
Fast Incremental Image Reconstruction with CNN-enhanced
Poisson Interpolation

Blaž Erzar
University of Ljubljana

Faculty of Computer and
Information Science

Večna pot 113
1000 Ljubljana, Slovenia
be6384@student.uni-lj.si

Žiga Lesar
University of Ljubljana

Faculty of Computer and
Information Science

Večna pot 113
1000 Ljubljana, Slovenia

ziga.lesar@fri.uni-lj.si

Matija Marolt
University of Ljubljana

Faculty of Computer and
Information Science

Večna pot 113
1000 Ljubljana, Slovenia
matija.marolt@fri.uni-lj.si

ABSTRACT
We present a novel image reconstruction method from scattered data based on multigrid relaxation of the Poisson
equation and convolutional neural networks (CNN). We first formulate the image reconstruction problem as a
Poisson equation with irregular boundary conditions, then propose a fast multigrid method for solving such an
equation, and finally enhance the reconstructed image with a CNN to recover the details. The method works
incrementally so that additional points can be added, and the amount of points does not affect the reconstruction
speed. Furthermore, the multigrid and CNN techniques ensure that the output image resolution has only minor
impact on the reconstruction speed. We evaluated the method on the CompCars dataset, where it achieves up to
40% error reduction compared to a reconstruction-only approach and 9% compared to a CNN-only approach.

Keywords
Image reconstruction, numerical interpolation, multigrid method, convolutional neural networks, autoencoder.

1 INTRODUCTION
Image reconstruction is a process used to recover the
complete data from the incomplete ones that form scat-
tered data. Reconstruction can be applied to both three-
dimensional point clouds and two-dimensional images.
In this paper we focus on reconstructing images which
are generated out of input scattered data. Hereafter, we
refer to these images as corrupted, although the data
may be missing for a variety of reasons, e.g., errors in
transfer between different systems, missing data before
the transfer.

Missing data can be the result of a desire to save time
or space, since in some cases the generation of data is
resource heavy. One such example is ray tracing for
rendering three-dimensional data. Despite the current
powerful graphics processors, the method is still time
consuming. The reason for this is the need to simu-
late the reflections of the light rays for each pixel in or-
der to calculate its colour in the final image. This need
for computation power could be lowered by simulating

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

only a small fraction of the rays and reconstructing the
rest of the pixels.
Similar idea is used in foveated rendering [Jab+22],
which is used in virtual reality. Here eye tracking is
used to monitor where the user’s view is focused. Most
of the pixels on the screen are in the peripheral vision,
where the sharpness is lower as in the central area. This
means that fewer rays could be sent over those areas (or
areas containing less details) and the reduction of image
quality will not be noticed by the user.
We solve the reconstruction problem using Poisson in-
terpolation, which allows us to use numerical methods
for solving linear systems. These methods run fast on
the GPU and also converge in small number of itera-
tions, given we choose multigrid method used in this
paper. Poisson interpolation allows us to use some other
method for generating the first approximation of the so-
lution, e.g. ray tracing. Image generated on a very
small amount of rays could be interpolated to generate a
fast preview or noise in scattered data could be removed
since interpolation creates a smoother image. This way
we would get a direct preview of the rendering process,
since we can run reconstruction concurrently along with
ray tracing.

2 THEORETICAL BACKGROUND
First we introduce some theoretical background and
notation used in solving the reconstruction problem,
which is solved using linear systems of equations.

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.24 204

2.1 Reconstruction
Let ϕ̂ : R2 → R3 be an image made of colour pixels
ui j ∈R3. It is defined on a rectangular grid of size n×m
in points (xi,y j):

ϕ̂(xi,y j) = ui j, (1)

for indices i, j ∈ Z, 0 ≤ i < m and 0 ≤ j < n. Distance
between neighbouring pixels in x dimension is defined
as hx = 1/(m−1) and analogous for the y dimension.

We have a corrupted image ϕ , which we want to re-
construct. Because the image is corrupted, it contains
actual pixel values only for points in the set of bound-
ary conditions R, |R| ≪ nm. The corrupted image is
then defined as

ϕ(xi,y j) =

{
ui j, if (xi,y j) ∈ R,
undefined, otherwise.

