverse conceptual models and
the effectiveness of their visualizations remain scarce and
limited [14]. They emphasized the shortcomings of some
of the employed evaluation approaches, citing their statis-
tical insignificance, unclear measures, as well as personal
judgment [14]. Moreover, the authors of the study outlined
the internal and external semiotic inconsistency as the fun-
damental problem of AMTs, noting that 34 authors repre-
sented identical constructs using multiple shapes in the same
papers. In quantitative terms, Lallie et al. [14] report that the
most common graph visualization design choices included
the top-down representation of event flow (58.6%), no use
of color (56.9%), no use of edge texture or line density
(79.0%), nomechanisms to aid the perceptible visual distance
(87.0%), simple entity labels in the form of text (38.7%),
no representation of attack goal (78.5%), representation of
precondition nodes for the attack using plain text (24.7%) or
ellipses (17.5%), and representation of exploits using rectan-
gles (28.7%) [14].

C. ATTACK DATA ACQUISITION
Cybersecurity professionals rely on intelligence-sharing plat-
forms, data feeds, and open-source tools to acquire the latest

information on cyberattacks. These include threat intelli-
gence feeds with known indicators of compromise (IOC),
malware sharing uniform resource locators (URL), malware
files and their signatures, IP addresses of malicious e-mail
servers, botnet information, and more. Besides data feeds
such as Open Threat Exchange (OTX) [69], which often
provide application programming interface (API) access,
knowledge databases intended for heuristic incident anal-
ysis, such as MITRE ATT&CK and Malware Informa-
tion Sharing Platform (MISP) [70], provide comprehensive
information on the operation of malware, known threat
actors, their methods, and tools. Furthermore, programs like
Common Vulnerability Exposure (CVE) [71] and National
Vulnerability Database (NVD) [72] identify, define, and
catalog publicly disclosed cybersecurity vulnerabilities in
a common format. At the same time, Common Weakness
Enumeration (CWE) categorically lists software and hard-
ware weaknesses, while open-source exploit databases [73]
offer ready-made, proof-of-concept solutions for penetration
testers and hackers alike. Most common formats, protocols,
and description languages for cyber threat intelligence shar-
ing include the Structured Threat Information Expression
(STIX) [74], Trusted Automated Exchange of Intelligence
Information (TAXII) [75], Cyber Observable eXpression
(CybOX) [76], Malware Attribute Enumeration and Charac-
terization (MAEC) [77], and YARA [78]. Besides external
data sources, cybersecurity analysts also rely on internal data
sources, such as system, firewall, and IDS logs, as well as
network captures to discover malicious events [56].

However, to study the latest methods used by adversaries
and examine the details of novel attacks, security research
often requires interception of actual attacks and direct acqui-
sition of their data. For this purpose, network honeypots are
used to mimic domain-specific infrastructure and intercept
incoming threats. They are commonly deployed as virtualized
software appliances or implemented using containerization
technologies [79] and are generally classified by the ser-
vice they are emulating and the level of interactivity they
provide [1]. Low-interaction honeypots typically only sim-
ulate services, such as Secure Shell (SSH) or File Transfer
Protocol (FTP), but do not offer actual functionalities and
operating system-level (OS) access [1]. While they are help-
ful for quantitative threat estimation, they cannot provide a
deeper introspection into the attack’s course and the attacker’s
post-exploitation actions (e.g., payload download, privilege
escalation, actions on objectives). Therefore, high-interaction
honeypots were developed as sophisticated cybertraps repli-
cating production systems and allowing the attacker nearly
unlimited target access [80]. However, such systems require
significantly more effort for set-up and maintenance. They
generate large quantities of data and require a thoughtful data
acquisition, storage, and processing pipeline design.

Data processing becomes even more difficult when operat-
ing a network of honeypot systems (called a honeynet), where
data heavily vary in volume, velocity, and variety. However,
honeynets can mimic a wide array of vulnerable services,
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replicate real IT (information technology) or OT (operational
technology) networks and allow for detailed monitoring of
the attackers’ lateral movement across the deployed network
services. Furthermore, a geographically distributed network
of honeypots with a centralized data collection system allows
for the observation of threat actors with a global presence,
identification of their assets, and revealment of their mali-
cious campaigns [81]. Bar et al. [82] studied attack propaga-
tion patterns using Markov chains on honeypot data in 2016.
They performed complex network analysis on 167 million
observed attacks and revealed patterns of attack correlations
between the honeypots, identified central honeypots which
propagated the attacks and profiled the attackers according
to the attacking country. Studiawan et al. [83] focused on
graph-based forensic analysis of web honeypots. They pro-
posed attack-type analysis from honeypot logs represented as
graph vertices and applied agglomerative clustering to cate-
gorize attacks based on PHP-IDS rules. Fernandez et al. [84]
modeledmalware-drive honeypots using recent IOCs to adapt
honeypots for malware execution. Similarly, Wagener [85]
studied self-adaptive honeypots for assessing attacker behav-
ior. Durkota et al. [86], as well as Anwar et al. [87] stud-
ied honeypot allocation strategies using attack graphs and
game theory. Inversely, Gao et al. [88] proposed a dynamic
deployment strategy of virtualized honeypots based on intel-
ligent attack path prediction to enhance their trapping capa-
bility. Kaâniche et al. [89] used honeypots to statistically
model attack processes, while Ikuomenisan and Morgan [59]
recently conducted a detailed systematic review of graphical
visual methods in honeypot attack data analysis.

III. PROPOSED SOLUTION
We propose a novel graph-based attack modeling technique
and present a new visualization tool developed for cyber-
attack analysis. The model structures the captured attacker
actions, participating attack entities, their properties, and rela-
tionships as a graph and leverages visualizations to provide
insight into the course of cyberattack execution and reveal
potential attack patterns and attacker communities.

In the implementation phase, we develop a proof-of-
concept solution based on web technologies that enable inter-
active visualizations of attacks. Its user interface is displayed
in Fig. 1. It utilizes a graph-native database for data storage
and retrieval and relies on our own distributed honeypot
platform for direct attack data acquisition. It is intended for
use by cybersecurity researchers and professionals.

The developed proof-of-concept tool can visualize individ-
ual captured attacks as a series of attacker actions analogous
to the critical steps of the Cyber Kill Chain framework. It
reveals individual attack topologies and characteristics and
enables further data exploration using the visual-interactive
discovery of links between the participating entities andmeta-
data nodes. The implemented attack graph model enables
node involvement detection in multiple attacks on the dis-
tributed honeypot network. Combined with the captured

FIGURE 1. User interface of the developed proof-of-concept cyberattack
visualization and analysis tool. The interface is divided into three general
display sections: a layout and data controls pane on the left side, a graph
display area on the top right side, and a details pane at the bottom. The
graph display area demonstrates the attack browser, depicting a
visualization of a particular cyberattack captured on the honeypot system.
The details pane shows statistical information for all captured data in the
selected time frame. More details are available upon further interaction
with the interface elements. Part of the displayed data are redacted.

attack session data and enriched node metadata, it allows for
the analysis of attacker hosts, external file servers, and mal-
ware files, revealing their potential hidden links, networks,
and interdependencies. The web-based visualization tool can
aid security analysts with charted statistical information on
the aggregated attack data, identifying the most frequent
returning attackers, most commonly deployed payloads, uti-
lized distribution URLs, and similar details. It can plot the
detected node communities and generate lists of malicious
hosts, URLs, and file signatures, as well as export selected
attack graphs into third-party open-source software for fur-
ther network analysis.

