The Visual Computer
https://doi.org/10.1007/s00371-023-02828-8

ORIGINAL ARTICLE l‘)

Check for
updates

Volume conductor: interactive visibility management for crowded
volumes

Ziga Lesar'® - Ruwayda Alharbi2@® - Ciril Bohak'2® - Ondrej Strnad?® - Christoph HeinzI*® - Matija Marolt’

Ivan Viola?2

Accepted: 26 February 2023
© The Author(s) 2023

Abstract

We present a novel smart visibility system for visualizing crowded volumetric data containing many object instances. The
presented approach allows users to form groups of objects through membership predicates and to individually control the
visibility of the instances in each group. Unlike previous smart visibility approaches, our approach controls the visibility on
a per-instance basis and decides which instances are displayed or hidden based on the membership predicates and the current
view. Thus, cluttered and dense volumes that are notoriously difficult to explore effectively are automatically sparsified so that
the essential information is extracted and presented to the user. The proposed system is generic and can be easily integrated
into existing volume rendering applications and applied to many different domains. We demonstrate the use of the volume

conductor for visualizing fiber-reinforced polymers and intracellular organelle structures.

Keywords Volume visualization - Visibility management - Crowded volumes

1 Introduction

Surface rendering methods used in modern volume rendering
applications typically focus on object boundaries and thus
provide insufficient insight into volumetric datasets found
in many branches of science. Such volumetric datasets can
be visualized with direct volume rendering (DVR) methods,
which are often coupled with visibility management tech-
niques to reveal or emphasize specific structures or regions
of interest. Examples include transfer function specifica-
tion, planar reformation, clipping geometry, cutaway views,
exploded views, and spatial deformations. Such techniques
are said to be smart as they emphasize the most relevant data
through dynamic changes in visual representations, defor-
mations, or spatial modifications of parts of the data [26].

X Ziga Lesar
ziga.lesar @fri.uni-lj.si

Faculty of Computer and Information Science, University of
Ljubljana, Vecna pot 113, 1000 Ljubljana, Slovenia

Visual Computing Center, King Abdullah University of
Science and Technology (KAUST), 23955-6900 Thuwal,
Kingdom of Saudi Arabia

University of Passau, Innstraie 41, 94032 Passau, Germany

Published online: 29 March 2023

In many cases, a volume is densely populated with numer-
ous instances of structures that occlude each other, and
the absence of visibility management results in an uninter-
pretable and cluttered image. We call such volumes crowded
volumes. Examples include scans of polycrystalline mate-
rials, fiber-reinforced polymers, and intracellular biological
structures. For such data, existing volume rendering meth-
ods are not suitable because the amount and density of the
instances are so high that occlusion impedes the spatial per-
ception of patterns and distributions in the data. Usually, it
is not one specific instance that is of interest, but rather the
distribution of instances throughout the volume; therefore, a
suitable visibility management strategy is to sparsify the vol-
ume by removing or fading some instances. The instances are
often characterized by additional attributes, such as volume,
surface area, orientation, position, and others, and the users
are typically interested in investigating the spatial distribu-
tion of the instances with specific attributes.

For the visualization of such volumes, we propose the
volume conductor, a novel interactive exploration and vis-
ibility management system for crowded volumes. With the
volume conductor, the user directs the color and visibility
of groups of instances to obtain the desired visualization
of a crowded volume. The user can rapidly achieve the
desired visualization by organizing instances into a hierarchy

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-023-02828-8&domain=pdf
http://orcid.org/0000-0002-9850-0497
http://orcid.org/0000-0003-2544-417X
https://orcid.org/0000-0002-9015-2897
http://orcid.org/0000-0002-8077-4692
http://orcid.org/0000-0002-3173-8871
http://orcid.org/0000-0002-0619-8789
http://orcid.org/0000-0003-4248-6574

7. Lesaretal.

of groups and managing their visibility through an easy-
to-use user interface. The sparsification of each group can
be directly adjusted through manipulation of scented slid-
ers [29]. The sparsification routine automatically determines
which instances are visually suppressed and which remain
visible, which is a significantly different process compared
to transfer function-based visibility management, where the
visibility is implicitly controlled. Having said that, the vol-
ume conductor is not simply an instance filtering system. It
works on volumes and poses no limits on transparency. The
instances can thus also be smoothly faded away. Not only
can the transparency be modified due to sparsification, but
the transfer function can also be augmented per instance,
interactively. We also present a technique for combining the
resulting sparsified volume with the raw data volume, which
enables the integration of the volume conductor into existing
DVR techniques. An overview of these features is presented
in Fig. 1. The system is generic and can be applied to many
domains, which we demonstrate in three use cases.

We emphasize the following original contributions of our
work:

— rendering method-independent interactive visibility man-
agement system for visualizing crowded volumes;

— combined rendering of sparsified segmented volumes and
raw data volume for providing the context of displayed
instances within the raw data;

— procedural generation of GPU shader code based on user-
defined hierarchically organized instance attributes; and

— domain expert-defined use cases showcasing the benefits
of the proposed system.

2 Related Work

A crowded volume is a dense representation exhibiting a
high degree of mutual occlusion among the contained struc-
tures. Visibility in volumes is usually directed with transfer
functions [18]. Traditionally, transfer functions map the

Fig. 1 Features of the volume conductor. From left to right: instance
grouping and colorization, sparsification, ghosting, blending with raw
data, and opacity transfer from sparsification to raw data. Such visual-

@ Springer

intensities and their gradients to optical properties with-
out awareness of the individual instances and as such do
not necessarily reduce occlusion or expose relevant data.
To prevent the occlusion of important information and pro-
vide enough context for better spatial comprehension, smart
visibility management techniques are indispensable when
rendering structures that exhibit large amounts of occlusion.
Standard techniques include clipping planes, cutaway views,
and automatic or interactive transfer function specification.
Early approaches addressed the problem of the automatic
generation of see-through technical illustrations [6,7] with
view-dependent transparency techniques. Image-space depth
sorting is used to generate semi-transparent visualizations,
combined with the existing rendering methods. Viola et
al. [26] discussed how to visually expose essential parts of
the data in volumetric renderings with an importance-driven
feature enhancement technique enabling the automatic gen-
eration of cutaway and ghost views. Ament et al. [1] used
selective illumination to automatically highlight important
structures in a volume and make them visible from the
camera. Viega et al. [25] presented volumetric lenses for
interactively enhancing interesting regions. Their approach
was later extended to volumetric data by Ropinski et al. [20].
Kubisch et al. [15] used breakaway views and ghost views,
on a practical use case of tumor surgery planning. In addition,
Chan et al. [4] explored spatial relations between the struc-
tures in a volume, such as overlaps or touching points, and
suggested different techniques for visualizing them. Correa
and Ma [5] introduced visibility histograms to automatically
adjust the transfer function based on user-defined opacity
mapping.

While these techniques allow users to expose parts of the
data in different ways, they do not offer precise control over
which data should be exposed and to what degree. Moreover,
none of them explicitly target crowded volumes and thus
are not particularly useful for visualizing such data. In the
best case, extensive preprocessing is necessary to prepare
the data for visualization using a specific method. In contrast,
our proposed approach offers interactive sparsification with

izations are easily achieved with the volume conductor, while standard
volume rendering would be unusable since the values and gradients are
shared by the background and the instances



Volume conductor: interactive visibility management for crowded volumes

minimal preprocessing and is independent of the rendering
method.

Context-preserving methods consider critical aspects of
the visualization and retain them regardless of the view and
data orientation. The magic volume lens [27] retains the con-
text by deformation, instead of removal of structures, where
the user selects the magnifying part. Kriiger et al. [14] pre-
sented a distance-based importance mapping of transparency
to preserve the context surrounding the focused part of the
data. A context-preserving method by Bruckner et al. [3]
introduces an easily controlled context-preserving approach
considering the shading intensity, gradient magnitude, eye
distance, and previously accumulated opacity to reduce the
opacity of less essential regions of the volume. This method
is also adapted for one of the proposed sparsification func-
tions, where it is used to control the importance of entire
instances rather than individual voxels.