As the result of the reconstruction, we want a smooth
image. We can model this using Laplace’s equation
∆ϕ = ∇2ϕ = ϕxx +ϕyy = 0, which is a partial differen-
tial equation [Str07b]. Multigrid solver actually solves
the nonhomogenous version of this equation – Pois-
son’s equation:

∆ϕ = f , (2)

which we will be solving from here on out.

2.2 Linear system
To be able to write Poisson’s equation as a system of
linear equations, it needs to be discretized first. This
can be achieved using finite difference method for ap-
proximations of the partial derivatives. Using backward
difference followed by the forward difference, the sec-
ond partial derivative ϕxx can be approximated as

ϕxx ≈
ϕ(xi +hx,y j)−2ϕ(xi,y j)+ϕ(xi−hx,y j)

h2
x

an analogous for ϕyy.

Using these approximations we can evaluate the left-
hand side of (2) where we use h instead of hx and hy
since grid size in both dimensions is the same:

∆ϕ(xi,y j)≈
1
h2 [ϕ(xi +h,y j)+ϕ(xi−h,y j) (3)

+ϕ(xi,y j +h)+ϕ(xi,y j−h)

−4ϕ(xi,y j)].

This way we get five-point centered approximation of
the Laplacian that can also be evaluated using a convo-
lution with a 2D kernel.

By approximation (3) and (1) – which also hold for the
function f – we write the discrete Poisson’s equation:

ui+1, j +ui−1, j +ui, j+1 +ui, j−1−4ui j

h2 = fi j (4)

that can be solved as a linear system.

After multiplying (4) by−h2 on both sides, we write the
system Au = b. Vectors u and b are formed by writing
the image and function f as a vector row wise:

u = [u11,u21, . . . ,um1,u12, . . . ,um2, . . . ,umn]
T ,

b =−h2[f11, f21, . . . , fm1, f12, . . . , fm2, . . . , fmn]
T .

The matrix of the system A is a tridiagonal block matrix
[GV96]:

A =

C −I

−I C
. . .

. −I
−I C

 ∈ Rn×m,

where I ∈ Rm×m denotes the identity matrix and C the
tridiagonal matrix:

C =

4 −1

−1 4
. . .

. −1
−1 4

 ∈ Rm×m.

Matrix A can also be decomposed as a sum of three
matrices, diagonal matrix D, lower triangular matrix L
and upper triangular matrix U:

A = D+L+U. (5)

This decomposition is used in defining iterative meth-
ods.

3 RELATED WORK
The linear system Au = b can be solved using two dif-
ferent approaches. Direct methods [Wen17, chap. 3]
solve it in a finite number of steps. Examples of direct
methods are Gaussian elimination, LU decomposition,
pivoting etc. These methods always return a solution –
as long as the system has a solution – but they have high
time and space complexity. The latter is in this case
more problematic, since the matrix A is a very sparse
matrix. For this system of size nm, the Gaussian elim-
ination has time complexity O(n3m3) and space com-
plexity O(n2m2). On the other hand, iterative meth-
ods [Wen17, chap. 4] solve the system by generating
approximate solutions that converge towards the final
one. In each iteration, the next approximation is gen-
erated from the previous one. For a system of size nm
each iteration typically has time complexity O(n2m2).
This means that the iterative methods returns a solution
faster than the direct method, as long as a good solution
is obtained in less than nm steps. Moreover, to use iter-
ative methods, we do not need to explicitly generate the

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.24 205

matrix A, because we only need it to derive a formula
to generate the next approximations.

Defining iterative methods as in [GQ20], each iterative
method has its iteration matrix B and vector c, which
are used to calculate every successive approximation
given the previous one:

uk+1 = Buk + c, k ∈ N0.

The sequence of approximation converges towards the
true solution ũ, which minimizes the residual defined
for the approximation u as

r = b−Au.

3.1 Jacobi method
One of the simplest iterative methods is the
Jacobi method [DF18]. Its iteration matrix B and
vector c are

B =−D−1(L+U),

c = D−1b.

Given this we can write down the rule for updating pixel
values:

u(k+1)
i j =

1
4

(
u(k)

i−1, j +u(k)
i, j−1 +u(k)

i+1, j +u(k)
i, j+1−h2fi j

)
.

