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Abstract: Most real-time terrain point cloud rendering techniques do not address the empty space
between the points but rather try to minimize it by changing the way the points are rendered by
either rendering them bigger or with more appropriate shapes such as paraboloids. In this work, we
propose an alternative approach to point cloud rendering, which addresses the empty space between
the points and tries to fill it with appropriate values to achieve the best possible output. The proposed
approach runs in real time and outperforms several existing point cloud rendering techniques in
terms of speed and render quality.
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1. Introduction

Three-dimensional acquisition sensors allow us to easily capture diverse shapes into a
digital model resulting in a set of points, called a point cloud that lies on the surfaces of
objects. Such scanners are used in many different scenarios e.g., object acquisition [1,2],
acquisition of environment for self-driving car navigation to improve environmental aware-
ness [3], autonomous planetary exploration [4], or environment acquisition for geographic
and geodetic purposes with airborne sensors [5]. The best way to efficiently show these
kind of data are by rendering it on screen. This can be achieved using different rendering
techniques, but one should aim for an ideal rendering output, which would produce an
image indistinguishable from a photograph taken from the same point where the point
cloud data were acquired. On the other hand, rendering such data in real-time is often
desired, even if this means sacrificing quality.

This is even more true when the data are visualized using limited resources such as on
mobile devices or in the web browser. For such purposes, developing dedicated techniques
that balances the rendering speed and quality is meaningful. Besides the image quality,
rendering time is also crucial. 3D sensors on self-driving cars can produce a new point
cloud every 50 milliseconds. Because of other moving objects (nearby traffic, pedestrians,
etc.) and the fact that the car itself is moving through space, the new point cloud can be
very different from the previous one. If we want to render the data in real time, an efficient
algorithm is needed that does not require any time-consuming preprocessing steps.

In our case, we are interested in rendering terrain point cloud data acquired using
LiDAR [2] sensors mounted on airplanes while flying over the desired part of the terrain.
Such datasets consist of billions of points that store different parameters, such as the
intensity of the returned signal, return number (one signal can be reflected from multiple
targets), time of acquisition, and other data. For visualization purposes, LiDAR data are
usually coupled with color information obtained from the ortho-photo data, which make
direct point cloud rendering of terrain data much more meaningful. Due to the amount
of data available in LiDAR datasets, the need for fast real-time point cloud rendering
techniques is in high demand.
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To make the applications accessible to as many users as possible, it is meaningful to
implement them using web technologies. In the case of 3D visualization, the most widely
adopted standard is Web Graphics Library (WebGL) 2.0 (https://registry.khronos.org/
webgl/specs/latest/2.0/, accessed on 19 December 2022), a JavaScript application pro-
gramming interface, which is available in most browsers for desktop and mobile platforms.
WebGL 2.0 allows hardware-accelerated 2D and 3D rendering in browsers without needing
extensions and/or plugins and was used to implement our method.

The main contribution of this work is a novel adaptive real-time point cloud rendering
technique that identifies which points are on the frontmost surfaces using a depth map and
filters out the distant points. We evaluate our method by comparing it with several existing
point cloud rendering techniques regarding rendering speed and image quality.

2. Related Work
2.1. Point Cloud Rendering

The most straightforward way to render point cloud data is to draw points on the
canvas using fixed-sized objects. A comparison of such techniques was made by Sainz and
Pajarola [6]. These objects can be squares, circles, or any other shape. The only thing we
need to consider when doing that is their order, which means starting with the most distant
ones and drawing closer ones over them. This approach is straightforward to implement
as most graphical libraries already support rendering with fixed-sized objects, and the
ordering is already an integral step in the graphical pipeline. Rendering an extremely large
point cloud in real time using different dedicated acceleration structures and exploitation
of rendering hardware architecture was researched by Schütz et al. [7–11]. While this is an
appropriate way to render wast amount of points, the approaches do not address how to
fill the empty space between them.

Fixed-sized objects approach can be improved by bending the edges of fixed size away
from the camera. The result is a parabolic shape that ensures correct occlusions when points
are very close to each other, as was presented by Schütz and Wimmer [12] on 3D scanned
point cloud data. If the objects are large enough to fill the empty regions, the result will be
the same as with the nearest neighbor algorithm. Furthermore, the researchers have used
transparent splats [13] in combination with deferred rendering [14]. One of the ways to
fill the gaps between the primitives is to use elliptically weighted averaging [15,16], which
also prevents noise in areas with higher point densities.