Context-preserving approaches work well on uncrowded
data. However, for crowded volumes, their use alone is not
enough to present and retain a global context around specific
instances in a crowded environment. We complement the
existing contributions by extending the voxel-based view of
the data to an instance-based view through aggregation over
the instances.

Streamline visualization aims toward automatic selec-
tion and rendering of the most representative instance in
a crowded environment. Giinther et al. [8] addressed the
problem by optimizing the streamline opacity, extending it
for visualizing surfaces [10], sets of streamlines [9], and a
joint dataset with points, lines, and surfaces [11]. Kanzler
et al. [13] estimated view-dependent visibility of the stream-
lines in screen space on a GPU roughly based on screen-space
occupancy maps by Marchesin et al. [19] to handle line den-
sity control. Streamlines typically represent the properties of
a continuous vector field, which is not the case for the data
presented in this paper, meaning we cannot use the same
sparsification approach. Moreover, the above methods do
not offer the user explicit control over the grouping, spar-
sification, and emphasis of instances for which the volume
conductor was explicitly designed.

Le Muzic et al. [16] introduced visibility equalizers as
a tool to interactively sparsify mesoscopic biological data.
Their data consist of molecular instances organized into a
hierarchical representation. The visibility of these hierarchi-
cal groups is estimated in real time and can be adjusted
through sliders. Sparsification is hard-bound to the hierar-
chical scene arrangement, and no additional properties can
be used for sparsification. Instances are hidden either ran-
domly or based on the distance from a clipping primitive.
Only structurally identical hierarchically organized instances
are supported. The scene is rendered through an instancing-
enabled graphics pipeline.

Visibility equalizers form the basis for a more general con-
cept of the volume conductor presented in this paper. In the
volume conductor, the sparsification procedure is generalized
through the use of sparsification functions. Furthermore, the
hierarchy in the volume conductor is not fixed but can be con-
structed and interactively adjusted by the user. A significant
difference is that the volume conductor operates on instance
properties where any property can be selected for sparsi-
fication, thus allowing complete flexibility for the users to
analyze the data according to any property of interest. This is
enabled through the authoring environment, where properties
are selected and organized into hierarchies. The reason for
this is that the volume conductor additionally targets explo-
ration and analytical scenarios, whereas visibility equalizers
were primarily concerned with the communicative visualiza-
tion intent.

In summary, although related to crowded environments,
the above-listed related work fails to address crowded vol-
umes and interactive exploration. Our contribution provides
the user with complete control over instance grouping, spar-
sification, and rendering. While other approaches assume
specific structures (e.g., streamlines or molecules), the vol-
ume conductor is domain-agnostic and does not pose any
constraints on the structures and their properties. We support
our claims with three use cases.

3 VYolume Conductor

The volume conductor is an explicit visibility management
technique for crowded volumetric data, where the user forms
groups of instances of structures based on their attributes
and controls the visibility of the instances with scented
sliders [29] to communicate how many of them should be
visible under the current transfer function and camera set-
tings. The architecture of our solution is displayed in Fig.2
and explained in the following paragraphs.

Two volumes are required at the input: the raw data vol-
ume and segmentation volume. In the latter, each voxel is
assigned a numerical identifier corresponding to an individ-
ual instance or the background. As the segmentation process
is not part of our pipeline, we do not propose any particular
segmentation technique, and a suitable one can be chosen
based on the given domain. Every instance may hold a set
of additional attributes, such as length, volume, surface area,
and orientation, supplied with the two volumes. Attributes
are not necessarily inherent to each instance, as they can, for
example, express local statistics such as the distance to the
nearest instance or the number of instances in a given radius.

The user first forms groups of instances by specifying
a set of group membership predicates, which assigns each
instance to a group. Depending on the user’s visualization
goals, the groups may contain instances of interest with spe-

@ Springer



7. Lesaretal.

Inputdata Renderingfoop ... Visualization control

f E ! Raw data 5
i L_— dR:t‘g :}‘1 Y 1 l | transfer < H
i volume ) / ! function :
i / i Rendering | | i
! | Segmentation i \L ' i
: (%> i i
: i ' Group ) i
: Segmentati i || Visibility Framebuffeff | ~ transfer d i
: volume i mask @ %% | i | function [ \ n
: i S , ! ;
! i Instance grouping Visibility F_J ! 1\ "
: i & sparsification nent : i
: Instance i i 57| Group W
i — 1 i ‘T T ! —membership<— i
i attributes : t ' : :
: | ‘ ! |predicates

Fig. 2 High-level overview of the volume conductor. The segmenta-
tion volume passes through the grouping and sparsification procedure
to generate the visibility mask, which is then rendered along with the

cific attributes, instances that are less relevant and are to be
sparsified, or even those that represent unwanted information,
such as segmentation errors or noise. To facilitate this task,
we developed an easy-to-use user interface for the manip-
ulation of group membership predicates (we discuss it in
Sect.3.1).

After the groups are formed, the user assigns a color, opac-
ity, and visibility ratio to each group. The colors may include
transparency if the user wants a partially transparent group
of instances. Our solution readily supports a separate transfer
function for each group, but we opted for a single color to
keep the user interface simple. The group’s visibility ratio
is used in the sparsification procedure when determining the
number of shown and hidden instances in that group. The
user can choose between various sparsification functions to
control which instances are affected. The sparsification pro-
cedure and various sparsification functions are discussed in
Sect.3.2.

Based on the group membership predicates, the visibility
mask (a volume that encodes the visibility and group mem-
bership of every voxel) and a corresponding transfer function
are generated for rendering. Their format and the generation
process are described in Sect.3.3. The visibility mask can
be visualized with any existing volume rendering method,
and we demonstrate this by integrating the volume conduc-
tor into directional occlusion shading (DOS) [21] and path
tracing renderers.

Finally, the user can blend the raw data into the visual-
ization to display information lost during segmentation or to
enhance the raw data rendering with the capabilities of the
volume conductor. The rendering process and blending are
covered in Sect.3.4.

As the sparsification procedure does not consider occlu-
sion between the instances when determining their visibility,
we perform visibility assessment by computing the actual

@ Springer

raw data. Visibility is assessed from the rendered image and used to
update the user interface. Circled numbers indicate section numbers,
where that part of the volume conductor is described

visibility ratio of each group as observed from the camera.
The ratio is calculated by rendering the segmentation volume
into an ID frame buffer and counting different IDs in each
group. This information is fed back into the user interface,
forming a feedback loop with the user and ensuring that the
user settings are accurately reflected in the rendered image.
This process is explained in more detail in Sect.3.5.

3.1 Instance grouping

A group membership predicate may be any Boolean expres-
sion that signals instance membership in a group based on
its attributes. The user creates the groups by specifying their
membership predicates. There is an additional background
group with no membership predicates. When computing the
visibility mask, the groups are traversed and their predicates
evaluated in order to assign the instances to the groups. If an
instance satisfies the predicates of several different groups,
it is assigned to the first such group; therefore, each instance
belongs to exactly one group. If an instance does not satisfy
the predicates of any group, it is assigned to the background
group.

Group membership predicates are defined in run time by
the user. To simplify the user interface, we decided to allow
only predicates of a specific format easily represented in the
user interface. Every predicate includes the following infor-
mation that the user can adjust:

— the instance attribute that this predicate is based on, and
— aseries of ranges that the attribute value may fall into.