3.2 Gauss-Seidel method
The Gauss-Seidel method [DF18] is similar to the Ja-
cobi method, but it has slightly better convergence. This
is achieved by using values from iteration k+ 1 when
calculating the values of iteration k+ 1. The matrix B
and vector c are

B =−(D+L)−1U,

c = (D+L)−1b,

while the update rule is

u(k+1)
i j =

1
4

(
u(k+1)

i−1, j +u(k+1)
i, j−1 +u(k)

i+1, j +u(k)
i, j+1−h2fi j

)
.

It is almost exactly the same as Jacobi’s update, but here
the first two terms are from the currently calculated iter-
ation k+1 instead of the already calculated iteration k.

3.3 Successive over-relaxation
By introducing the relaxation parameter ω the succes-
sive over-relaxation (SOR) [QSS07] can be derived,
whose matrix B and vector c are

B =−(D+ωL)−1[(ω−1)D+ωU],

c = (D+ωL)−1
ωb.

While deriving the update rule it can be shown, that the
next SOR approximation is actually a linear combina-
tion of the previous approximation and approximation
calculated using the Gauss-Seidel method:

u(k+1)
i j = (1−ω)u(k)

i j +ωu(k+1)
i j,GS .

By theorem 9.6 in [GQ20], the method converges under
the condition 0 < ω < 2.

3.4 Conjugate gradient method
The conjugate gradient method (CG) [Wen17, chap. 6]
is different from the previous ones, since it is not de-
rived from the matrix decomposition (5). It is based on
the same idea as gradient descend.
In every iteration the next approximation is calculated
by

uk+1 = uk +αkpk,

which represents a move in the direction of the conju-
gate gradient pk, that is defined to be A-conjugate to all
other conjugate gradients. After defining rk = b−Auk
as the residual of the current approximation, the length
of the next move can be calculated using

αk =
pT

k rk

pT
k Apk

.

The next residual can then be calculated as

rk+1 = rk−αkApk

and the next conjugate gradient as

pk+1 = rk+1 +βkpk

using

βk =
rT

k+1rk+1

rT
k rk

.

It is chosen that p0 = r0, like in the gradient descend
case.

3.5 Neural networks
Recently many new neural networks based on diffu-
sion have been released. Models like Stable Diffusion
[Rom+21], DALL-E [Ram+22] or Imagen [Sah+22]
take a text prompt and generate an image based on its
input. Some of these models even allow users to in-
put an image and generate similar images. This ap-
proach could be used for some sort of reconstruction,
but these models are usually very big. Stable Diffu-
sion for example has around 890 million parameters,
but some models are even bigger. Only the forward pass
on these models requires a powerful computer. In con-
trast the model developed for this paper has less than
a million parameters and can be run on a desktop com-
puter with a dedicated graphics card. A smaller network
runs faster and can be used alongside a fast reconstruc-
tion method.

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.24 206

4 METHOD
4.1 Multigrid solver
The problem of the methods described till now is slow
convergence, which is the consequence of errors con-
sisting of high and low frequencies. High frequencies
are removed in a few iterations, while the low ones
are being removed slowly. The idea of the multigrid
method (MG) [Str07a, chap. 7.3] is to use grids of mul-
tiple resolutions, where low frequencies become high.
The multigrid method is not a standalone method, but
rather a high-level scheme for using the existing relax-
ation methods.

Since the method operates on grids of different resolu-
tions, an operation is needed which generates a grid of
lower resolution – coarse grid – from a higher resolu-
tion grid – fine grid – and the other way around. For
simplicity, we will restrict ourselves to n× n quadratic
images whose size is a power of 2. This means that we
can reduce the image down to a 1×1 grid.

It is a recursive method, as it is also used to solve sys-
tems at lower levels. Depending on the order in which
these systems are solved, we obtain different iteration
schemes called cycles.

4.1.1 Restriction
The operation that reduces the size of the grid is called
restriction. For an image u (or residual r), it returns an
image u′, which has a fourth of the input image pixels:

restriction : Rn2 → Rn2/4.

It works by calculating one pixel value in the restricted
image as the mean of four pixel values from the input
image. This operation can be performed efficiently on
a GPU.

u11

u12

u13

u14

u21

u22

u23

u24

u31

u32

u33

u34

u41

u42

u43

u44

u′11 u′21

u′12 u′22

Figure 1: Restriction on image of size 4×4.

4.1.2 Interpolation
To increase the size of the grid, interpolation operation
is used, which creates a grid twice the resolution:

interpolation : Rn2 → R4n2
.