In its basic form, the nearest neighbor algorithm searches each pixel’s surroundings to
find the nearest projected point. The images produced by this technique are called Voronoi
diagrams. They never have any holes between the points, but the edges are sharp, and the
method does not consider the point’s depth. Implementation can be achieved by following
the basic definition, but that turns out to be very inefficient due to intense texture sampling,
which is slow on graphics cards. A faster way is using the JumpFlooding algorithm [17]
that computes the image in a logarithmic number of steps with respect to the maximal
image dimension. A smaller number of steps may even be used if we know that the points
are close enough to each other.

To smooth the sharp edges in the Voronoi diagram, the inverse distance weighting
interpolation combines the colors of several nearby points. The color of a particular pixel
is a weighted sum of all colors in the point cloud. The weights are usually calculated
as inverse distances to the points. The distance may also be raised to the power of the
parameter p. If p is a small number, distant points will have similar weight to the near
ones, and the picture will be blurry. On the other hand, a very big value of p reduces the
influence of distant points, and the image becomes similar to the Voronoi diagram.

Unlike inverse distance weighting, natural neighbor interpolation presented by Tsi-
daev [18] uses only the values of the nearest points around the pixel. To be precise, it takes
only those points from which the pixel would remove some area if added to the Voronoi
diagram as a new point. The colors are weighted with one of the two defined equations.
The Sibson weights are equal to the area removed from each point, and the Laplace weights

https://registry.khronos.org/webgl/specs/latest/2.0/
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consider the length of the border in the removed region in combination with the distance
to the point.

The above-mentioned space-filling methods give adequate results and are the ones
our approach builds upon and aims to improve.

Another way to approach the sparseness of points is to upsample the point clouds.
Zhang et al. [19] present a progressive method for point cloud upsampling via differentiable
rendering, which addresses the non-uniform point distribution within the point cloud and
is capable of learning local and global point features to cope with non-uniform point
distribution and outlier removal. Yu et al. [20] present PU-Net, a data-driven point cloud
upsampling approach on point patches capable of learning multi-level point features
and expanding a set of points using a multi-branch convolution unit implicitly in feature
space. These features are split into a new set of features used for upsampling the point set.
Li et al. [21] present PU-GAN, a point cloud upsampling approach that uses a generative
adversarial network to learn a variety of point distributions in the latent space and uses this
information to upsample points point patches of surfaces. Qian et al. [22] present PUGeo-
Net, a geometry-centric network for 3D point cloud upsampling, which uses discrete
differential geometry and incorporates it into deep learning by learning the first and second
fundamental forms for full representation of the local geometry unique up to rigid motion.
Li et al. [23] present a method for point cloud upsampling via disentangled refinement,
which uses two cascaded sub-networks, a dense generator for coarse but dense surface
output and a spatial refiner for further fine-tuning the individual point location using local
and global refinement units.

While rendering denser point clouds gives us better results, it also affects the rendering
performance. In many cases of rendering aerial point cloud data, we are already tackling
hundreds of millions or even billions of points. Since the mentioned methods do not offer
real-time point cloud upsampling, this requires extensive preprocessing and affects the
rendering performance significantly.

Point cloud reconstruction aims to reconstruct an implicit or explicit surface represen-
tation of the data for rendering purposes. Moreover, the point cloud acquisition methods
usually return noisy point cloud representations of the acquired data. Researchers have
used different approaches to tackle these problems. Mandikal et al. [24] present DensePCR,
a deep hierarchical model for predicting point clouds of increasing resolution with architec-
ture that predicts a low-resolution point cloud first and afterward hierarchically increases
its resolution by aggregating local and global point features for grid deformation, yielding
uniform, dense and accurate point clouds. Tachella et al. citeTachella2019 presented a
real-time 3D reconstruction from a single-photon LiDAR data using point cloud denois-
ers by combining statistical models with highly scalable computational tools from the
computer graphics community and demonstrating 3D reconstruction of complex outdoor
scenes. Luo and Hu [25] present an approach for learning the underlying manifold of a
noisy point cloud from differentiably subsampled points with trivial noise perturbation
and their embedded neighborhood feature, aiming to capture intrinsic structures in point
clouds. An autoencoder-like network encoding stage learns both local and global feature
representations of points. It samples them with low noise using adaptive differentiable
pooling operation, and in decoding, infers the underlying manifold by transforming each
sampled point along with the embedded features of its neighborhood to a local surface
centered around the point. Choe et al. [26] presented a deep point cloud reconstruction
network that simultaneously solves point cloud sparseness, irregularity, and noisiness by
first using a 3D spars stacked-hourglass network for the initial densification and denoising.
Next, it refines the result using transformers to convert discrete voxels into 3D points.