A. REQUIREMENTS ENGINEERING
Based on the reviewed literature, we identified both the
good practices of the attack graph modeling and visualiza-
tion design, as well as the opportunities for their improve-
ment. We conducted expert consultations with the potential
users of our solution in the cybersecurity domain. We con-
sulted security operations center (SOC) operators, incident
response analysts, and cybersecurity experts on their visual
attack analysis approaches when dissecting a large number
of attacks. We proposed an early idea of the interactive
graph-based attack visualization tool with visual mapping of
the attack data to the Cyber Kill Chain model to better aid the
attack cognition. We performed task analysis and conducted
cognitive walkthroughs with the potential users to identify
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TABLE 1. Non-functional requirements of the proposed solution.

their needs and investigate their workflow. We compiled a
list of requirements for the design and development of our
proof-of-concept solution. The following tables outline the
top-level functional (Table 1) and non-functional require-
ments (Table 2).

We framed the scope of our work by outlining the neces-
sary attack coverage of our model to meet these requirements.
To do so, we focused on the three critical aspects of cyber-
attacks on internet-connected systems: network security, sys-
tem security, andmalware detection.We identified a subset of
potential attacker actions for each of the segments and aligned
them with the crucial attack steps represented by the Cyber
Kill Chain framework. Therefore, we addressed the further
design of our solution mainly in the context of the Cyber Kill
Chain attack steps 3, 4, and 5, as shown in Table 3.

IV. SYSTEM ARCHITECTURE
The overall system is composed of two major platforms:
the honeypot-based data acquisition platform (CyberLab)
and the interactive attack visualization platform (CyberViz).
Both systems consist of multiple interconnected microser-
vices that collect, store, transform and visualize cyberattacks.
This paper only briefly reviews the actual data acquisition
platform and primarily focuses on the design and technical
implementation of the attack modeling and visualization. The
high-level system architecture is depicted in Fig. 2.

A. DATA ACQUISITION PLATFORM
CyberLab is a distributed, high-interaction honeypot plat-
form. It exposes inadequately protected SSH honeypots at
its forefront and lures the attackers into fully monitored and
almost full-featured Linux containers. The platform is dis-
tributed over multiple points of presence on a wide range of
IP addresses. It supports simultaneous monitoring of multiple
attackers and logs incoming and outgoing network activ-
ity, records complete terminal sessions, monitors filesystem
changes and snapshots the attack evidence. Acquired attack

data are stored in various database systems, processed, and
exposed via internal APIs.

Captured data are then imported into the CyberViz system
in JSON format via an internal API and enriched with open
data from publicly available cyber intelligence feeds. The
resulting data structure hierarchically describes each inter-
cepted cyberattack with key-value records. Its data values
include attack identifier and timestamp, target IP address and
entry vector (port), attacker’s IP address and its detailed infor-
mation, such as autonomous system number (ASN), the fully
qualified domain name (FQDN), and complete IP geolocation
data (city, country, latitude, longitude). Other data fields also
include a complete log of commands from interactive SSH
sessions, a network log of outgoing and incoming connec-
tions to and from (malware distribution) servers and their
exact IP address, port and protocol information, hostnames
and URLs, as well as a list of service and filesystem changes,
together with file details, such as file hash, file name, Multi-
purpose Internet Mail Extension (MIME) type, and malware
scan results, including classification by malware detection
engines.

B. CYBERATTACK MODEL
The reviewed literature on attack graph modeling techniques
comprises numerous fundamentally different approaches.
Their common goal often includes the estimation of the gen-
eral level of network security or identification of (potential)
attack paths within the system. We observed that many of
the proposed attack graphs focused on modeling states of
known network assets (e.g., hosts, security controls, and net-
work devices under the operator’s control). Oftentimes the
models’ primary represented constructs included the cyber-
attack preconditions, exploits, and postconditions [14]. The
vulnerabilities of such systems were often known in advance,
whereas the information of used exploits was retrieved from
external intelligence feeds. This allowed the researchers to
focus on the model of their network and investigate attacker
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TABLE 2. Functional requirements of the proposed solution.

actions in its context, assessing its security, discovering attack
paths, and raising intrusion alerts. However, we observed a
shortage of studies that focused on obtaining attack session
data and modeling it in such a manner to allow for the inves-
tigation of the attackers’ behavior outside of the controlled
perimeter, enabling the discovery of attackers’ network assets
and mutual relations, as well as revealing their coordinated
cyberattack campaigns.

Therefore, we propose a new attack graph model tai-
lored to the centralized data collection pipeline of a globally
distributed honeypot network. The model is capable of repre-
senting the individual attack details, as well as inspecting the
attacks’ common denominators (e.g., shared data, metadata,
and actions) for uncovering attacker networks and relations.
We enrich the ingested data with externally obtained net-
work information, file metadata, and unique attack iden-
tifiers and scan the downloaded malware files for known

malware signatures. Like similar works, we do not comple-
ment our model with specific vulnerability information from
the MITRE ATT&CK platform or the CVE program since
knowledge of the exposed vulnerabilities is already built into
the design of our honeypot system.

However, we do generalize the captured fragmented
attacker actions into a series of macroscopic steps of the
Cyber Kill Chain framework to provide a temporal overview
of the attack. We base our unified model’s technical imple-
mentation on scalable graph technologies, proven func-
tional by Noel et al. [53], [90]. We borrow and extend data
modeling approaches from Leichtnam et al. [56] We draw
inspiration for the analysis of malware distribution net-
works from Peryt et al. [45]. We employ attack propagation
analysis and honeypot platform validation approaches from
Kaâniche et al. [89] and Bar et al. [82], We leverage cluster-
ing ideas described by Studiawan et al. [83] and aid graph
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FIGURE 2. High-level architecture of CyberLab and CyberViz platforms. The arrow on the top left of the figure indicates the honeypot attack ingress point,
arrows connecting system components denote data flow within the solution, and the arrow on the bottom right shows the CyberViz front-end interface
exposed to users. Stacked layers display system topology, whereas individual entities represent specific technologies and data formats.

TABLE 3. Coverage of the Cyber Kill Chain model.

dilution using PageRank algorithm as shown by Sawilla and
Ou [28]. We apply the constructed model to our dataset of
captured attacks on SSH honeypots and further extend the
above proposals with a proof-of-concept visualization system
for interactive attack exploration and visual analysis. We also
carefully address the shortcomings of the preceding visual-
ization solutions identified by Lallie et al. [14] and employ
the most common visualization channels and graphical visual
methods for honeypot attack data analysis as reviewed by
Ikuomenisan and Morgan [59].

We position the newly proposed data model for structuring
and presenting the acquired attack information as the prin-
cipal contribution of our research. We demonstrate the use
of our model to directly represent the attack topology and
leverage graph databases to maintain consistency between
the data storage and presentation layers. We implement the
model by mapping the crucial (unique) entities participating
in the attack (e.g., attacker’s IP address, target IP address,
malware server’s IP address, target port, and malware files)
into individual nodes and their properties, andmodel the iden-
tified attacker’s actions (e.g., a new SSH session, an outgoing
network connection) as node relationships. This allows us
to describe, access, and visualize the individual attacks as
connected graphs rather than storing them as independent
objects with potentially duplicate data and metadata.