This is done using bilinear interpolation. This operation
can be performed efficiently on a GPU.

4.1.3 Boundary conditions

In single-grid methods the boundary conditions are
simple to account for – we do not update the pixels
ui j for which (xi,y j) ∈ R, but we still use them for
updating other pixels. In the multigrid method, this
only works on the first grid level. On other levels, a
different system is solved, which also has different
dimensions. As we will see, this is an error system, so
the boundary conditions are homogeneous – their value
is 0.

However, because of the different dimensions, we have
a problem, because we do not know which pixels fall
under the boundary conditions. The solution, as pro-
posed in [GT11], is that a point on the coarse grid be-
comes a boundary condition if it has been constructed
from at least one boundary condition point on the fine
grid in the restriction process, as it can be seen in Fig-
ure 2.

Figure 2: Example of boundary conditions on fine (red)
and coarse (blue) grid.

Implementing this logic is fairly simple. Along the im-
age u we also need an image m of the same dimen-
sions, which holds the boundary conditions. Its ele-
ments are −1 where pixel is a boundary condition and
1 everywhere else. During the iteration of the multi-
grid method, we also apply restriction operation over
m. The result is that for boundary conditions (xi,y j) on
all levels, mi j < 1, as the result of restriction will be
1 only if it has been calculated from four pixels which
are not a boundary condition and have a value of 1. If
pixel is built from at least one pixel which is a boundary
condition, the mean of elements of m during restriction
will certainly be less than 1.

4.1.4 V-cycle

There exist different cycles (iteration schemes) of the
multigrid method. The individual steps are the same
for all cycles, but they differ in the order in which
grids of different resolutions are considered. We use
the V-cycle.

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.24 207

It is the simplest of all cycles and has very good con-
vergence. Other cycles increase the running time of
one iteration, but do not bring much improvement in
convergence. We implement it on the GPU and it runs
upwards of 100 times faster than the CPU implementa-
tion. Its steps are:

1. Pre-smoothing: Perform Nsm iterations of a single-
grid method over the system Au = b.

2. Restriction: Restrict (downsample) the residual r to
a coarse grid to get r′.

3. Solve: We solve Ae = r′. If the size of grid is larger
than nmin, the V-cycle is invoked recursively, other-
wise Nso iterations of a single-grid method are per-
formed.

4. Interpolation: Interpolate (upsample) solution e to
a fine grid to obtain correction p.

5. Post-smoothing: Perform Nsm iterations of smooth-
ing over the improved solution u+p.

For the smoothing we use SOR implemented since its
iteration takes similar amount of time as the simple Ja-
cobi method, but converges much faster. We implement
it on the GPU using red-black ordering [Str07a, p. 568],
because we cannot read and write to the same GPU
memory at the same time. The value of Nsm is 20, while
Nso is 10. For nmin we take 1. Another thing we need
to be careful about is step 5 – since the correction is in-
terpolated, it does not take boundary conditions into ac-
count, so we only need to apply the correction to points
that are not boundary conditions on the fine grid.

Algorithm 1 V-cycle

Input: uk, f,m,n
Output: uk+1

uk+1← smoothing(uk, f,m,n,Nsm)

r← residual(uk+1, f,m,n)
r′← restriction(r)

e← empty image
m′← restriction(m)
if n≤ nmin then

e← smoothing(e,r′,m′,n/2,Nso)
else

e← V-cycle(e,r′,m′,n/2)
end if

p← interpolation(e)

uk+1[m == 1]← uk+1[m == 1]+p[m == 1]
uk+1← smoothing(uk+1, f,m,n,Nsm)

The algorithms is written using pseudocode in Algo-
rithm 1. Both functions restriction and interpolation
take a single image to process as input, while functions
V-cycle and residual take approximation u, right side
f, boundary conditions m and image size n. Function
smoothing takes the same parameters as V-cycle with
another parameter for number of iterations to perform.

4.2 Detail recovery

Since the corrupted images contain only a small per-
centage of the original pixels, much of the detail in the
image is lost despite the reconstruction. For the recov-
ery of these details we have used a neural network. The
neural network was trained with the reconstructed im-
ages at the input and the original images at the output.
This gave us a model into which we could later feed
new reconstructed images, resulting in images with re-
covered details. We used an autoencoder architecture
depicted in Figure 3. In the figure, N stands for the
number of filters, n for their size and m for down or
upsampling size.