We provide two ways of structuring the group member-
ship predicates: sequential and hierarchical. A sequential set
of predicates can be directly evaluated, whereas a hierarchi-
cal set must first be linearized. In this context, every path from



Volume conductor: interactive visibility management for crowded volumes

Data Settings ListView TreeView About

"S“"";::,“;"Vj“a"‘gy e ~Sparsification method selection
Approach: hd

A”""“"‘“;” ?“ ~———————— Automatic view aligment
s

kt: 6
 Hierarchy abstract

Depth Based “«—

— Attribute list

Orientation <w{7dd | Collapse | Expand || Save || Load

Volume ax v i
= — (,,,,,,{:;,:vAttrlbute range(s)
10000 100000 “x*
100000 279413 A x4 i i
Hierarchy of attributes
Orientation LR
] 2 * Scented slider
3 4 X+ S~

S

5 F X 4+ 4 AL ‘
| -visibility ratio. — |

| -instance distribution histogram
——-amount of hidden instances

Create Tree
Reset Tree

'V Hierarchical View

vVolume Mememe o & - - amount of occluded instances
B
~Orientation - (O—— ]
021 B
= Locked/Unlocked nodes
) ——O—— W T+
—O— [l T
+[10000~1 00] _O_ El
O i _O_ . N
renaten B ~ Hierarchy of predicates
021 o

(O S S— < R
O G—

=Group color

Fig.3 User interface for instance grouping with an example hierarchy.
The user has built an abstract hierarchy from two attributes: volume and
orientation (three value ranges each). The hierarchy with the sparsifi-
cation and coloring controls for each group is shown in the bottom half

the root predicate to a leaf predicate defines one group. The
child predicates of a single parent predicate form a disjunc-
tive relation between themselves, whereas the nesting of the
predicates signifies a conjunctive relation between the par-
ent and child predicates. The evaluation of child predicates is
short-circuited so that every child predicate is only evaluated
if an instance also satisfies the corresponding parent pred-
icate. Finding the first available group amounts to finding
a path in the hierarchy from a root predicate to a leaf predi-
cate, where all predicates on that path are satisfied. This form
of manipulation complies with a typical workflow to a large
degree, where the user first broadly divides the instances into
several groups and refines them with further subdivisions.
For example, in the hierarchy in Fig. 3 the user has defined
3 ranges for the volume of an instance and 3 ranges for the
orientation of an instance, resulting in 9 groups.

The user interface for group membership predicate manip-
ulation is illustrated in Fig. 3. First, the user builds a hierarchy
of attributes and defines a set of value ranges for each
attribute. This form is expanded to obtain a copy of the value
ranges of the children for every value range of the parent.
After expansion, each path from the root to a leaf node rep-
resents a single group, where a single value range of a single
attribute is evaluated on each level of the hierarchy.

Groups hold the following additional information used for
colorization and sparsification:

— the color of the group used when generating the group
transfer function, and

— the visibility ratio between the number of shown and hid-
den instances in the group.

Once the hierarchy is built, the colors and visibility ratios can
be applied to the resulting groups. On creation, each group is
assigned a color with a random hue based on the golden ratio
sequence [22]. The user can interactively sparsify the groups
by dragging their corresponding visibility ratio sliders. Slid-
ers are assigned to all nodes of the hierarchy so that the user
can change the visibility ratios of several groups simultane-
ously. When the user changes the visibility ratio of a group,
the visibility ratios of the subgroups are updated accord-
ingly, and vice versa, so that the visibility ratio of the parent
group remains the weighted average of the visibility ratios of
the subgroups based on the number of member instances. A
group can also be locked so that it is not affected by such cas-
caded updates. Following the scented widget paradigm [29],
the scented slider for every group also depicts a histogram
of the values of the corresponding attribute so that the user
has a rough idea of the distribution of the attribute values of
visible instances. The slider contains two additional tracks
for the proportion of hidden and occluded instances. These
are calculated in the visibility assessment step described in
Sect.3.5.

3.2 Instance sparsification

The sparsification procedure determines whether an instance
should be visible or hidden. We only consider binary visibil-
ity to keep the user interface simple, although our implemen-
tation readily supports partial transparency via the generated
transfer function. The sparsification procedure is designed as
an extension of the voxel-based methods (e.g., [3,26]) so that
the importance of an instance is the average importance of its
constituent voxels. First, we randomly shuffle the instances
to prevent any correlations between their initial order and
spatial distribution. When the sparsification begins, every
voxel is assigned an importance, which is averaged over the
instances. Afterward, the instances in each group are sorted
based on importance, and those with the lowest importance
are hidden. The number of instances to be hidden is deter-
mined by the visibility ratio of the group, set by the user as
described in Sect.3.1. The function that assigns importance
to a voxel is called the sparsification function. We use three
sparsification functions operating on voxel positions X, each
serving a different purpose in the visualization:

— uniform, defined as follows:
pM (X) = 1 )

@ Springer



Z.Lesaretal.

which assigns uniform importance and is used to spar-
sify the volume without changing the data distribution
pattern;

— depth-based, defined as follows:

pa(x) =[x —ell,

which assigns importance based on the distance from the
camera e and is used to create a peeling effect;

— context preserving, based on the context-preserving
model [3] defined as follows:

s

Pe(X) = |V gy (x) || €rsX)-Pax)

See below for a detailed explanation of different quanti-
ties.

Uniform sparsification keeps the spatial distribution of
the instances unchanged, whereas depth-based sparsifica-
tion reveals the internals of the volume similar to a cutaway
plane, but without cutting through the instances (see Fig.7
and the online supplemental material!). To balance the two
effects, we adapted the context-preserving model [3], which
exhibits a similar cutaway plane functionality while allowing
us to adjust the sharpness and depth of the cutaway. In [3],
the context-preserving method was used to reduce the opac-
ity of the less critical samples, whereas we instead use it
to compute the importance of an entire instance. Concep-
tually, the model places a virtual light into the scene and
assigns less importance to instances that receive a consider-
able amount of light, are located closer to the camera, and
are internally more homogeneous. The virtual light acts as a
melting source that more strongly affects the instances with
a smaller projected area toward the light (refer to [3] for
details). This outcome is a direct consequence of the shad-
ing factor s(x), for which we use the Blinn—Phong shading
model. To keep the user interface simple, we place the virtual
light in the same position as the camera, though it could be
placed anywhere. Furthermore, the parameter «; controls the
depth of the cutaway plane, where higher values correspond
to cut-offs further away from camera, while the parameter &
controls how gradual the cutoff is, where higher values result
in a sharper cut-off. When «; is zero, this function reduces
to uniform sparsification. In our use cases, values from 0
to 10 for «; and «x; worked well. The gradient magnitude
[[VVraw (X) || of the raw volume value v,y acts as an indica-
tor of the homogeneity of the data, so a more heterogeneous
instance is regarded as more important.

Each of the presented sparsification functions has specific
uses, and the power of this approach comes from the abil-

1 https://github.com/UL-FRI-LGM/vpt-conductor/raw/master/
supplemental.pdf.

@ Springer

ity to combine them. When the density of the instances is
extremely high, the user might choose to first bring it down
to a reasonable level with uniform sparsification and then
use a more sophisticated approach, such as depth-based or
context-preserving sparsification, as these are view depen-
dent. To achieve this, our method tracks which instances have
already been hidden and prioritizes them during sorting. Con-
sequently, the user can change the sparsification function on
the fly and layer the results without any additional controls
in the user interface. We refer the reader to the online sup-
plemental material for a video demonstrating this feature.