The above methods give good results but have limitations. Most of them are not
capable of real-time denoising and reconstruction, and the one which is was only tested on
low field-of-view scenes. Moreover, most of the above methods were designed for specific
domains and do not guarantee good results for general point cloud data.
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An alternative approach is to use indirect techniques for rendering point clouds, which
first transform point clouds into an alternative representation, such as mesh geometry of
signed distance fields and then render the newly obtained representation. Berger et al. [27]
present an overview of surface reconstruction methods up to 2014, which was recently
revised by Camuffo et al. [28]. Researchers have developed numerous approaches for
point cloud reconstruction and completion by empowering deep learning. Here, we briefly
present a few selected works which tackle the point cloud reconstruction and completion
problem. Han et al. [29] present a high-resolution shape completion approach that uses
deep neural networks for global structure and local geometry inference. Yuan et al. [30]
present a point completion network that directly operates on raw point clouds without
structural assumption or annotation about the underlying shape and features a decoder
design that enables the generation of fine-grained completion using a small number of
parameters. Wen et al. [31] present a point cloud completion approach that uses a skip-
attention network with hierarchical folding. Williams et al. [32] present a neural kernel
fields approach for reconstructing implicit 3D shapes based on a learned kernel ridge
regression. The method works on a variety of point clouds representing single objects or
big scenes

The above methods achieve great results but are mostly not real-time methods which
again requires extensive preprocessing before real-time rendering is possible.

2.2. Web-Based Point Cloud Rendering

Several approaches have tackled the possibility of web-based point cloud rendering.
Kuder and Žalik [33] have presented a web-based rendering approach for point-based
rendering with client-server design, where original LAS data are converted into quadtree
representation and a RESTful web server for serving portions of data on different level-of-
detail (LoD), mimicking the Web Map Server design. A similar approach was presented by
Evans et al. [34], which supports more point cloud formats and utilizes different acceler-
ation structures. Schütz [35] presented an optimized and modular web-based rendering
framework that introduced multiple rendering approaches, including paraboloid render-
ing of massive point cloud data, which does not need a specialized server but includes
a data preparation tool for converting the data into an appropriate format for streamed
loading of data with LoD support. Discher et al. [36] presented a scalable WebGL-based
approach for visualizing massive 3D point clouds using semantics-dependent rendering
techniques for the joint rendering of 2D and 3D geodetic data as well as client-side or
server-side rendering.

The presented approaches cover diverse use cases but require either additional server-
side functionality or extensive preprocessing of data. Our implementation was carried out
using RenderCore (https://github.com/UL-FRI-LGM/RenderCore, accessed on 19 Decem-
ber 2022)—a WebGL 2.0 web-based rendering framework with extensions for processing
the point cloud data.

3. Background

This section briefly introduces the data point cloud data used for testing different
rendering methods and commonly used real-time point cloud rendering techniques. We
compared the results of our method with the results of these methods to show the advan-
tages and disadvantages of each technique.

3.1. Data

The data used in our experiments are publicly available from the Ministry of the
Environment and Spatial Planning of Slovenia and consists of multiple datasets. In the
presented work, we use LiDAR point cloud data of the Slovenian landscape, orthophoto
images of Slovenia, and the digital terrain model.

The LiDAR point cloud dataset of Slovenian landscape (http://gis.arso.gov.si/evode/,
accessed on 19 December 2022) was acquired using the RIEGL LMS-Q780 laser scanner, the

https://github.com/UL-FRI-LGM/RenderCore
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IGI Aerocontrol Mark II.E 256Hz IMU system, and the Novatel OEMV-3 GNSS positioning
system at altitudes of 1200 to 1400 m above ground. The postprocessing of the acquired
data are presented in-depth in the acquisition report [37]. The data were acquired in 2014
and 2015. On average, the dataset contains five points (first return of LiDAR sensor) per m2.
The data are georeferenced in both the Gauß-Krüger coordinate system D48/GK and in the
geodetic datum 96 coordinate system D96/TM.