Conv2d(N = 64, n = 5)

ReLU + BatchNorm2d

MaxPool2d(m = 2)

Conv2d(N = 128, n = 5)

ReLU + BatchNorm2d

MaxPool2d(m = 2) Conv2d(N = 128, n = 5)

ReLU + BatchNorm2d

Upsample(m = 2)

Conv2d(N = 64, n = 5)

ReLU + BatchNorm2d

Upsample(m = 2)

Conv2d(N = 3, n = 5)

Sigmoid

latent space 64×64×128

Figure 3: Architecture of the implemented neural net-
work.

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.24 208

(a) (b) (c) (d)

Figure 4: Outputs of model trained using (a) L1, (b) L2, (c) SSIM and (d) LPIPS loss.

For the training and evaluation we used the CompCars
Dataset [Yan+15]. Out of all the available images, 27
thousand were used. They were cropped and scaled to
size 256×256. Then we selected 5% of pixels for each
image and generated the reconstructed image as well.
An example of images used can be seen in Figure 3.
The input into the network is the reconstructed image
with an additional fourth channel – a binary mask repre-
senting the pixels selected as boundary conditions. On
the output we put the original image.

For the loss function we chose the L1 loss, because it
produced the least amount of image artifacts among of
the loss functions considered. The comparison of four
loss functions is shown in Figure 4. The last two loss
functions, SSIM [Wan+04] and LPIPS [Zha+18], are
actually perceptual metrics, but they do not provide bet-
ter reconstruction results.

The dataset of images was split into train (80%), vali-
dation (10%) and test (10%) sets. The sets were then
further divided into batches of 64 images. The Adam
optimizer was used for model parameters optimization
and the training lasted for 100 epochs. The validation
set was used to select the best model, and the evaluation
was performed on the test set.

5 RESULTS
We present the reconstruction and detail recovery re-
sults separately. First we evaluate the process of recon-
struction of basic iterative methods in comparison with
the multigrid solver and then show the capability of the
neural network. At the end we also present a few ex-
amples of the full pipeline – reconstruction and detail
recovery.

5.1 Reconstruction
We evaluated all reconstruction methods using the ba-
boon image and two types of boundary conditions (see
Figure 5). For the metric we used the relative residual
defined as ∥rk∥/∥r0∥.
We only use the baboon image, because we are only in-
terested in the convergence process. All methods are
solving the same linear system, which means they all
converge to the same solution. The quality of the recon-
struction is only dependent on the boundary conditions.

Figure 5: Images used for the evaluation of reconstruc-
tion methods: original (top left), corrupted with random
boundary conditions (top middle), corrupted with cen-
ter boundary conditions (top right), reconstructed with
random, with center boundary conditions.

As shown in Figures 6 and 7, the multigrid method re-
duces the reconstruction error the fastest out of all com-
pared methods. We evaluated the methods using two
different boundary condition configurations, as shown
in Figure 5, which results in vastly different perfor-
mance. In both configurations, the multigrid method
outperforms the other reconstruction methods.

0 25 50 75 100 125 150
Time [s]

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

R
el

at
iv

e
re

si
d

u
al

Execution time with image of size 512
and 10% random points

Method
Jacobi

SOR

CG

MG

Figure 6: Comparison of reconstruction error reduction
w.r.t. time, evaluated on random boundary conditions.

Another improvement given by the multigrid method is
that the convergence is much less dependant on the im-
age size when using center boundary conditions, which
can be seen in Figure 8. Using other methods the recon-

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.24 209

0 500 1000 1500 2000 2500 3000
Iteration

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100
R

el
at

iv
e

re
si

d
u

al
Convergence with image of size 512

and center points

Method
Jacobi

SOR

CG

MG

Figure 7: Comparison of reconstruction error reduction
w.r.t. time, evaluated on center boundary conditions.
Jacobi and SOR reconstruction were stopped early be-
cause of their slow convergence.

0 2 4 6 8 10 12 14 16 18 20
Itereation

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

R
el

at
iv

e
re

si
d

u
al

Multigrid convergence for different sizes

Size
64

128

256

512

Figure 8: Comparison of multigrid reconstruction error
reduction on different image sizes.

struction is propagated outward starting at the boundary
conditions, but multigrid updates the whole image in
one iteration.