3.3 Visibility mask

To render the groups of instances, we introduce an interme-
diate representation called the visibility mask that encodes
the visibility of instances, their group membership, and the
color and transparency for rendering. Formally, the visibility
mask is a map from R3 to R?, constructed so that the vox-
els belonging to different groups (including the background)
map to different 2D tuples. We store the visibility mask as
a volume on the GPU. We generate a corresponding transfer
function and use the 2D tuples from the visibility mask as
texture coordinates for the transfer function, matching tra-
ditional post-classification volume rendering. Consequently,
we can use any existing volume rendering algorithm to render
the visibility mask. In general, the 2D tuples in the visibil-
ity mask may be arbitrary, as long as different groups of
instances map to different 2D tuples. To make the best pos-
sible use of the available transfer function space, we decided
to arrange the visibility mask values in a circular pattern, as
illustrated in Fig. 4. The background is mapped to the center
of the transfer function, whereas the individual groups are
spread uniformly around the circle inscribed in the texture
space. These locations are denoted as maskValue and are
defined as follows:

(4. k=0
maskValue(k) =
(%, %) + (% cos ¢, %sin¢>), k>0,
2wk — 1)
¢ N—-1"~

where k is an index of a group (with zero being the back-
ground) and N is the total number of groups. This arrange-
ment ensures an uninterrupted interpolation path between
the mask values of each group and the background, prevent-
ing any classification-related artifacts at instance boundaries,
which would not be possible with a 1D transfer function.
Intergroup boundaries may still cause slight rendering arti-
facts; however, they were barely noticeable in the use cases,
and correct treatment would necessitate a far more complex
solution, such as the one by Al-Thelaya et al. [24].


https://github.com/UL-FRI-LGM/vpt-conductor/raw/master/supplemental.pdf
https://github.com/UL-FRI-LGM/vpt-conductor/raw/master/supplemental.pdf

Volume conductor: interactive visibility management for crowded volumes

Fig.4 Visibility mask values
are mapped to the transfer
function in a circular pattern.
Straight lines represent
interpolation paths. Paths
between the background and
individual groups do not
intersect with each other

Group 3

Group 7

We compute the visibility mask on the GPU with a
procedurally generated compute shader, which makes our
approach fast, general, and easily extensible. The list of
group membership predicates translates into a sequence of
if—else statements that takes an instance with its attributes
as input and outputs the mask value of the corresponding
group (see Fig.6 and the algorithm in the online supple-
mental material'). The if statements are augmented so that
sparsification is included by assigning the mask value of the
background to the hidden instances. The compute shader is
run for all voxels to generate the visibility mask. The corre-
sponding transfer function is generated by wrappinga 1 x N
strip of pixels around the transparent center of the transfer
function (see Fig.4).

The motivation behind this design lies in the inability to
interpolate the integer labels of the segmentation volume.
One strategy to overcome this is to use nearest neighbor
sampling, but this would result in a blocky volume and
low-quality image. This problem was also recognized by
Al-Thelaya et al. in a recent contribution [24], but their solu-
tion involves considerable processing time and a specialized
rendering algorithm, as the solution is primarily targeted
at data analysis, not rendering. By contrast, the visibility
mask is much simpler and orders of magnitude faster to
compute, and does not necessitate a specialized rendering
algorithm. Additionally, we can leverage hardware interpo-
lation of the 2D tuples from the visibility mask and use
post-classification during rendering. Thus, we preserve the
high-frequency details in the volume and retain sufficient
rendering quality.

Since all voxels from a single instance are assigned the
same mask value, instance boundaries may appear blocky
despite the ability to interpolate the mask volume. However,
with the ability of interpolation, we can filter the mask vol-
ume with a low-pass filter, effectively smoothing out the
instance boundaries without removing the high-frequency

Fig. 5 A single instance rendered without (left) and with (right) visi-
bility mask filtering. A 3 x 3 x 3 box filter was used

details, which are stored in the raw data volume. The effect
of filtering is shown in Fig. 5.

3.4 Rendering and blending

The volume conductor is independent of the rendering
method. We chose to demonstrate its functionality using
two rendering methods: directional occlusion shading [21]
because it can simulate direct illumination at interactive
frame rates and path tracing for its ability to produce phys-
ically realistic results (refer to the online supplemental
material! for a visual comparison). We augmented the ren-
dering procedure with blending between the visibility mask
and raw data volume to allow the user to see the internals
of the instances while using the sparsification functionality.
In addition to visibility mask vpsx and its corresponding
transfer function #y,5k, We have raw data volume v,y and its
transfer function 7,y defined by the user. Both are sampled
to obtain color C and opacity a from position x within the
volume:

(Crask> Gmask) = fmask (VUmask (X)),

(Craw, Graw) = traw (Vraw (X)).

@ Springer



Z.Lesaretal.

Attribute: length if (10 <= instance.length <= 100) {
______ s 1 Range: 10 - 100 setGroup (instance.id, 1);
':' " Color: #abcdef setMask (voxel.position, maskValue (1)) ;
' Visibility: —O !
)
User '
]
E Attribute: volume else if (500 <= instance.volume <= 600) {
;__ >l 2 Range: 500 - 600 setGroup (instance.id, 2);
! - " Color: #fedcba setMask (voxel.position, maskValue (2));
' Visibility: 0O }
]
: else {
: ’ setGroup (instance.id, 0);
H L setMask (voxel.position, maskValue(0));
1

Fig.6 Shader generation and mask transfer function generation from group membership predicates

We linearly blend the colors with the interpolation weight

Weolor -
Chinal = (I — Weolor) Cmask + Weolor Craw-

We also subject the opacity of the raw data to sparsification;
therefore, it is treated slightly differently than the colors.
First, we transfer the opacity from the visibility mask to the
raw data volume with the interpolation weight wiansfer:

Agansfer = (1 — Wiransfer)@mask + Wiransfer@mask draw -

Then, we compute the final opacity as a linear interpolation
between the transferred opacity and raw data opacity with
interpolation weight waipha:

afinal = (1 — walpha)atransfer ~+ WalphaQraw-

The user sets all interpolation weights in the user interface.
When weolor and waipha are both 1, this reduces to raw data
volume rendering. When both weights and wyansfer are O,
only the visibility mask defines the output. Example images
produced with the values between these extremes can be seen
in the supplemental video.

While 745k 1S generated automatically by the volume con-
ductor, 4y is constructed by the user. Both #;5y, and fi,5x have
a large impact on the final rendering: fpy,s iS responsible
for sparsification and colorization, whereas fr,, is respon-
sible for the volumetric visualization of the internals of the
instances. If #4y sets the opacity of certain structures to zero,
those structures would not be visible even if the sparsification
procedure marks them as visible. In a crowded environment,
traw 18 practically useless by itself, while 7,5k can be used
effectively without #.,. There exist many different methods
for constructing a transfer function, which can be manual,
semi-automatic, or automatic. We opted for a manual one,
which was an arbitrary choice, independent of the volume
conductor, and easy to implement. Since the main contribu-
tions of the volume conductor are interactive sparsification

@ Springer

and colorization, we decided to focus on those aspects rather
than the construction of #.,y. Nevertheless, fmask could very
well be involved in the construction of #,, for example, by
enhancing the instance boundaries, or by fine-tuning the #4yw
toward a specific instance or group of instances. We leave
such enhancements for future research.

3.5 Visibility assessment

Due to the occlusion and projection, the density of the
instances after sparsification often does not precisely reflect
the visibility ratio set by the user. We measure the actual
visibility ratio of the instances as observed from the camera
and inform the user about the number of occluded instances.
We update an ID frame buffer during rendering, which holds
the ID of the nearest visible instance for every pixel and the
group to which it belongs. We measure the number of visible
instances in each group by counting the unique instance IDs
from the group present in the ID frame buffer. We know the
total number of instances in each group and the number of
hidden instances; thus, we also know how many instances
from that group are occluded. This information is presented
to the user through an additional track under the scented slider
(see Fig.3).

4 Implementation Details

With the focus on making the method interactive, we imple-
mented the computationally intensive parts on the GPU
and integrated them into the VPT framework [17] using
WebGL 2.0 Compute.> We also retained the ability to per-
form hardware sampling and interpolation to ensure the
method remains independent of the rendering technique. We
store the segmentation volume on the GPU as a 3D tex-
ture of 32-bit unsigned integers (format R32UTI) and their
respective attributes in a shader storage buffer object (SSBO).