We deliberately place select metadata information (e.g., IP
address geolocation information) on the graph, rather than
assigning it to nodes as properties, to enable path-based
querying and aid visual exploration of the nearby connected
nodes. This complements existing graph edges denoting the
attacker’s actions with new edges representing metadata rela-
tionships. We further generalize the attack data and attackers’
actions by complementing the specific stored relationship
types and labels with their generic counterparts. To do so,
we merge specific node labels (e.g., individual attack tar-
get, attacker’s IP address, malware server’s IP address) into
generalized categories and nodes (e.g., all honeypot targets
as one node, all IP addresses as one category) and connect
them to a global attack graph encompassing all captured
attacks. We also link multiple relationships (actions) into
virtual higher-level attack steps, following the Cyber Kill
Chain framework (e.g., merging the attacker’s connection to
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FIGURE 3. Proposed graph data model of an individual cyberattack. The model is displayed for a single attack, while its unique entities are
further linked into a global attack graph. The figure only displays generic node relationships to reduce overplotting. Node data and
relationship properties are listed. Nodes are displayed with specific labels and grouped into categories. Categories are also represented
using (generic) node labels to aid querying and visualization. Identical entities are merged into a single node and linked using
relationships attributed with corresponding attack identifiers.
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the target via SSH and their malware retrieval via HTTP into a
single payload delivery stage). We attribute the unique attack
identifier to each specific relationship and append an array
of applicable attack identifiers to the generic relationships.
Each of the individual cyberattacks is, therefore, a subgraph
consisting of nodes and specific attack relationships in the
global attack graph. This allows us to observe individual
entities in the global attack context and enables the identi-
fication of node interactions between multiple attacks. The
finalized model includes 34 different node labels, 15 node
category labels, and 60 relationship types. It symbolizes our
distributed honeypot system as a generic root node connect-
ing all captured attacks. Actual attack targets in individual
attacks are represented using unique honeypot identifiers to
conceal their true IP address. This design enables simple path
traversal across the root target node when analyzing multiple
attacks. All attack entities of the model are merged into the
graph for each newly imported attack session. Thismeans that
previously unseen entities are created as new nodes, whereas
already existing entities are linked to the unique identifier
of the imported attack. The representation of the proposed
attack graph model is depicted in Fig. 3. A sample of the
graph-building procedure is shown in Fig. 4.

With further simplification and applied visualization lay-
outs, the proposed model offers a direct representation of
the individual attack’s structure and its phases of execu-
tion. It allows for visual attack classification based on the
(sub)graph topology and enables the straightforward devel-
opment of interactive visualizations. Further, the graph data
model allows for applying graph data science algorithms,
such as community detection, PageRank, and link prediction,
directly to the global attack graph to reveal latent network
characteristics.

We implemented the model using the neo4j graph
database [91] and developed the data ingestion and trans-
formation API in Python to convert the enriched JavaScript
Object Notation (JSON) objects into openCypher [92] graph
query language (GQL) statements. We used dedicated graph
projections for running graph algorithms and additional vir-
tual relationships for visualizations.

C. VISUALIZATION DESIGN
Authors of the Systematic Review of Graphical Visual Meth-
ods in Honeypot Attack Data Analysis [59] observed that
scientific researchers often consider data visualization a triv-
ial task and do not follow data visualization best practices,
resulting in the ambiguous visual communication of infor-
mation. Similarly, A Review of Attack Graph and Attack
Tree Visual Syntax in Cyber Security [14] reported that many
AMTs appear not to have undergone an effective design
process and often overlooked the cognitive value of graphical
models during their design. Therefore, we approached the
visualization design in an attempt to address these findings
and the identified solution requirements. We reviewed the
relevant visual syntax design theories and design practices in
an attempt to produce a cognitively efficient system.

Yang et al. [93] and Ji et al. [94] suggested approaches to
effective network traffic visualization using a graph-based
representation of complex structures, as well as using data fil-
tration and dimensionality reduction techniques as reviewed
by Sorzano et al. [95]. They also proposed the use of mul-
tiple coordinated views for better insight into the data.
Weissgerber et al. [96] and Ikuomenisan and Morgan [59]
suggested basic charts (such as line, bar, and pie) in security
visualization be complemented with (interactive) graphical
constructs offering higher data density, visual effectiveness,
and better visual expressiveness to effectively communicate
hidden patterns in data. Keim et al. [97] defined the func-
tional steps of a visual analytics model, consisting of data
processing, information visualization, pattern discovery, and
knowledge generation, reinforced with visual-interactive data
exploration. Bertin [60] described visual variables, entailing
position, size, shape, value, color, orientation, and texture,
to build the foundation of visual syntax. Miller [61] discussed
the limits of human short-term memory in relation to the
number of visual stimuli. He proposed an optimal number
(7±2) of objects and their properties (e.g., shapes, colors,
edges) for effective visual communication. The Principle of
Primary and Secondary Notation built a distinction between
variables forming the generic diagram structure and objects
exhibiting its relationships and aiding the perception of the
observer [62]. Visual distance referred to perceptible steps
that helped to distinguish between objects in a diagram,
aiding object recognition and concept interpretation [62].
The Gestalt principles of visual perception proposed seven
factors contributing to the effective diagram design, including
simplicity, proximity, similarity, figure-ground relationship,
direction, continuity, and closure [64]. The Cognitive Dimen-
sion of Notations [98] defined 14 cognitive dimensions,
including consistency, abstraction, the closeness of mapping,
the difficulty of mental operations, hidden dependencies, and
viscosity. The Physics of Notations set the basic visual syn-
tax principles and formed guidelines for the implementation
of the design variables [63]. Most notably, these princi-
ples included object-to-concept mapping without redundancy
and ambiguity (semiotic clarity), dual coding using text and
visual notations, the cognitive fit of the developed model
for its intended audience, visual expressiveness, and seman-
tic transparency. Moreover, additional visualization design
considerations included the logical depiction of events and
information flow on the diagrams [14], as well considera-
tions regarding the shape and color selection, leveraging their
suggestive powers and perceptive links with hazards [99].
Lallie et al. [14] argued shapes should be used as the primary
means of communicating information as they are the primary
visual variable for aiding object recognition [63] and can cap-
ture important phenomena more powerfully and succinctly
than words [100]. They further discussed the use of specific
shapes and their suitability for the accommodation of textual
labels.

Following the reviewed design theories and visualization
practices, we approached the solution design in accordance
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FIGURE 4. Visual representation of data import (graph building) procedure. The figure displays pseudocode samples for the creation of
MalwareServerURL nodes and their relationships, as well as the decomposition of URL strings into individual parts, each represented as its
own MalwareServerURLPart node. The data are ingested from CyberLab API and merged into unique nodes, as shown on the top left side
of the diagram. The nodes are linked with other graph entities and attributed with unique attack identifiers. URL decomposition is
performed to enable the identification of attack similarities based on URL parts and patterns.

with the identified requirements. Based on the conducted
consultations with cybersecurity experts, we identified two
crucial visualization use cases for our attack analysis tool:

1) Visualization-based workflow for the analysis of the
global attack graph.

The tool should allow for visualization of the global
attack graph model comprising all captured attacks.
It should enable the analysis of entity involvement
in multiple attacks to reveal potential attack patterns
and identify node clusters and their hidden links. It
should define and visualize graph feature projections

based on select node relationships and calculated
metrics. It should enable node searching and visu-
alization of search results on a graph by matching
text-based queries to any selected node properties. It
should allow for configurable visualization of node
clusters based on node attributes, support cluster col-
oring, and isolation, as well as display cluster sizes.
It should allow graph filtering based on node and
edge labels to allow for configurable preview without
overplotting. The tool should also support interactivity
between the main graph display and additional view
panes portraying node and edge (meta)data. It should
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FIGURE 5. Design of the attack visualization tool. The figure displays the main components and features of the proposed proof-of-concept visualization
solution. The tool consists of three main panes (labeled in red): the controls pane on the left, the graph visualization display pane on the top, and the
details view pane on the bottom. The controls and details pane is retractable to enable fullscreen graph visualization. The controls pane allows the
selection of graph data (individual attacks or global graph projections) and its layout, as well as allows for easy data export. The bottom pane displays
node and relationship details and statistics. The visualized attack graph is interactive. It displays node labels and graph expansion context menu on hover
and expands the graph by visualizing directly related nodes from other attacks on click. Upon node or relationship selection, their details are displayed in
the details pane at the bottom. The details include node labels, appearance count, and entity properties (including the calculated metrics). Some of the
displayed elements, such as the attack involvement list, are interactive and directly affect the visualization in the graph display pane. This is depicted with
black arrows linking crucial elements and views via user actions. Additionally, scrolling the bottom (details) pane reveals additional widgets containing
specific attack information and global attack graph statistics (e.g., malware file data, attack origin statistics, top returning attackers, etc.). Sensitive attack
data are redacted from the figure.
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FIGURE 6. The implemented node design comprises shapes and colors to represent generic data types and entity roles. The combined design primitives
form easily distinguishable individual attack graph entities. The figure only depicts a sample subset of nodes composed of the design primitives. Node
relationships are depicted using dotted edge lines to display metadata links and solid lines to display attacker actions. The defined node design and color
scheme are used throughout the complete solution, maintaining semiotic consistency across all graph projections and charts with statistical data.
Additionally, select projections to make use of node size and edge weight to represent their relative importance based on node ranks (e.g., page rank)
and relationship property weights (e.g., number of connections, node similarity score, etc.).