Orthophoto images were obtained from Portal eProstor [37]—a repository of pub-
licly available Slovenian geodetic data. The images are similarly georeferenced as the
LiDAR data. They are available through a WMTS/REST service as small image tiles of
256 × 256 pixels on 17 scale levels and with a resolution of 0.5 × 0.5 m per pixel on the
largest scale.

The digital terrain model was also obtained from the database of Slovenian public
data (https://ipi.eprostor.gov.si/jgp/menu, accessed on 19 December 2022). The data are
stored as a regular grid with a resolution of 1 m, with the corresponding heights with an
accuracy of 0.1 m.

3.2. Fixed Point Size Rendering

The simplest point cloud rendering method renders points as fixed-sized primitives
such as squares, circles, or other planar primitives. Implementation is simple and straight-
forward since most graphics APIs already include such rendering. This is also true in our
case where we used WebGL 2.0, which supports rendering of primitives GL_POINTS, with
the ability to set its size through parameter GL_PointSize in the vertex shader. The API
draws such points as rectangles, and their overlapping is handled using a depth test built
into the graphics pipeline. When we want to render circles, we can discard the fragments
outside the desired radius in the fragment shader. Their distance defines the size of the
objects we see, and we can implement a similar transformation also in the rendering pro-
cess. This is why the primitives closer to the viewer are usually rendered larger than the
primitives further away. Despite setting the primitive size in accordance with their distance,
the problem of non-uniform point cloud density still results in empty regions—holes in the
sparsest parts of the point cloud. The following methods try to address these problems in
different ways.

3.3. Nearest Neighbor Rendering

Pixels in the resulting image in the color of the background are those that no points
from point cloud data are mapped onto. One of the most straightforward approaches
to approximate its color is by using the color of its nearest neighbor—the point which
is close to the pixel in the resulting image. The resulting image of such an approach is
called the Voronoi diagram. We can obtain such a result by first rendering the points
we have and then iteratively coloring the remaining points in the resulting image with
the color of their closest neighbor. Due to the specific hardware architecture of graphical
processing units (GPUs), this is not an optimal approach. Such a method requires many
texture sampling steps, which makes it inefficient. In the case of rendering an image with
resolution 256× 256 pixels, this would result in 2562 = 4,294,967,296 texture samplings.
Several approaches tried to address this problem; one of the most commonly used is Jump
Flooding [17,38].

The Jump Flooding algorithm builds the Voronoi diagram for an image in dlog2(d)e
steps, where d is the maximal image dimension. In the case of the previously mentioned
image of resolution 256× 256 pixels, this results in 8 steps or 8× 2562∗8 = 524,288 texture
samplings, where the first 8 corresponds to the number of steps (jumps) and the second 8
to the neighboring pixels. Jump length is determined as 2k−i, where k is the number of all
steps and i to i-th step. In the case above, this results in jump lengths of 128, 64, . . . , 4, 2,
and 1. We show how the Jump Flooding algorithm works on a square image of resolution
16× 16 pixels in Figure 1.

https://ipi.eprostor.gov.si/jgp/menu
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Figure 1. From (left) to (right): consecutive steps of Jump Flooding algorithm for image of resolution
16× 16 pixels.

In WebGL, Jump Flooding can be implemented using multiple rendering passes,
where, first, we render the point cloud with one pixel-sized point and set the background
as transparent. In the following render passed, we render one step of the Jump Flooding
algorithm at a time. We store the coordinates of the nearest neighbors in additional texture
after each step. This texture, together with the original point cloud rendering, is passed into
the next rendering pass. In the last pass, we generate the Voronoi diagram by rendering the
nearest neighbor for every uncolored pixel in the image.

3.4. Inverse Distant Weighted Rendering

While nearest neighbor rendering fills all the empty spaces between points, the result-
ing image is not very precise. The edges between regions are sharp, which makes the results
less convincing. Alternatively, the Inverse distance weighting [39] tries to address this by
taking into account several neighbors applied to spatial risk distribution in contaminated
site assessment. In the case of point cloud rendering, this scenario is mapped to the color
of points, and their distribution in the empty space between the points. The smaller the
distance, the greater the influence of the neighboring point color is. The color of an arbitrary
point in the image is defined as:

f (p) =
n

∑
i=1

f (xi)

d(p, xi)
e , (1)

where n is number of points, f (x) is point color, d(x, y) is distance between x and y, and e
is the weighting parameter. The greater the e, the higher the influence of nearby points is.
By increasing the e, the output image gets closer to the nearest neighbor rendering. The
smaller the e, the higher the influence of all neighboring points, resulting in a more blurred
output image.