2 https://github.com/UL-FRI-LGM/vpt-conductor.


https://github.com/UL-FRI-LGM/vpt-conductor

Volume conductor: interactive visibility management for crowded volumes

The layout and format of the data in the SSBO are such
that it directly maps to an array of structs in a shader,
where each struct holds the attributes of a single instance.
Thus, each integer value from the segmentation volume acts
as an index for accessing the attributes of the correspond-
ing instance. As the layout of the struct varies between
datasets, it must be supplied along with the volumes and
instance attributes. We use a simple JSON file with the
attribute names and types, which is enough to generate the
struct definition in the OpenGL shading language (GLSL).
We access the instance attributes in the procedurally gener-
ated compute shader when generating the visibility mask. As
displayed in Fig. 6, the group membership predicates trans-
late directly into a sequence of GLSL if-else statements,
which assign a mask value to every voxel in the visibil-
ity mask, similar to the approach by Schulte zu Berge et
al. [23], although our predicates are not used during render-
ing but instead are employed to generate the visibility mask.
We store the resulting visibility mask on the GPU as a 3D
texture of 2D 8-bit normalized integer tuples. We use the for-
mat RGBAS8 because it is one of the few that can be written
to using a WebGL 2.0 compute shader (in contrast to RG8,
which would be more appropriate), and it allows hardware
interpolation. The compute shader is regenerated after every
change in the group membership predicates. The shader exe-
cution is independent between voxels, so no communication
is needed between the workgroups, and the size of the work-
groups may be arbitrary. In our implementation, we chose
16 x 16 x 1 because it maps reasonably well to most modern
hardware.

5 Results
5.1 Use cases

We tested the volume conductor on two domains: fiber-
reinforced polymers in the field of material science and
intracellular organelles in the field of microbiology. Volumet-
ric images from both domains are crowded and, therefore, a
perfect fit for the volume conductor. We collaborated with
experts from these two fields and instructed them to use the
volume conductor in their daily workflow. After a month of
everyday use, we gathered their feedback and asked them to
state the advantages and disadvantages of the method com-
pared to their usual tools and workflow.

5.1.1 Material Science

Fiber-reinforced polymers are in high industrial demand due
to their strength, durability, elasticity, and low weight, and the
demand is steadily growing [12]. These physical properties
are directly related to the distribution and density of inter-

Fig.7 Fiber use case. From left to right: (1) colorization of short (red)
and bent (blue) fibers, (2) the same as (1) but with 50 % of the remaining
fibers hidden by the depth from above, (3) colorization by orientation,
and (4) the same as (3) but with 80 % of the vertical fibers hidden with
the context-preserving model

nal structures, such as fibers, inclusions, and pores, and their
properties, such as length, volume, and orientation. There-
fore, a tool that can isolate and visualize structures with
specific properties is crucial for scientists to analyze and
improve the materials. In this domain, a typical imaging tech-
nique is the 3D X-ray CT. DVR renderings of the resulting
volumes are often difficult or even impossible to interpret
due to crowdedness. Specialized analysis tools are available,
such as Feature Scout [28].

We considered two datasets: (1) a400 x 401 x 800 volume
containing 3828 glass fiber instances with 18 attributes each,
and (2) a512 x 512 x 512 volume containing 6888 instances
of pores between carbon fibers with 41 attributes each. Both
volumes were acquired with 3D X-ray CT. The use cases
were provided by the University of Applied Sciences, Upper
Austria, a research associate with three years of experience
and a senior researcher with more than 15 years of experience
in material science data visualization. The experts compared
the use of Feature Scout and volume conductor on two use
cases commonly encountered in their everyday work. They
were also involved in the design process for both systems
and had good insight into their functionalities.

Use Case 1—Fiber analysis In glass fiber-reinforced materi-
als, fiber characteristics must be analyzed, and the spatial
distribution of the fibers with specific properties must be
determined. In a strong material, the fibers are uniformly
oriented and uniformly distributed across the volume. Short
and bent fibers that do not contribute to the strength of the
material can be quickly identified by colorization (Fig. 7, two
left images). The interactive sparsification feature of the vol-
ume conductor can be used to obtain a general overview
of the directional distribution of the fibers (Fig. 7, right two
images).

Use Case 2—Pore analysis In carbon fiber-reinforced poly-
mers, the existing pores inside the material must be examined,
especially their shape and spatial distribution. For example,
needle-shaped pores have a higher potential for crack initia-
tion than elliptical or spherical pores. With both the volume
conductor and Feature Scout, an appropriate categorization

@ Springer



7. Lesaretal.

Fig.8 Use case with pores. From left to right: (1) colorization by round-
ness (needle-shaped pores are red), (2) the same as (1) but with 50 %
of the needle-shaped pores hidden by depth, and (3) the same as (2)
but with a higher transparency of needle-shaped pores to emphasize the
round ones

can be constructed to obtain a visual overview of the needle-
shaped pores by categorizing the instances according to shape
(Fig. 8, two left images). In contrast with Feature Scout, the
volume conductor provides interactive sparsification for a
better overview of the pore distribution.

After using the volume conductor, the material science
experts came to the following conclusions:

— Uniform sparsification primarily helps when sparsifying
the crowded volume of fibers while maintaining the dis-
tribution of the instances throughout the volume.

— View-aligned sparsification functions (depth-based and
context-preserving functions) are beneficial during the
exploration of the volume internals (Fig.8, right two
images). Compared to hard culling, such sparsification
does not deform or cut away parts of instances and there-
fore does not alter their visual appearance. The ability
to layer view-aligned sparsification on top of uniform
sparsification is a powerful feature when determining the
distribution properties of internal instances.

— On-the-fly changes to the membership predicates accel-
erate the exploration process because the user can add
additional predicates and refine the visualization at will,
which is much more tedious in Feature Scout.

— The ability to select individual instances directly in the
rendering and inspect their attributes is missing.

The experts claim that sparsification is an invaluable tool for
data exploration in both use cases because it allows them
to immediately observe the distribution of fibers and pores
with specific properties. The experts stated that a featureful
tool, such as Feature Scout, could benefit from the volume
conductor and help them in their everyday workflow.

5.1.2 Cell biology

We tested the volume conductor on a 3D microscopy sample
of a cell inside a mouse bladder. The volume was provided
by the Institute of Cell Biology of the University of Ljubl-
jana. Microbiologists at the institute study the distribution,

@ Springer

Fig. 9 Mitochondria use case, showing colorization by organelle
type, where mitochondria are colored red (left image), colorization of
branched (red) and thinned (green) mitochondria (middle image), and
blending with raw data (right image). The volume has been sparsified to
only show mitochondria and endolysosomes, whereas other organelles,
such as Golgi apparatuses and fusiform vesicles, have been hidden. A
more crowded example of the same dataset can be seen in [2,30]

density, and shape of intracellular organelles to explore and
understand various cellular processes. In one specific case,
they were interested in the mitochondria and endolysosomes
regarding their size, shape, curvature, and possible branch-
ings and narrowings (Fig. 9, middle image). Considering that
thousands of such organelles may exist even in a small sub-
section of a cell, scientists need a tool, such as the volume
conductor, to visualize and analyze organelles and their prop-
erties.

The 1280 x 1024 x 1024 microscopy sample was seg-
mented, and the features were extracted (see [30] for details),
yielding 3051 instances with 21 attributes each. The use case
was given by the Institute of Cell Biology at the Faculty of
Medicine of the University of Ljubljana: an assistant profes-
sor with 16 years of experience and a professor with more
than 30 years of experience. They are both familiar with the
software used in their fields, such as ImageJ and 3D Slicer.
They tested the volume conductor in a one-day test run under
the supervision of one of the authors. The professors com-
pared the volume conductor with the software stack they use
in their regular work.