5.2 Detail recovery
The results of the evaluation for the model trained on
the reconstructed images are shown in Table 1 and its
learning curve in Figure 9. Additionally, we trained the
model directly on the corrupted images, but it achieved
worse performance compared to training on the recon-
structed images.

Reconstructed Corrupted

Metric Input Prediction Change Input Prediction

L1 0.066 0.048 27% 0.434 0.051
L2 0.013 0.009 31% 0.238 0.010

SSIM 0.575 0.679 18% 0.030 0.654
LPIPS 0.514 0.308 40% 1.082 0.339

Table 1: Values of four different metrics for the input
images (reconstructed and corrupted) and predictions
of both models.

20 40 60 80 100
Epoch

0.04

0.05

0.06

0.07

0.08

0.09

0.10

L
1

lo
ss

Learning curve for model trained
with reconstructed images

Loss
train

valid.

Figure 9: Model learning curve.

This can also be seen from the outputs of the models in
Figure 10. Model trained on the reconstructed images
produces images with less noise, better edge definition
and localization. It also improves all images in the test
set regarding all four used metrics.

Figure 10: Outputs of model trained on corrupted (top)
and reconstructed (bottom) images.

In Figure 12 results for two more instances are shown.
They represent the reconstructed images which have
been most and least improved by the model. As it can
be seen, both predicted images show an improvement
over the reconstructed ones which were input into the
model.

At the end we show seven examples of the complete
reconstruction and details restoration process in Fig-
ure 11. The corrupted images are first reconstructed and
then fed into the model to produce the predicted images
with restored details – these can then be compared to
the original images. We show the outputs of both mod-
els, trained on corrupted and reconstructed images.

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.24 210

Figure 11: Comparison between reconstruction and models, from top to bottom: reconstruction, model trained
with corrupted images, model trained with reconstructed images, original image.

6 CONCLUSION
In this paper we dealt with the problem of reconstruc-
tion from scattered data. We focused on images and
presented usage of the multigrid method to solve the
differential equation used to model this problem. This
method is built upon the more basic iterative methods
and improves their convergence rate, which becomes
much less dependent on the image size.

Since the corrupted images contain only a small frac-
tion of the original points, the reconstructed images
contain less details. Because of this we also employed
a neural network model, which is capable of restoring

Figure 12: Reconstructed and predicted images for best
(top) and worst (bottom) model improvement.

lost details. It is based on the autoencoder architec-
ture and trained using a dataset of reconstructed images.
The combined multigrid and neural network methods
outperformed the individual methods in terms of recon-
struction quality.
Using both of these methods, we can generate recon-
structed images faster and improve the quality of the
reconstruction itself, but we are not able to use the neu-
ral network on general images, because it was trained
on only one domain. This is a classic problem of con-
volutional neural networks, which could be resolved by
using a larger dataset containing images from multiple
domains. This small dataset of cars was used only for il-
lustration purposes. A further study using more diverse
dataset like ImageNet [Den+09] would be beneficial.

7 REFERENCES
[Den+09] Jia Deng et al. “ImageNet: A large-scale

hierarchical image database”. In: 2009
IEEE Conference on Computer Vision
and Pattern Recognition. 2009, pp. 248–
255. DOI: 10 . 1109 / CVPR . 2009 .
5206848.

[DF18] Matías Di Martino and Gabriele Facciolo.
“An Analysis and Implementation of
Multigrid Poisson Solvers With Verified
Linear Complexity”. In: Image Process-
ing On Line 8 (2018), pp. 192–218.
URL: https : / / doi . org / 10 .
5201 / ipol . 2018 . 228 (visited on
01/15/2023).

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.24 211

https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.5201/ipol.2018.228
https://doi.org/10.5201/ipol.2018.228

[GQ20] Jean Gallier and Jocelyn Quaintance. Lin-
ear Algebra and Optimization with Ap-
plications to Machine Learning: Volume
I: Linear Algebra for Computer Vision,
Robotics, and Machine Learning. English.
New Jersey: WSPC, Jan. 2020. Chap. 9.
ISBN: 9789811207716.

[GV96] Gene H. Golub and Charles F. Van Loan.
Matrix computations (3rd ed.) USA: Johns
Hopkins University Press, 1996, pp. 177–
180. ISBN: 978-0-8018-5414-9.