enable text-based previews of attack shell sessions and
visualization of isolated attacks while previewing the
global attack graph. Captured IP addresses should
be linked to the CyberLab platform to allow users to
display the history of their activity and show their mali-
cious score. Lastly, the tool should enable easy model
export from the graph database to general-purpose
graph analysis tools for external network analysis. It
should also enable the export of the detected mali-
cious IP address and malware details. The exported
graph data should be complemented with node assets
to maintain visualization consistency across all visu-
alization environments. Extracted entity data should
be exported in common formats to allow its use for
easy configuration of network protection appliances
(e.g., blocking service access for exported attacker IP
addresses on network firewalls and restricting user
access to known malicious URL endpoints on IPS
systems).

2) Visualization-based workflow for detailed analysis of
individual attacks.

The tool should enable navigation between the cap-
tured attack sessions and depict the individual attacks
as graph structures to visually portray their phases of
execution analogous to the Cyber Kill Chain frame-
work and reveal their characteristics. It should dis-
play attack entities using a semiotically consistent
node design and utilize interactivity to reveal node
and relationship properties in the additional overlayed
view panes. The visualization should enable node rela-
tionship exploration across multiple recorded attack

sessions and implement elementary graph layout con-
trols. The main graph should be complemented with
charted statistical data on all captured attacks within
the specified timeframe to better paint the context of the
specific attack under analysis.

We build upon these findings to design a proof-of-concept
interactive tool for the visualization and validation of the
proposed attack graph model. We position graph visualiza-
tions as the primary means of communicating attack data
and follow the proposition of Ji et al. [94] to implement addi-
tional coordinated view panes and display (textual) entity
properties and details. We borrow the ideas of Ikuomenisan
and Morgan [59] and complement graph data with charted
statistical information on recorded attacks. We make use of
the proposed dimensionality reduction techniques using fea-
ture projections [95] and introduce visualization controls to
allow the selection of predefined graph projections and offer
control over the visibility of graph features. We implement
node, edge, and canvas interactivity, capturing hover, scroll,
click, and drag events to allow for the accommodation of
label data on hover, visual-interactive data exploration on
click, and view control using scroll and drag gestures. The
individual components of the proposed visualization tool and
their features are displayed in Fig. 5.
We designed our proof-of-concept visualization solution

in accordance with the identified use cases. Its user interface
design is displayed in Fig. 5. It consists of three main display
and control panes: the visualization control pane on the left,
the graph display pane on the top, and the details view pane
on the bottom of the interface. The control pane allows the
selection of visualization to show in the graph display pane
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FIGURE 7. CyberViz solution displaying the global attack graph and its details. The graph is initially displayed without a node spread. Node and edge
labels were disabled to conceal any personally identifiable information (IP addresses, domain names, command parameters, file names) and reduce label
overplotting. The user is hovering over a MalwareFileMD5 node, revealing its hash. The bottom details pane displays the basic information about the
global attack graph and its node and edge type distributions. Specific node and edge labels in distribution charts are hidden until the user hovers over
their corresponding bar. Additional graph data are revealed by scrolling the bottom panel.

and enables control over its layout and features. Data control
options enable visualization of the global attack graph and its
five predefined projections (use case 1), including attacker
IP to malware server IP address mappings, visualization of
the identified malware distribution networks, including pay-
load file names and their MD5 hashes, and the display of
the attacker IP addresses, their used commands and com-
mand similarities. Additionally, data controls allow isolated

specific attack subgraph display (use case 2) and allow brows-
ing between the consecutive captured attacks. The graph
display pane on the top shows the selected attack graph visu-
alization. The display defaults to a force-directed, constrain-
based layout for attack subgraph display, whereas live physics
and animations are initially disabled when visualizing global
graph projections to aid browser performance. Layout
selection, graph physics, and animations can be manually
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FIGURE 8. Entity type distribution in the global attack graph. The chart portrays the statistical data on generic
and specific node labels and their distribution in the dataset. The global network graph for the captured
timeframe includes 15114 unique nodes and 5573 detected attack events. The data series color coding in the
chart indicates the specific label’s role in accordance with the presented node design. Most notably, the chart
allows the user to identify the IP address distribution skew, revealing 2338 unique attacker IP addresses and
only 197 unique malware IP addresses in the global graph.

controlled using the control pane. The default layout uses
node relationships and parameters, such as relationship
weights, action frequency, and node similarity, to position
nodes on canvas and allow for visual clustering of graph
components to aid the human perception of the data. The
visualization layout controls pane is dynamically populated
with additional controls when switching between a specific
attack and a global graph or its projection display. These
controls include the implemented static layouts, continu-
ous force simulation algorithms (e.g., Noverlap, ForceAtlas,
ForceAtlas2), control of node and edge label visibility, graph
fitting to view pane size, hover-based node isolation mode
and node dragging support. The displayed graph is interactive
and shows node labels and graph expansion context menu
on hover. Users can dynamically extend the visualized attack
graphs by clicking on the individual node’s context menu
item to visualize its directly connected neighboring nodes
from the global attack graph and enable the discovery of
adjacent malware files and connected attackers and servers.
Node selection displays its details in the bottom pane and
reveals its involvement in other cyberattacks in the collected
data sample. Additional details include node labels, a list of
attacks, and entity and relationship properties, including their
calculated metrics (ranks, community memberships, similar-
ity, etc.). Some of the displayed elements, such as the list
of attacks, enable visualization of the related attacks in the
main graph display pane with a single click (use case 2),
whereas hovering over the attack IDs dynamically highlights

the attack topology on a global graph (use case 1). Selecting
a specific attack ID during global graph preview (use case 1)
also depicts its shell session and isolated structure in an
auxiliary display area within the details pane. Scrolling on the
details pane reveals additional widgets with specific attack
information and global attack graph statistics, including the
details on entity label and edge type distribution, malware
files, filenames, tags, attack origin statistics, top attacker
IP addresses, returning attackers, and the like. Scrolling on
the details pane or selecting the MORE LAYOUT OPTIONS
button reveals global graph search controls, clustering and
ranking controls, and node and edge label-based filtering
options. Lastly, the solution also enables direct export of the
global attack graph data in GEXF format and node design
assets in SVG or PNG format to third-party graph analysis
tools, such as Gephi [101]. This allows for custom network
analysis scenarios and offers fine control over graph render-
ing but does not provide the same level of graph interactivity,
statistical charts, and pre-made visualization tools and pro-
jections suited for cyber attack analysis.