3.5. Natural Neighbor Rendering

The downside of the Inverse distant weighted rendering is that you need to consider
all the points for calculating arbitrary pixel color. This means that rendering denser point
cloud regions is substantially more computationally demanding than rendering sparser
regions. The Natural neighbors method [40] only uses a few nearest neighbors to calculate
the color of a selected pixel. These are the points by which the Voronoi diagram cell surface
area becomes affected. The color of a point is calculated as:

f (p) =
n

∑
i=1

w(xi, p) ∗ f (xi), (2)

where n is number of points in the image, f (x) is point color, and wi(x) is its weight. An
efficient implementation can build on top of Jump Flooding by approximating the portions
of surface area the selected pixel would take from each neighboring point in the Voronoi
diagram. The approximation can be achieved by sparsely sampling the changed portion of
the Voronoi diagram as is shown in Figure 2.
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Figure 2. (Top left) original Voronoi diagram; (top right) updated Voronoi diagram with a new point;
(bottom left) surface area portions taken by the new point; and (bottom right) sparse sampling of
the affected part of the Voronoi diagram for estimating the surface area portions.

3.6. Paraboloid Rendering

None of the above-presented interpolation rendering methods take into account the
depth of points and their overlapping. Even when rendering the points with different-sized
primitives, both distant and near points are treated similarly in the rendering process,
apart from their size, resulting in rendering the points which should be occluded. We can
address this problem by rendering with fixed-sized primitives, curving them away from the
viewer and thus turning them into curved surfaces. The final result ideally resembles the
Voronoi diagram but additionally implicitly takes into account the occlusion of points. One
can use different functions to curve back the edges of the primitives, but most commonly,
the quadratic function is used, resulting in a parabolic shape–paraboloid. This is one of
the most widely used approaches and is also used in the Potree web-based point cloud
visualization framework [35].

In the development of our own approach, we identified two main problems with the
existing methods:

1. Efficient implementation on the graphical processing unit, and
2. Unwanted rendering of distant points which should have been occluded.

The first problem is best addressed with Inverse distance weighted rendering (see
Section 3.4), which can be efficiently implemented. On the other hand, we can almost en-
tirely suppress the calculation errors, which appear as color noise, by selecting appropriate
parameters. The Paraboloid rendering method best addresses the second problem (see
Section 3.6).

4. Methods

In the previous section, we made a general review of the point cloud rendering
techniques. We identified the two main challenges when using interpolation for real-
time rendering: (1) the removal of occluded points from the scene and (2) the efficient
blending of remaining points into a clear image. Based on the experience from observing
the implemented methods, we constructed a new algorithm that combines some ideas
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from the presented methods to achieve better performance. We present the idea and the
algorithms in the following sections.

Our proposed method for rendering point clouds comprises three steps:

1. A depth map of occlusion points is prepared;
2. Filtering occluded points;
3. Rendering the points as splats which are combined into the final image,

which are presented in more detail in the following subsections.

4.1. Depth Map Calculation

A depth map is an image that contains depth information about the rendered scene.
The color of each pixel indicates the distance to the first object in that direction. WebGL
automatically produces it with the main result (usually a colored image). We can use it
to filter occluded points from the scene by comparing the distance to each point with the
depth map value in the same direction. A smaller depth map values mean that something
else is in the way, and the point should be removed.

The main challenge when producing a good depth map is using the best shape and
size of primitives. Since there is a limited number of points in the point cloud, the surfaces
are not completely covered. Points need to be rendered as larger objects to fill the holes
between them and produce a depth map with solid surfaces, as shown in Figure 3a. Any
surface gap could cause occluded points leakage as the filtering algorithm would not
remove them. On the other hand, the primitives also should not be too large as they could
cover smaller holes and remove essential details from the image or occlude a whole chain
of points as shown in Figure 3b.

(a) (b)
Figure 3. Point filtering with use of depth map. (a) Points F and G are filtered out, since they are
occluded by points B in C; (b) a side view on the surface defined with points C–F. Point C occludes
point D, which in turn occludes point E, which in turn occludes point F.