Use Case 3—Mitochondria analysis For analysis and explo-
ration of the volumetric microbiological data obtained using
modern microscopy techniques (e.g., focused ion beam scan-
ning electron microscopy), researchers still primarily employ
slice-based visualization tools (e.g., ImagelJ) or regular DVR
tools (e.g., 3D Slicer). More advanced analysis tools exist
such as Imaris Essentials, Invivo, and Osirix, but, to the best
of our knowledge, these tools only provide transfer function-
based volume rendering and surface-based segmentation
visualization. The tasks, such as examining the distribu-
tion of intracellular organelles, are very time-consuming and
demanding with existing tools. The volume conductor facil-
itates these tasks considerably and enables users to perform
complex analyses. For example, the shapes, quantity, orienta-
tion, and distribution of mitochondria can be studied using the
grouping and sparsification functionality of the volume con-
ductor. Additionally, microbiologists can view the segmented
intracellular structures with raw volumetric data, allowing



Volume conductor: interactive visibility management for crowded volumes

them to visualize the internals of the organelles in a sparsi-
fied environment (Fig. 9, right image).

After using the volume conductor, microbiology experts
came to the following conclusions:

— The ability to sparsify the volume and colorize the
instances with specific properties is beneficial to the
exploration process. Compared to the existing tools, we
can benefit from the volume conductor when getting an
overview of the data, as the uninteresting instances can
be hidden, shifting the focus toward the relevant ones.

— The set of sparsification functions enables more accessi-
ble volume exploration and provides more refined control
over what to display and what to hide. The layering func-
tionality can be used to quickly sparsify one type of
organelles while opening up the internals of the volume
for further analysis.

— A joint visualization of raw and segmented data offers
the user a view of the interior of the segmented structures
without the surrounding clutter. This is especially helpful
when the images have low contrast or the raw values of
the instances are similar to those of the background.

— A disadvantage is that the user must provide the seg-
mentation volume and instance attributes, which are not
always available or easily computed or obtained.

— It would be beneficial if such a visualization tool was
coupled with a specialized analysis tool. Specifically,
selecting individual instances by clicking on them in the
rendering and observing their properties would be a very
powerful feature.

5.2 Performance evaluation

We evaluated the volume conductor on three computers: a
laptop with Intel HD Graphics 530 integrated graphics with
20 GB of shared RAM, a desktop computer with an Nvidia
GeForce GTX 1060 graphics card with 6 GB of video RAM,
and a professional workstation with an Nvidia Quadro RTX
8000 graphics card with 48 GB of video RAM. Three datasets
were used: fibers, pores, and mitochondria, presented in
Sect.5.1. We measured the time of execution of the following
three steps:

1. linearization of the predicate hierarchy and shader recom-
pilation,

2. visibility mask computation, and

3. rendering with directional occlusion shading.

The measurements were executed 10 times (10 linearizations,
10 visibility mask computations, and 10 rendered frames),
and the average time per step was recorded. We used the
Google Chrome web browser version 87. The evaluation was
performed for anontrivial predicate hierarchy with two layers

and five ranges for each layer. The camera was configured so
that the volume filled the screen. This configuration is essen-
tial because the rendering time is highly view-dependent. All
measurements are gathered in the supplemental material',
and the measurements for Nvidia Quadro RTX 8000 are pre-
sented in Fig. 11.

Additionally, we measured the time for visibility mask
computation with respect to volume size and the num-
ber of instances. We used 4 synthetic datasets with 2000,
2258, 3658, and 22670 instances, at various resolutions from
8 x 8 x 8 t0 768 x 768 x 768. The measurements, plotted
in Fig. 10, show that even if the visibility mask is recal-
culated every frame (which is an unrealistic stress test),
we can achieve interactive framerates for volumes up to
512 x 512 x 512 on commodity GPUs, and even more, if vis-
ibility mask filtering is disabled. Of course, this is true only
if a sufficiently fast rendering method is also used. Figure 10
shows that the visibility mask computation time is linear in
the number of voxels. Since the number of instances is small
in relation to the number of voxels, the corresponding over-
head is asymptotically negligible.

The performance evaluation demonstrates that the pre-
sented approach remains interactive on platforms with vary-
ing capabilities. Figurell and the related graphs in the
supplemental material! show much better performance of the
dedicated graphics hardware compared to integrated graph-
ics. The visibility mask computational time is proportional
to the volume size, and the rendering time is proportional
to the frame buffer resolution, both of which conform to
expectations. The measurements reveal one peculiarity in
the shader rebuild time, which is substantially smaller for
integrated graphics than dedicated graphics hardware. This
discrepancy is likely caused by the additional communication
time between the CPU and dedicated GPU. Due to the nonop-
timized implementation, the most computationally intensive
part of the volume conductor is the rendering process, which
should not be an issue as the rendering method can be easily
swapped. The visibility mask computation time is more rele-
vant to the evaluation of the method than rendering time and
is low enough for interactive use even on commodity hard-
ware. In fact, in a realistic scenario, the visibility mask is
recomputed only when the user modifies the instance groups
or the visibility ratio of a group, but not during rendering.

6 Discussion

The feedback from both expert groups reveals that the inter-
active sparsification functionality is the most valuable feature
of the volume conductor. The volume conductor provides a
means for acquiring a holistic view of the data before detailed
analysis. It shifts the focus from a low-level view of the raw
data to a high-level view of the structures and their proper-

@ Springer



7. Lesaretal.

Fig. 10 Visibility mask
computation time with respect
to volume size and the number
of instances, measured on
consumer-grade hardware, with
(solid lines) and without (dashed
lines) visibility mask filtering

w2000

— 2258

3658

w0
E
[0}
£
—
© o o
- I
Fig. 11 Performance evaluation
on a professional workstation 600
with an Nvidia Quadro RTX
8000 graphics card.
Linearization and shader 200
recompilation times are
negligible and not depicted in = 400
the graph £
£
= 300
200
100

. .
256

512 x512

ties, and the user interface is designed to support this view.
For the material science experts, the main benefit of the vol-
ume conductor is sparsification and its independence from
the rendering method, which makes the volume conductor
particularly easy to integrate into existing tools. Specifically,
the volume conductor could be easily integrated into Fea-
ture Scout, enhancing it with sparsification and colorization
capabilities, while benefiting from its analytics.

The volume conductor can enhance visualization tools
with sparsification capabilities, as long as at least a crude
instance segmentation is available. According to the microbi-
ology experts, the reliance on segmentation availability is one
of the main disadvantages of the volume conductor. Obtain-
ing an accurate instance segmentation is a tedious process if
automatic tools are not available, and without it, the volume

@ Springer

m— 22670

40
60
80
100
200
400
600

Volume resolution

Fibersll Visibility
PoresM mask
Mitosi computation

Fibers
Poresll Rendering
Mitos

512 1024

256 512 1024 256 512 1024
1024 x 1024

DOS slices

2048 x 2048 Framebuffer size

Professional graphics

conductor is inoperative. However, a crude segmentation is
often enough to reap the benefits of the volume conductor.
In fact, it is even possible to identify segmentation errors
when the visualization is combined with raw data. For exam-
ple, the intracellular organelle dataset shown in Fig.9 indeed
contained numerous segmentation errors. On several occa-
sions, multiple organelles have been merged into a single
instance and consequently marked as being branched. Such
errors are clearly visible in the rendering and are even more
apparent during interactive grouping and sparsification.

In contrast with fiber-reinforced polymers, the microbi-
ological use case revealed a strong need for a joint display
of segmented and raw data. According to the microbiology
experts, the internal structures inside specific organelles can
easily be identified, which was not possible with existing



Volume conductor: interactive visibility management for crowded volumes

methods that could not hide the surrounding clutter. In the
volume conductor, though, all of this is possible out of the
box, without any data conversions.