[GT11] Thomas Guillet and Romain Teyssier.
“A simple multigrid scheme for solv-
ing the Poisson equation with arbitrary
domain boundaries”. In: Journal of
Computational Physics 230.12 (June
2011). arXiv:1104.1703 [astro-ph,
physics:physics], pp. 4756–4771. ISSN:
00219991. DOI: 10 . 1016 / j . jcp .
2011.02.044. URL: http://arxiv.
org / abs / 1104 . 1703 (visited on
01/15/2023).

[Jab+22] Susmija Jabbireddy et al. Foveated
Rendering: Motivation, Taxonomy,
and Research Directions. 2022. DOI:
10 . 48550 / ARXIV . 2205 . 04529.
URL: https://arxiv.org/abs/
2205.04529 (visited on 01/15/2023).

[QSS07] Alfio Quarteroni, Riccardo Sacco, and
Fausto Saleri. “Iterative Methods for
Solving Linear Systems”. en. In: Numeri-
cal Mathematics. Ed. by Alfio Quarteroni,
Riccardo Sacco, and Fausto Saleri.
Texts in Applied Mathematics. Berlin,
Heidelberg: Springer, 2007, pp. 126–
132. ISBN: 978-3-540-49809-4. DOI:
10.1007/978-3-540-49809-4_4.

[Ram+22] Aditya Ramesh et al. “Hierarchical
text-conditional image generation
with clip latents”. In: arXiv preprint
arXiv:2204.06125 (2022).

[Rom+21] Robin Rombach et al. High-Resolution
Image Synthesis with Latent Diffusion
Models. 2021. arXiv: 2112 . 10752
[cs.CV].

[Sah+22] Chitwan Saharia et al. “Photorealistic
text-to-image diffusion models with deep
language understanding”. In: Advances in
Neural Information Processing Systems
35 (2022), pp. 36479–36494.

[Str07a] Gilbert Strang. Computational Science
and Engineering. English. 1st edition.
Wellesley, MA: Wellesley-Cambridge
Press, Nov. 2007, pp. 283–284, 568,
571–583. ISBN: 978-0-9614088-1-7.

[Str07b] Walter A. Strauss. Partial Differential
Equations: An Introduction. English. 2nd
edition. New York: Wiley, Dec. 2007,
pp. 165–172. ISBN: 978-0-470-05456-7.

[Wan+04] Zhou Wang et al. “Image quality assess-
ment: from error visibility to structural
similarity”. In: IEEE Transactions on Im-
age Processing 13.4 (2004), pp. 600–612.
DOI: 10.1109/TIP.2003.819861.

[Wen17] Holger Wendland. Numerical Linear Alge-
bra: An Introduction. Cambridge Texts in
Applied Mathematics. Cambridge: Cam-
bridge University Press, 2017. Chap. 3, 4,
6. ISBN: 978-1-107-14713-3. DOI: 10 .
1017/9781316544938.

[Yan+15] Linjie Yang et al. “A large-scale car
dataset for fine-grained categorization and
verification”. In: 2015 IEEE Conference
on Computer Vision and Pattern Recogni-
tion (CVPR). 2015, pp. 3973–3981. DOI:
10.1109/CVPR.2015.7299023.

[Zha+18] Richard Zhang et al. “The unreasonable
effectiveness of deep features as a percep-
tual metric”. In: Proceedings of the IEEE
conference on computer vision and pattern
recognition. 2018, pp. 586–595.

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.24 212

https://doi.org/10.1016/j.jcp.2011.02.044
https://doi.org/10.1016/j.jcp.2011.02.044
http://arxiv.org/abs/1104.1703
http://arxiv.org/abs/1104.1703
https://doi.org/10.48550/ARXIV.2205.04529
https://arxiv.org/abs/2205.04529
https://arxiv.org/abs/2205.04529
https://doi.org/10.1007/978-3-540-49809-4_4
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1017/9781316544938
https://doi.org/10.1017/9781316544938
https://doi.org/10.1109/CVPR.2015.7299023

	Introduction
	Theoretical background
	Reconstruction
	Linear system

	Related work
	Jacobi method
	Gauss-Seidel method
	Successive over-relaxation
	Conjugate gradient method
	Neural networks

	Method
	Multigrid solver
	Restriction
	Interpolation
	Boundary conditions
	V-cycle

	Detail recovery

	Results
	Reconstruction
	Detail recovery

	Conclusion
	References