Besides tool functionality and user interface design con-
siderations, we took heed of node design for cognitively
effective graph visualization. We implemented a node design
based on the findings of Lallie et al. [14], attaining toMiller’s
law [61], following the principles of primary and secondary
notation [62], making use of color [99] and utilizing a subset
of Bertin’s visual variables [60]. We leverage Miller’s law to
define 7 elementary shapes aiding attack entity differentiation
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FIGURE 9. The extended entity statistics display focuses on attacker and malware server data derived from the global attack graph. The TOP TARGET
PORTS section lists the most commonly attacked target service ports (attackers obtaining initial access). In this example, only port 22 is listed, as the
loaded data originates solely from SSH honeypots. The remaining charts portray statistical data about the most active attackers and malware distribution
servers They depict a relatively small number of returning attackers (TOP ATTACKER IPs) compared to two exceptionally common malware distribution
servers (TOP MALWARE SERVER IPs). Out of the 5573 captured attacks, one of the malware servers was used 3029 times for payload delivery. The most
common malware delivery port is HTTP service port 80 (TOP MALWARE PORTS). Sensitive data has been redacted from the figure.

on the graph. We further dual-code attack entity types with
color to denote their categories and role affiliations. We use
red color to indicate the attackers, as it is commonly associ-
ated with danger and often used in the cybersecurity domain
to indicate the adversaries (e.g., red team). Conversely, we use
light blue to denote the target systems analogous to the blue
teams. Other most common entities, such as the detected
malware servers and the captured malware files, are col-
ored magenta and dark blue, respectively. We attempted to
distinguish malware files in other colors to avoid potential
misinterpretations with light blue target systems. However,
we found dark blue to best maintain the satisfactory visual
contrast on both light and dark backgrounds of the imple-
mented view panes while avoiding the potential positive
connotation of green and insufficient contrast of yellow on
light backgrounds. Composed elementary design primitives,
consisting of shapes and colors, therefore, represent data
types (e.g., IP addresses, port numbers, files) and roles or
categories (e.g., attacker, target, malware) to form graph
nodes. The shapes were selected on a subjective basis to be as
associative with the represented constructs as possible. While
some shapes share a degree of similarity, the entities they

represent are often painted in a specific context or in small
enough numbers to minimize their ambiguity. We do not con-
sider node shape a limiting factor for label accommodation,
as data labels are positioned directly next to the nodes. At the
same time, type labels are superimposed only upon mouse
hover. Further, we use two types of edge lines to visualize
node relationships. In the context of individual attack visu-
alizations correspondent to the Cyber Kill Chain framework,
we rely on solid edges to reveal important node relationships
and depict attack actions, whereas we use light, dotted edges
to display select metadata links. This helps to create visually
distinctive attack segments when visualizing an individual
attack’s structure or analyzing larger amounts of data. In
some projections, additional features such as node size and
edge width are used to display node importance (e.g., dis-
playing node rank) and relationship weights (e.g., number
of connections, node similarity score, etc.). We rely on the
developed design system throughout the whole application,
as well as the remainder of this document, with the only
exception of intentionally using a completely different color
palette for a visual representation of clusters. However, for the
latter to apply, the cluster coloring option has to be explicitly
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FIGURE 10. Additional attacker and malware server data are displayed upon scrolling the graph details pane. The display lists attacker and malware
server domains, fully qualified domain names, and IP geolocation statistics. The most common attacker country is South Korea, and the most common
malware server country is the United States. Sensitive data has been redacted from the figure.

enabled in the additional layout options pane. In such cases,
cluster colors are also visualized in cluster legend alongside
their absolute sizes. Lastly, we also enable the export of
node designs as static assets when exporting graph data to
third-party visualization solutions. This allows us to main-
tain semiotic consistency in all attack graph projections and
statistic charts across the complete solution. The described
node design primitives and a subset of composed nodes are
visualized in Fig. 6.

The visualization tool was implemented as a web applica-
tion. We used standard web technologies, such as JavaScript,
HyperText Markup Language (HTML), and Cascading Style
Sheets (CSS), to build a responsive user interface and visu-
alization controls. Specific attack graph visualizations are
based on Cytoscape.js [102], a graph theory library for
visualization and analysis, offering great customisability.
Global attack graph and their projections are visualized
using Graphology [103] and Sigma.js [104], a JavaScript
library aimed at visualizing graphs of thousands of nodes and
edges. Large graphs are visualized using WebGL renderers
to aid visualization performance by leveraging the computer’s
Graphics Processing Unit. Individual node designs are imple-
mented as GLSL shader code, while continuous layout algo-
rithms are run in separate threads usingWebWorkers to avoid
reducing the browser’s and, therefore, the solution’s GUI

performance (main thread). Graph data are acquired from
node and edge descriptions using asynchronous web requests
to an intermediary presentation API. The latter is developed
in Node.js and functions as a concealment, transformation,
and caching layer, preventing direct access and heavy load on
the graph database from the web. The overall web application
interface is shown in Fig. 5, whereas the designed attack
graph visualizations are displayed in the Validation section.

V. VALIDATION
We used the developed visualization tool in an attempt to
validate the design of our cyberattack model. To do so,
we demonstrate the use of our solution from the user’s
perspective by following the outlined use case scenarios to
review the captured attack data, navigate and display attack
sessions, and reveal attacker communities and their attack
characteristics.

Due to the sensitive nature of the collected data, our
solution is presently deployed in an on-premise private
cloud environment for internal testing and evaluation. The
implemented continuous data import mechanism resembles
the sliding window algorithm. Captured honeypot attack
data are aggregated for a seven-day period and automat-
ically imported into the graph database on a daily basis.
The import procedure utilizes the developed data ingestion,
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FIGURE 11. Interactive analysis of the most commonly employed malware server on the diluted global graph. The global attack graph is filtered by
selecting the desired node and edge types to display. In combination with the enabled node spread, node dragging, and node isolation, this allows for the
visual identification of attackers connecting to a particular malware server. The node isolation functionality reveals the malware server’s FQDN metadata
link and highlights all attackers referencing this server’s IP or FQDN in their attacks. Sensitive data has been redacted from the figure.

transformation, and enrichment API to transform raw cyber-
attack data artifacts collected on CyberLab honeypots into the
proposed CyberViz model. The demonstrational attack data
analysis conducted below was performed on a data sample
of 5573 real-world SSH attacks with payload delivery phases
captured between January 4, 2022, and January 13, 2022. The
attack analysis and visualizations were conducted using the
developed CyberViz tool.

A. GLOBAL ATTACK GRAPH DATA EXPLORATION
Following our first use case, the user utilizes the devel-
oped visualization tool to preview the global attack graph
and perform an initial exploratory analysis of the collected

attack data. To do so, the user selects the GLOBAL ATTACK
GRAPH option from the data controls section on the left
pane of the interface. The global attack graph, consist-
ing of all captured attack entities and relations, is then
drawn in the main graph display pane. The user also pro-
ceeds to toggle the RUN FORCEATLAS2 switch to run
an arbitrary number of iterations of the selected layout
algorithm and better position entities on the graph rather
than allocating them random canvas coordinates. The applied
force algorithm then forms node clusters based on rela-
tionship weights signifying the attack action frequency,
metadata relationship count, and the attacker command
similarity.
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FIGURE 12. Interactive analysis of the second most commonly used malware distribution server. The user hovers over the second top malware server’s IP
node to visualize its direct links. They then click on the node to freeze the isolated view and explore the highlighted nodes to identify attack
characteristics. They then select a particular attack ID to visualize its shell session and display the properties of the deployed malware. Sensitive data has
been redacted from the figure.

The global attack graph is accompanied by basic infor-
mation about the sample under analysis (displayed in the
data statistics section of the left pane), including the data
aggregation timeframe, the number of unique graph nodes,
and the number of unique captured attacks. Since the user
intends to acquire more data on the collected sample, they
select the MORE STATISTICS button to reveal global graph
statistics, as well as entity and edge type distributions. These
details are displayed in an overlayed pane on the bottom half
of the interface. The described user actions form an initial
state shown in Fig. 7 and serve as a starting point for attack
data analysis.