In many cases, the users work with layered materials,
where the main challenge is visualizing the interior of the
dataset. The volume conductor works equally well for lay-
ered materials. Layers can be designated in the segmentation
and may be hidden during visualization in the same way as
otherinstances. If layers can be further broken down into indi-
vidual instances, an appropriate sparsification function can
be used to achieve the peeling effect, or the distance from the
interior can be exposed as an attribute to form groups layer
by layer.

Experts from both groups pointed out the ease of use of the
volume conductor due to the user interface designed specif-
ically for this purpose. However, when using a joint display
of segmented and raw data, the user must still design an
appropriate transfer function for the raw data. This necessity
results in a usability gap between the two rendering modes.
The user can become lost even in the easy-to-use user inter-
face when presented with a wide array of possibilities for the
attribute hierarchy, and the confusion only intensifies with a
long list of instance attributes. It is not unusual to compute
more than 20 different features for a single instance. With
machine learning, this number of features is easily surpassed
by many orders of magnitude. Machine learning could even-
tually be used for automatic instance grouping, colorization,
and sparsification to shield the user from the numerous result-
ing possibilities for visualization. However, this is out of the
scope of this paper and will be considered for future work.

Another important challenge lies in the attribute selec-
tion and grouping, and the possibility of the sparsification
to skew or distort the perceived instance distribution. At the
start of data exploration, the experts usually have arough idea
of what attributes and values to select for grouping. After
their initial selection, they will get visual feedback through
the visualization and scented sliders on whether their selec-
tion was suitable. First, the scented sliders show a histogram
of attribute values, which help the experts confirm or reject
their expectations about the distribution of the attribute val-
ues. Second, the contradicting examples and outliers will be
visible in the rendering. In the worst case, such important
instances will be hidden by the sparsification, but this can
easily be avoided by instructing the experts to always exam-
ine the visualization of each group without sparsification in
addition to their usual workflow.

In addition to sparsification, different types of projections
can also affect spatial perception. In particular, perspective
projection tends to distort objects, which might negatively
affect distribution and shape analysis. Any projection can be
used in the volume conductor so long as the same projection
is used for both the rendering and visibility assessment.

Fig.12 A zoomed-in view of a synthetic 512 x 512 x 512 volume with
22670 instances in 5 groups

The most apparent technical drawback of the method is
inter-group boundaries, which are not accounted for and
may cause slight rendering artifacts as the interpolation path
between the mask values of two different groups may cross
mask values from other groups. This is a valid concern, and
such situations can often occur in practice. Fortunately, in
our use cases, they cannot be seen in the final renders. To be
sure that this problem is insignificant in practice, we stress-
tested our method on a synthetic 512 x 512 x 512 volume
tightly packed with 22670 instances, which we equally and
randomly divided into 5 groups. Surprisingly, there were no
noticeable artifacts in the final rendering (see Fig.12), no
matter what kind of sparsification we chose. We, therefore,
conclude that it is safe to disregard this concern, especially
in the pursuit of speed and simplicity of the method.

7 Conclusion

In the paper, we presented the volume conductor—a smart
visibility management technique for visualization and spar-
sification of crowded volumetric data. The technique uses
an instance segmentation volume and user-defined group
membership predicates to generate the visibility mask, which
encodes the visibility of instances and instance groups. The
user controls the sparsification through sparsification func-
tions, which assign importance to each voxel. The instances
are sorted based on the average importance of their con-
stituent voxels and shown or hidden based on the user-defined
visibility ratio. Finally, a visibility assessment forms a
feedback loop with the user. The system is interactive on
consumer-grade hardware.

We demonstrated how the volume conductor can be ben-
eficial for exploring crowded volumes compared to regular
DVR. With the proposed method, the user can group the
instances based on simple predicates or a hierarchy of pred-
icates and interactively adjust their density to reveal more
information about the structure of the volume and the distri-
bution of instances. We achieved this by separating instance

@ Springer



Z.Lesaretal.

grouping, visibility mask computation, transfer function gen-
eration, and rendering. The resulting method is general and
easily extensible due to the procedurally generated compute
shader. We applied the technique to two domains, in which
the experts reported improvements in their workflow and
exploration process.

In the future, we intend to improve the volume conduc-
tor with single or multiple instance selections in the cases
where the user aims to make fine adjustments to the visibility
of specific instances. We also plan a method for automatic
or user-guided instance grouping to make the exploration
process even faster and simpler. We believe the technique
will prove invaluable for interactive data exploration in many
research fields where crowded volumetric environments are
in use.

Supplementary Information  The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00371-023-02828-
8.

Acknowledgements The authors would like to thank Julia Maurer
from the University of Applied Sciences, Upper Austria, for provid-
ing carbon-fiber-reinforced polymer data and the presented use cases;
Samo Hudoklin and Rok Romih from the University of Ljubljana for
providing cell structure data and the presented use cases.

Funding Open access publishing supported by the Slovenian Research
Agency and Central Technical Library in Ljubljana. The research was
partially supported by the King Abdullah University of Science and
Technology—award number BAS/1/1680-01-01, partially by funding
from the Austrian Research Promotion Agency (FFG) within the pro-
gram line “TAKE OFFE,” FFG Grant No. 874540 “BeyondInspection,”
and by research subsidies granted by the government of Upper Austria
during the “X-Pro” project.

Data availability The datasets generated during and/or analyzed during
the current study are available from the corresponding author upon
reasonable request.

Declarations

Conflict of interest The authors have no financial or proprietary inter-
ests in any material discussed in this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

@ Springer

References

1. Ament, M., Zirr, T., Dachsbacher, C.: Extinction-optimized volume
illumination. IEEE Trans. Visual Comput. Graph. 23(7), 1767-
1781 (2017)

2. Bohak, C.: Intracellular Compartments in Urothelial Cells of
Mouse Bladder. In: KAUST Cell Visualization Summit. King
Abdullah University of Science and Technology (KAUST),
Thuwal, Kingdom of Saudi Arabia (2019)

3. Bruckner, S., Grimm, S., Kanitsar, A., Groller, E.: Illustrative
context-preserving exploration of volume data. IEEE Trans. Visual
Comput. Graph. 12(6), 1559-1569 (2006)

4. Chan, M.Y., Qu, H., Chung, K.K., Mak, W.H., Wu, Y.: Relation-
aware volume exploration pipeline. IEEE Trans. Visual Comput.
Graph. 14(6), 1683-1690 (2008)

5. Correa, C.D., Ma, K.L.: Visibility histograms and visibility-driven
transfer functions. IEEE Trans. Visual Comput. Graph. 17(2), 192—
204 (2011)

6. Diepstraten, J., Weiskopf, D., Ertl, T.: Transparency in interac-
tive technical illustrations. Comput. Graph. Forum 21(3), 317-325
(2002)

7. Diepstraten, J., Weiskopf, D., Ertl, T.: Interactive cutaway illustra-
tions. Comput. Graph. Forum 22(3), 523-532 (2003)

8. Giinther, T., Rossl, C., Theisel, H.: Opacity optimization for 3D
line fields. ACM Trans. Graph. 32(4), 1-8 (2013)

9. Giinther, T., Rossl, C., Theisel, H.: Hierarchical opacity optimiza-
tion for sets of 3D line fields. Comput. Graph. Forum 33(2),
507-516 (2014)

10. Giinther, T., Schulze, M., Esturo, J.M., R6ssl, C., Theisel, H.: Opac-
ity optimization for surfaces. Comput. Graph. Forum 33(3), 11-20
(2014)

11. Giinther, T., Theisel, H., Gross, M.: Decoupled opacity optimiza-
tion for points, lines and surfaces. Comput. Graph. Forum 36(2),
153-162 (2017)