Without the applied MAINTAIN SPREAD and ISOLATE
ON HOVER options and without any applied entity or rela-
tionship filtering, the global attack graph remains severely
overplotted for the time being. Therefore, the user rather
initially shifts their attention to the entity type distribution
chart plotted in the details pane of the interface, as it may
help the user to quickly deduce initial observations regard-
ing the sampled attacks. To allow for better readability,
we have extracted the chart in question from its web-based
form into a suitable paper format in Fig. 8. Nevertheless,
the chart’s web implementation allows the user to hover
over the individual stacked rows and reveal category labels,
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FIGURE 13. Visualization of malware communities based on direct virtual relations between malware server IP addresses and malware file names.
Malware servers are represented with magenta-colored triangles, whereas malware file names are depicted as blue dots. Node sizes represent their
PageRanks for the given network, whereas edge width is kept constant and does not depend on the event count. The top subfigure visualizes malware
communities by coloring the 15 largest connected graph components. The bottom subfigure visualizes graph search functionality by outlining the
detected malware files with shell script extensions. Sensitive data has been redacted from the figure.

sizes, and details of entities constituting the global attack
graph.

Fig. 8 depicts the entity type distribution in the global
attack graph. It shows the dataset includes precisely 5573 cap-
tured attacks represented by 15114 unique nodes. However,
the user might immediately notice a prominent skew of node
counts representing the IP address data. The chart conveys
there are 2338 nodes representing the unique IP addresses
of the attackers (specific label AttackerIP, colored in red,
represented with triangular shape in the graph) and only
197 nodes representing malware server IP addresses (specific
label MalwareServerIP, colored in magenta, also represented
using triangles in the graph). Moreover, hovering over the
stacked rows in the chart reveals that the captured dataset

only includes 448 unique malware file hashes and 264 unique
malware file names, while there are 5573 recorded payload
download actions. The detected skew is also similar for
other generic node classes (FQDN, ASN, geolocation) and is
indicative of significant reuse of malware distribution servers
and their malicious payloads. In other words, the data sample
in question likely includes a large number of very similar
or repeated attacks conducted by many attacker IP addresses
relying on a small number of reused malware file servers.

To further confirm this hypothesis, the user scrolls on the
bottom details pane to reveal additional displays portray-
ing the extended entity statistics. The latter include the top
attacker and malware server IP address, top malware ports,
most frequent attacker and malware IP geolocations, as well
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FIGURE 14. Malware distribution communities with displayed file names. Malware servers are represented with magenta-colored triangles, whereas
malware file names are depicted as blue dots. Node sizes represent their PageRank for the given network. Edge width is constant and does not depend
on the event count. Note the connected communities, where multiple distinct hosts serve identical file names.

as their reverse IP resolutions disclosing their domains or
fully qualified domain names. These data are portrayed in
Fig. 9 and Fig. 10.

Fig. 9 and Fig. 10 convey additional statistical data about
the most active attackers and the most used malware server
IP addresses and ports, as well as their geographical origin.
As evident in Fig. 9, the most commonly employed port for
malware delivery is HTTP service port 80, while the only
available target port is port 22, as the loaded data sample only
contains SSH honeypot attacks. Moreover, Fig. 9 reveals that
two of the most active malware distribution servers constitute
nearly 74% of all captured attack traffic and certainly spark
further research. Therefore, the user’s next prediction might

be that these servers are, in fact, well-known public repos-
itories hosting penetration testing tools or malicious code.
However, since statistical results only offer a brief overview
of the captured attack data and do not capture the complete
dynamics of the recorded attacks or portray realistic malware
reuse patterns, the user decides to employ interactive graph
analysis to uncover complex entity relations.

In order to reduce the global graph complexity, the user
navigates to the layout controls section of the left pane and
selectsMORE LAYOUT OPTIONS. The graph details pane is
then replaced with additional controls enabling graph search,
clustering, and node and edge type filtering. The user disables
node display for entity types they consider unnecessary and
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FIGURE 15. Visualization of malware distribution communities based on file hashes. Malware servers are
represented with magenta-colored triangles, whereas blue hexagons depict unique malware file hashes. Note the
complete absence of connections between communities.

uses layout controls to enable NODE LABELS and EDGE
LABELS. They also enable the MAINTAIN SPREAD tog-
gle, as well as ISOLATE ON HOVER and ENABLE NODE
DRAGGING options to aid graph navigation. Lastly, the
user runs a desired layout algorithm to reduce node overlap.
The diluted graph then enables them to easily visualize the
highest-ranking malware servers and interactively display
their direct links by hovering over their nodes, as shown in
Fig. 11. Moreover, the user may click on the individual node
to display its properties, visualize attack terminal sessions,
and display attack patterns by hovering over the node attacks
table (Fig. 12).

The simple graph analysis conducted above disproves the
user’s hypothesis of attackers relying on well-known pub-
lic repositories for malware distribution. While the attack
shell sessions reveal short and repetitive malware deploy-
ment scripts, the malware servers in the graph still appear
directly unconnected to each other. They do not link to the

same metadata nodes, and their properties do not reveal
DNS resolutions to any of the well-known public service
domains. In fact, the two most used malware servers are situ-
ated in Verizon Business and China Telecom networks, with
FQDN records indicating their intended use by a business
or residential customers. The user may therefore anticipate
many scenarios, including that these servers could have been
compromised and repurposed as malware serving proxies by
remote attackers.

B. MALWARE DISTRIBUTION NETWORK VISUALIZATION
While the interactive data exploration enables attack session
visualization, discloses entity details, and allows metadata
link analysis in the global context, such graph visualiza-
tions still suffer from overplotting and require the user to
manually filter and navigate the graph to uncover interest-
ing attack characteristics. Since the user is likely interested
in visualizing relationships (attacker actions or attack steps
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FIGURE 16. Malware file statistics. File name statistics reveal the most frequent malware file names used in the attacks and their most common
name collisions. They show that several distinct files (files with different MD5 hashes) were identically named. Malware category statistics reveal
more than 15 classes, as reported by malware detection engines. Multiple attackers were downloading identical payloads during the attacks. Three
of the most used malware files were used by a very large number of attackers, more than twice as many as the next three most commonly used
files. Most of the files originated from malware servers in the United States and the Netherlands. Malware transfer mime-type statistics report that
the most common file types include plaintext and executable shell script files. The color scheme in the charts differs from the general color scheme
used for node design to better differentiate chart data. The visualizations were extracted from the web solution to better fit the paper format.
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FIGURE 17. Visualization of attacker clusters linked by malware servers and served files and their filenames. Individual attacker nodes are directly
connected to malware servers used for conducting cyberattacks. Three of the largest attacker communities are seen transferring three distinct payloads,
each with three different names. Visual clusters are created using a force-directed graph layout. Triangle shapes depict unique IP nodes, hexagons depict
unique MD5 hashes of transferred files, and circles depict file names. Attacker nodes are colored red, malware servers are colored magenta, and malware
files and their names are colored blue. Node sizes represent their PageRank. Highlighted file names indicate shell scripts.

and data links) between the crucial attack entities, such as
the AttackerIP, MalwareServerIP, MalwareFileName, Mal-
wareFileMD5, and AttackerCommand, we used graph data
science algorithms and dimensionality reduction techniques
to further dilute the data around those labels.

We prepared multiple graph feature projections from
the global attack graph, encompassing the select relation-
ships between the nodes. One of such projections visualizes

malware distribution networks. We reduced data dimension-
ality using a new virtual relationship, directly connecting
unique malware server IP addresses with the unique file
names of the downloaded payloads without intermediary
nodes or decomposed attacker actions. Such a high-level
virtual relationship roughly corresponds to the payload deliv-
ery step of the Cyber Kill Chain. The user can display the
desired graph projection by selecting it in the data controls
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FIGURE 18. Botnet detection based on connected component search in an attack graph projection. Color-coded node communities represent detected
botnets (connected networks of attackers). Individual botnets may consist of several smaller communities, indicating attackers’ preferential malware
distribution server. The largest 15 communities are color-coded in an alternative color scheme corresponding to the bar colors in community size charts.
Node sizes represent PageRank, and edge widths represent connection count.

section of the left pane. The resulting malware distribution
communities are then displayed in the main graf preview
area, as shown in Fig. 13. The user may utilize additional
visualization controls to search, cluster, and rank the nodes by
arbitrary properties. In Fig. 13, the user first ranks the nodes
by their log normalized download counts (due to the high
variance of the number of download events) and then colors
the clusters based on their assigned community identifier
(obtained using the Weakly Connected Components search

algorithm). Moreover, the user may scroll the details pane to
reveal additional statistical data on captured malware files or
match a file name pattern.

Note: All of the available graph projections, node and rela-
tionship rank, and community identifiers, as well as statistical
data on a global graph and malware files, are automatically
calculated during each data import event.

The identified malware distribution communities reveal
potential hidden links between malware servers
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FIGURE 19. Exported charts displaying suspected botnets (detected attacker communities) and their bot count, as well as malware servers’ PageRank.
Sizes of detected communities are color-coded following the color scheme used for visualization in Fig. 18.

(purple triangles) based on the assigned malware file names
(blue circles) in the analyzed attack sample. To better visu-
alize file name patterns served by individual distribution
servers, the user may decide to export the active graph from
the web solution. To do so, they use the ACTIVE GRAPH
button in the EXPORT CONTROLS section of the control
pane. The exported data are contained within a ZIP file and
includes a GEXF graph description file and image assets for
all exported entities. The user may open the graph file in their
graph visualization suite of choice and apply custom render-
ing settings to generate an output such as the visualization of
all served malware file names in Fig. 14.
In Fig. 14, the user also applied a weighted PageRank

algorithm to the given network to measure the importance
of individual nodes in relation to the number and weight
(event count) of their edges. Rescaled node PageRank is then
presented as node size in graph visualization.

However, since each unique file name is only stored in
the global attack graph once, Fig. 13 and Fig. 14 may not
accurately depict malware distribution communities in cases
where two different payloads coincidentally share the same
name but vary in attackers or contents. Since several malware
files seem to be semantically named, there is a relatively high
potential for name collisions. Therefore, the user employs a
different graph projection based on a new virtual relationship
between the malware server nodes and theMD5 hashes of the
files they host. The user once again prepares the graph using
the web interface and exports it in a suitable format to visu-
alize the malware distribution communities more precisely.

While Fig. 14 displays several connected communities,
indicating that multiple unique malware servers host files
with identical names, Fig. 15 illustrates that no two malware
servers actually hosted identical files. This might be due to
the common practice of malware obfuscation, file binding,
or polymorphic encoding of payloads by the attackers. While

the latter visualization is more appropriate for quantitative
malware analysis, the former better illustrates potential asso-
ciations between the malware servers. The likelihood of true
positive associations increases with the increase in the num-
ber of files and the uniqueness of their names.

C. MALWARE FILE ANALYSIS AND BOTNET DETECTION
After visualizing malware distribution networks, the user
might be interested in the details of the captured malware
files. For this reason, our solution statically analyzes and
classifies all captured malware files using multiple mal-
ware detection engines. Shell scripts, text files, and URLs
are decomposed into individual shell commands or strings.
All files are attributed with metadata, such as file hash,
file name, and mime type. File names are correlated and
grouped by their edit distances using the Levenshtein simi-
larity algorithm to discover similar nomenclature patterns and
potential human interaction (typographical errors). PageRank
and Louvain community detection algorithm are used on
subgraphs of MalwareServerIP and MalwareFileName nodes
linked by ServedFileNameDirect edge. This allows for addi-
tional malware categorization based on file name patterns and
reveals their cluster’s affinity to particular malware distribu-
tion servers.

Fig. 16 lists malware file statistics. The most common
transferred payload types include plain text files and exe-
cutable shell scripts. Three of the most common file names
in the captured attack sample are ‘1sh’, ‘2sh’, and ‘3sh’.
They were used in a comparable number of attacks, and their
file names constitute the majority (74%) of all transferred
payloads, thus confirming the user’s initial hypothesis of a
high number of similar attack repetitions. All files with these
three file names were distributed by two servers, as outlined
in the upper left corner of Fig. 14.
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FIGURE 20. Exported network of malware file names used for malware categorization based on file name similarity. The projection visualizes
MalwareFileName nodes from the global attack graph and links them using a LevenshteinSimilarity virtual relationship. A force-directed layout is used
to visually group nodes with higher name similarity, and network modularity is used to color individual modules. The color scheme differs from the
general color scheme used for node design.

However, since the hashes of all served files differ, no inter-
community links appear in Fig. 15. To further investigate
this discrepancy, the user makes use of another graph pro-
jection encompassing all four of the crucial participating
nodes: AttackerIP, MalwareServerIP, MalwareFileMD5, and
MalwareFileName. Analogous to the malware distribution
network visualization, this projection forms a new virtual
relationship to directly connect unique AttackerIP and Mal-
wareServerIP nodes. It calculates PageRank for the nodes in
the new network and considers the malware download count
as a parameter of the virtual relationship. The nodes and edges
are then scaled according to the new weights. They reveal
multiple attacker groups focused on malware distribution
servers and their served file names and payloads (Fig. 17).
Fig. 17 reveals that many attackers in the largest cluster

are transferring multiple distinct malware payload varia-
tions. These payloads are concealed under three file names
(‘1sh’, ‘2sh’, and ‘3sh’), each of which is hosted by both

malware servers with the highest rank in the global attack
graph. Some of the attackers from the cluster only transferred
files from one of the malware servers, whereas others con-
nected to both and revealed a potential hidden link between
the servers. The number of different attacker IP addresses
using each unique malware file is depicted on the bottom left
chart in Fig. 16.

The graph further reveals that each of these three file
names, in fact, conceals four different payloads, none of
which was ever served by both of the servers. The user
might again speculate that this is likely due to the payload
obfuscation in an attempt to evade detection. Therefore, while
the links between the two servers are revealed by individual
attackers, the potential links between the attacker commu-
nities are revealed by file name patterns. By uncovering
these links in our attack graph model, we managed to unveil
the relationships between the payloads, thus increasing the
chances of their detection.
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FIGURE 21. Simplified visualization of an individual attack event. The simplified attack graph visualizes multiple stages of the attack, its
participating entities, and their metadata. Metadata information is dispersed between node properties (displayed on click) and metadata nodes.
Nodes participating in the attack are connected using emphasized edges and form the main attack execution chain. Metadata nodes are
connected using light, dotted edges and are positioned perpendicular to the attack chain. They represent crucial node data and serve as graph
pivot points for exploring linked entities from other recorded attacks. Sensitive node information has been redacted from the figure and the user
interface has been hidden.

Such graph projections also form a basis for botnet
detection using multiple graph features (e.g., select links
from the global graph and newly formed virtual relation-
ships). Individual attackers may be associated based on
their reliance on distinct malware distribution servers (net-
works) for payload delivery based on malware naming
patterns, file hashes, command similarity, execution order,
or a combination of these and other factors. Fig. 18 illus-
trates a rudimentary approach toward botnet detection based
on community detection algorithms for the selected pro-
jection. In Fig. 18, the user visualizes the results by
color-coding the most significant connected components of
the network.

Fig. 18 illustrates the potential botnets. The connected
component search algorithm applied to the new network
results in 57 communities, the largest 15 of which are color-
coded. Detection quality scales with the size of the captured
attack sample and is amplified by the distributed nature of the
underlying honeypot system. While the proposed approach
is capable of botnet detection, misclassifications are likely to
occur if the data are not complemented by amultitude of other
dimensions. Either individual botnets may consist of several
smaller groups of attackers or the individual attackers may
belong to multiple botnets at the same time.