12. Heinzl, C., Stappen, S.: STAR: visual computing in materials sci-
ence. Comput. Graph. Forum 36(3), 647-666 (2017)

13. Kanzler, M., Ferstl, F., Westermann, R.: Line density control in
screen-space via balanced line hierarchies. Comput. Graph. 61,
29-39 (2016)

14. Kruger,J., Schneider, J., Westermann, R.: ClearView: an interactive
context preserving hotspot visualization technique. IEEE Trans.
Visual Comput. Graph. 12(5), 941-948 (2006)

15. Kubisch, C., Tietjen, C., Preim, B.: GPU-based smart visibility
techniques for tumor surgery planning. Int. J. Comput. Assist.
Radiol. Surg. 5(6), 667-678 (2010)

16. Le Muzic, M., Mindek, P., Sorger, J., Autin, L., Goodsell, D.S.,
Viola, I.: Visibility equalizer cutaway visualization of mesoscopic
biological models. Comput. Graph. Forum 35(3), 161-170 (2016)

17. Lesar, Z., Bohak, C., Marolt, M.: Real-time interactive platform-
agnostic volumetric path tracing in WebGL 2.0. In: Proceedings of
the 23rd International ACM Conference on 3D Web Technology—
Web3D 18, pp. 1-7. ACM Press, New York (2018)

18. Ljung, P., Kriiger, J., Groller, E., Hadwiger, M., Hansen, C.D.,
Ynnerman, A.: State of the art in transfer functions for direct vol-
ume rendering. Comput. Graph. Forum 35(3), 669-691 (2016)

19. Marchesin, S., Chen, C.K., Ho, C., Ma, K.L.: View-dependent
streamlines for 3D vector fields. IEEE Trans. Visual Comput.
Graph. 16(6), 1578-1586 (2010)

20. Ropinski, T., Steinicke, F., Hinrichs, K.: Interactive importance-
driven visualization techniques for medical volume data. In:
Proceedings of the International Fall Workshop on Vision, Model-
ing, and Visualization (VMV), pp. 273-280 (2005)

21. Schott, M., Pegoraro, V., Hansen, C., Boulanger, K., Bouatouch,
K.: A directional occlusion shading model for interactive direct
volume rendering. Comput. Graph. Forum 28(3), 855-862 (2009)


https://doi.org/10.1007/s00371-023-02828-8
https://doi.org/10.1007/s00371-023-02828-8
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Volume conductor: interactive visibility management for crowded volumes

22.

23.

24.

25.

26.

217.

28.

29.

30.

Schretter, C., Kobbelt, L., Dehaye, P.O.: Golden ratio sequences for
low-discrepancy sampling. J. Graph. Tools 16(2), 95-104 (2012)
Schulte zu Berge, C., Baust, M., Kapoor, A., Navab, N.: Predicate-
based focus-and-context visualization for 3D ultrasound. IEEE
Trans. Visual Comput. Graph. 20(12), 2379-2387 (2014)
Thelaya, K.A., Agus, M., Schneider, J.: The mixture graph-a data
structure for compressing, rendering, and querying segmentation
histograms. IEEE Trans. Visual Comput. Graph. 27(2), 645-655
(2021)

Viega, J., Conway, M.J., Williams, G., Pausch, R.: 3D magic lenses.
In: Proceedings of the 9th Annual ACM Symposium on User Inter-
face Software and Technology, UIST *96, pp. 51-58. Association
for Computing Machinery, New York (1996)

Viola, I, Gréller, E.: Smart visibility in visualization. In: Neumann,
L., Sbert, M., Gooch, B., Purgathofer, W. (eds.) Computational
Aesthetics in Graphics, Visualization and Imaging, pp. 209-216.
The Eurographics Association (2005)

Wang, L., Zhao, Y., Mueller, K., Kaufman, A.: The magic volume
lens: An interactive focus+context technique for volume rendering.
In: IEEE Visualization, pp. 367-374. IEEE (2005)

Weissenbock, J., Amirkhanov, A., Li, W., Reh, A., Amirkhanov,
A., Groller, E., Kastner, J., Heinzl, C.: FiberScout: An interactive
tool for exploring and analyzing fiber reinforced polymers. In: 2014
IEEE Pacific Visualization Symposium, pp. 153-160. IEEE (2014)
Willett, W., Heer, J., Agrawala, M.: Scented widgets: improving
navigation cues with embedded visualizations. IEEE Trans. Visual
Comput. Graph. 13(6), 1129-1136 (2007)

Zerovnik Meku¢, M., Bohak, C., Hudoklin, S., Kim, B.H., Romih,
R., Kim, M.Y., Marolt, M.: Automatic segmentation of mitochon-
dria and endolysosomes in volumetric electron microscopy data.
Comput. Biol. Med. 103693 (2020)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Ziga Lesar is a Ph.D. student, a
researcher, and a teaching assistant
at the Faculty of Computer and Infor-
mation Science, University of Ljubl-
jana, Slovenia. He received his B.Sc.
in 2014 and M.Sc. in 2018 for his
work on interactive volume render-

is focused primarily on interactive
computer graphics, especially vol-
ume rendering and visualization.

Ruwayda Alharbi is a Ph.D. student at KAUST, Saudi Arabia. She
received her master’s degree in 2016 from King Saud University, Saudi
Arabia. Her research interests lie in scientific visualization, where she
focuses on designing novel visualization methods that support explo-
ration and understanding of 3D biological models.

ing with web technologies. His research

Ciril Bohak is a researcher and
a teaching assistant at the Faculty
of Computer and Information Sci-
ence, University of Ljubljana, Slove-
nia. He received B.Sc., M.Sc. and
Ph.D. from University of Ljubljana.
His research covers computer graph-

ics, scientific visualization, and human—

computer interaction.

Ondiej Strnad is a research sci-
entist at KAUST, Saudi Arabia. He
received his doctoral degree from
Masaryk University in Brno, Czech
Republic in 2014. His research inter-
ests stretch over scientific visualiza-
tion, geometry algorithms, and com-
puter graphics. Recently, he joined
NANOVIS group at KAUST to work
on technologies that deliver new visu-
alizations and techniques regarding
mesoscale biological models.

Christoph Heinzl received his PhD
degree in computer science from TU
Wien in the field of visualization and
analysis of industrial XCT data. He
is currently a professor at the Uni-
versity of Passau and a group leader
at Fraunhofer IIS/EZRT. His current
research covers visual analysis and
visualization in nondestructive test-
ing and materials science, a research
domain in which he acquired various
applied and basic research grants on
national and European level.

Matija Marolt is an associate pro-
fessor at the University of Ljubl-
jana, Faculty of Computer and
Information Science. He received
his Ph.D. in 2002 and is currently
head of the Laboratory for Com-
puter Graphics and Multimedia
and is the chair for Multimedia.
His research interests are in mul-
timedia information retrieval and
visualization.

@ Springer



7. Lesar et al.

@ Springer

Ivan Viola is an associate pro-
fessor at King Abdullah Univer-
sity of Science and Technology,
Saudi Arabia. Viola has gradu-
ated from TU Wien, Austria, in
2005 and moved for a postdoc-
toral fellowship to the University
of Bergen, Norway, where he was
gradually promoted to the rank of
Professor. In 2013, he has been
awarded a Vienna Science and
Technology Fund grant to estab-
lish research group at TU Wien.
Viola has co-founded the startup
Nanographics, to commercialize
nanovisualization technologies.



	Volume conductor: interactive visibility management for crowded volumes
	Abstract
	1 Introduction
	2 Related Work
	3 Volume Conductor
	3.1 Instance grouping
	3.2 Instance sparsification
	3.3 Visibility mask
	3.4 Rendering and blending
	3.5 Visibility assessment

	4 Implementation Details
	5 Results
	5.1 Use cases
	5.1.1 Material Science
	5.1.2 Cell biology

	5.2 Performance evaluation

	6 Discussion
	7 Conclusion
	Acknowledgements
	References