To automate attacker classification and assort attack-
ers into communities, connected component search [105]
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FIGURE 22. Attack exploration using node-link expansion and entity details pane. The graph display pane shows entities related to the selected malware
file name ‘3sh’. These include at least three additional unique files (shown as hashes) sharing the exact same file name. These files were downloaded to
various compromised hosts during the other attacks and are linked to the unique file name node in the global attack graph. Besides file-to-name
relations, links to other involved malware servers and similarly named files are also shown.

and community detection algorithms, such as the Louvain
method [106], are automatically performed for all predefined
graph projections during the data import procedure. Detected
botnets are ordered by size and charted in the details pane of
the interface. Extracted community sizes and malware server
PageRank charts for graph projection in Fig. 18 are shown in
Fig. 19.

The user may decide to use the graph data to cat-
egorize malware into virtual groups based on their file

name similarity. They can do so by visualizing the Leven-
shtein distance between the individual malware file names.
The user first applies graph filters to only visualize Mal-
wareFileName nodes and models a new direct relation-
ship with the calculated LevenshteinSimilarity parameter.
Lastly, the user may measure the network modular-
ity of the new graph and color code the individual
classes. The resulting exported visualization is shown
in Fig. 20.
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D. INDIVIDUAL ATTACK BROWSER
Our second use case scenario includes the review of the
individual captured attacks in isolation from the global attack
graph. Instead of applying node and edge label filters on the
global graph, the user can employDATA CONTROLS to enter
the SPECIFIC ATTACK view and only retrieve nodes bound
by specific relationships tied to the attack’s unique identifier.
In this manner, generic graph relationships are not retrieved,
and the user can focus on the extracted subgraph (attack)
topology.

The user can review individual attacks by directly referenc-
ing their identifiers either using manual input, by selecting
attack links displayed in various entity properties, or by time-
consecutively browsing between the captured attack events.
An example of the simplified attack structure is shown in
Fig. 21.

Fig. 21 depicts the targeted honeypot system (cyan) and
several consecutive stages of the attack execution chain. The
attack event flow is depicted from the top right to the bottom
left of the graph. It starts with the initial access to the target
system over the SSH service on port 22 (attack vector). The
attacker’s IP address (red) is traced to the town of Natal,
Brazil, based on the geographical IP data. It belongs to the
Autonomous System number 53153 and resolves a reverse
DNS lookup. The attacker then initiates an outgoing connec-
tion from the compromised system and retrieves the malware
payload from another server in Hangzhou, China, listening
on port 80. The payload delivery stage is modeled as an
action originating from the attacker server to the malware
distribution server, even though the outgoing connection is,
in fact, established from the compromised host. This links
the attacker and malware servers when visualizing the attack.
During the malware download and installation stage, its
distribution URL is recorded and decomposed it into URL
parts. The latter are not displayed in the individual attack
preview. The downloaded files and their properties, including
their MIME type and extracted strings, are also stored in the
database. The files are represented by their MD5 hash and file
name(s). Captured files are then scanned for known malware
with an array of malware detection engines and classified
with malware category tags. These are linked to the detection
result reference and displayed on the graph.

Specific attack preview also enables the user to browse
entity relations outside of the scope of the current attack. It
allows them to discover entity links without the requirement
to display all nodes of the global attack graph. The analysis
is conducted inversely to the exploration of the global attack
graph: instead of diluting the graph to identify hidden links,
the user expands relationships starting from a specific attack
to reach related nodes and reveal prominent features.

Since the user is interested in the details of the
attacker’s malware, they hover over the malware file node
to expand its direct links from the global attack graph.
With a few clicks, the user reveals two virtual rela-
tionship types, the GenericFileDirectlyUsedByAttacker and

GenericWasMalwareDetected, thus unveiling all attackers
relying on the same malware file to execute the attack and
malware scan results at various points in time. This is illus-
trated in Fig. 22.

Fig. 22 illustrates the visual attack exploration mode on
the main graph display and lists the selected entity and attack
session details in the bottom pane.Most notably, entity details
reveal the total number of times this file was detected in a
global attack graph. They also reveal the corresponding iden-
tifiers of these attacks and allow the user to visualize them on
the graph with a single click. Besides the attack involvement
data, the bottom pane displays a replay of the captured SSH
session, revealing an automated malware installation script.
The topmost part of the figure shows the direct link expansion
resulting from hovering over the selected file node. This
option visualizes select directly connected nodes from the
global attack graph. These include 20 additional attacker IP
addresses utilizing the same malware file and indicating a
potential correlation between the attackers.

VI. CONCLUSION, LIMITATIONS, AND FUTURE WORK
We presented a novel approach for cyberattack modeling
using graph theory and validated its usefulness with a proof-
of-concept implementation and analysis of two common use
case scenarios. We described the developed model and visu-
alization tool and demonstrated their benefits during a walk-
through of their use-case scenario. We presented the use of
the designed software for honeynet attack data visualization
and analysis. We used the developed attack graph model to
explore attack entity relationships and identify and visualize
malware distribution networks. We presented statistical data
on captured attacks, conducted malware file analysis, and
displayed rudimentary botnet detection functionality. Lastly,
we deduced the characteristics of the captured attack sample,
revealing substantial malware reuse and uncovering hidden
links between attackers, malware distribution servers, and
malware files. With that, we demonstrated that the developed
proof-of-concept aids cyberattack modeling, analysis, and
visualization. We believe the results obtained using our tools
and methods are significant as they demonstrate the power of
interactive visual analytics designed with end users in mind.
They highlight the importance of continuous monitoring of
the dynamic threat landscape and provide insights into the
challenges of addressing a wide variety of cyberattacks with
a unified model.

We aimed to design our solution in accordance with the
reviewed visualization best practices in an attempt to ease
attack cognition. We conducted expert consultations with the
potential users of the tool in the cybersecurity domain and
identified their needs. We consulted cybersecurity analysts
and incident response teams and collected their continuous
feedback throughout the solution development. We received
both positive and negative feedback. Cybersecurity profes-
sionals complimented our graph-based approach to threat
hunting and attack analysis. However, they expressed their
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concerns over the global attack graph complexity and the
requirement ofmanual attack datamapping to fit or extend the
model. They complimented the tool’s interactivity and attack
visualizations resembling the Cyber Kill Chain model but
questioned its coverage and missed a wider array of integra-
tionwith third-party intelligence data providers. Furthermore,
we also identified several occasions of overplotting during
the visualization of vast datasets. We concern overplotting
mayworsen and reduce the visualization performance and the
effectiveness of attack data communication with an increase
in data amount.

Within our future work, we plan to address the expressed
user concerns and propositions regarding the demonstrated
solution. We plan to extend the attack graph model with
attack reconnaissance data collected from a network tele-
scope (https://telescope.ltfe.org) and implement additional
reconnaissance and post-exploitation data analysis tools. We
intend to further improve the interactivity and visualizations
offered by our tool by introducing timeline-based dynamic
graph previews and implementing additional third-party data
integrations with the MITRE ATT&CK framework, MISP
platform, and the CVE program. Our major research direc-
tions entail data dimensionality reduction and prominent
attack feature extraction approaches based on machine learn-
ing, including using large language models. We aspire that a
holistic approach towards cyber incident analysis will enable
better attacker profiling, identification of human actors, and
detection of advanced persistent threats.

APPENDIX
DATA AVAILABILITY
The collected honeypot metadata that served as a basis
for the processing and visualization described in this
paper is publicly available on our project’s website,
https://cyber.ltfe.org, or available upon request. A limited
subset of the data are also available in the Zenodo repository
under the DOI:10.5281/zenodo.3687527. All published data
are de-identified and pseudonymized to protect any sensi-
tive information. All intermediate results and metadata can
be made available at the authors’ discretion upon request.
Requests can be sent to the corresponding author.

A supplementary video demonstration of the developed
proof-of-concept solution is available at https://youtube.com/
watch?v=-YzH2zSFwbs.
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