The depth map is created with the paraboloid rendering (see Section 3.6) using the
default square-shaped primitives. This is a novel way of depth map calculation which is
reasonable for point clouds but not for other types of geometry. Only the depth of each
fragment is rendered in the depth map. Their size only depends on their distance from the
camera, so points farther away from the viewer are represented using smaller squares than
the ones closer to the camera. To avoid covering smaller holes, fragment depth is increased
towards the edges. Because the increase is based on a quadratic function, the primitives are
shaped as paraboloids.
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4.2. Filtering

The depth map obtained in the previous step is used to filter out the occluded points
in the point cloud. The filtering is carried out on points within the rendering frustum in
the vertex processing stage, where the occluded points are simply discarded by moving
them out of the viewing frustum, thus ignoring them in the fragment processing stage of
the rendering.

4.3. Rendering with Splats

The third part of the method focuses on incorporating the remaining points into a
final image. This can be achieved in many ways using different approaches. Most use
interpolation techniques to calculate values of empty pixels based on nearby points. These
approaches often require a lot of texture sampling to find those nearby points, which is
very inefficient on most GPU architectures. A different approach must be used to achieve
our real-time rendering goal.

Our algorithm tries to approximate the inverse distance weighting interpolation and
can be described with the following equations:

f (p) = ∑n
i=1 w(p,xi)∗ f (xi)

∑n
i=1 w(p,xi)

, (3)

w(p, xi) = 1
d(p,xi)

e , (4)

where Equation (3) is an adaptation of the Inverse distance weighted rendering presented
in Section 3.4 with Equation (1), weighted using Equation (4).

Instead of searching every pixel’s neighborhood for points, it adds points to the canvas
as splats and calculates their weighted averages in the final step. Splats are modeled as
square primitives, and their weight is decreasing relative to the distance from the point.

To achieve optimal results, Gaussian probability density is defined as:

g(x) =
1

σ
√

2 ∗ π
∗ exp

(
−1

2
∗ x2

σ2

)
. (5)

It was used instead of an exponential function in Equation (4). The high values around
the center produce a sharp image, while values for x � σ and x � −σ fill distant holes
between points. The variance (σ2) can be used as a parameter to determine how sharp the
result will be. If this parameter is low, the curve will descend quickly, and the final result
will be similar to the nearest neighbor interpolation. On the other hand, high values will
cause more overlaps of colors and effectively blur the image.

Our method uses a normalized Gaussian curve, where 1
σ
√

2π
is removed from Equation (5).

The weight in the center is consequently always equal to 1 and is not dependent on the variance.
The canvas is represented as a four-dimensional floating-point texture in WebGL. The

first three dimensions keep the color information, while the fourth dimension keeps the
sum of weights. To ensure correct calculation, the colors are multiplied with the weight
before adding them to the canvas. Adding is carried out on the GPU with blending (using
the GL_FUNC_ADD function). Parameters S = 1 and D = 1 ensure that all splats are
added to the texture unmodified. This part calculates the numerator part of Equation (1).

The last rendering step calculates the final color of each pixel by simply dividing each
color component with the sum of the weights (denominator part of Equation (1)).

The resulting images from the individual steps of the proposed method are displayed
in Figure 4.
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Figure 4. From left to right: step 1—depth map of occlusion points, step 2—filtering occluded points,
step 3—final rendering using splatting.

5. Results

To evaluate our rendering algorithm, we measured its performance in terms of output
quality and rendering time. Results were compared to other popular interpolation-based
rendering techniques. All tests were conducted on six scenes see Appendix A.1, always
rendered from the same angle. The scenes were taken from the results of the Slovenian na-
tional surface LiDAR dataset [37]. Several locations were picked from the dataset, cropped,
and filtered to reduce their size. Color information was added using LiDAR-Orthophoto
Merging software (https://github.com/jakakordez/lidar-orto-photo, accessed on 19 De-
cember 2022).

The test cases were selected so that all the challenges related to point cloud rendering
would be covered equally. The scenes contain flat surfaces with complex textures to test
texture reconstruction, as well as overlapping objects (e.g., buildings and mountains) to test
the rendering of occluded points. The tests were conducted on a consumer-grade computer
with an AMD Ryzen 1700 processor, 16 GB of memory, and an NVidia GeForce RTX 2070
graphics card with 8 GB of memory.

5.1. Performance Evaluation

As the algorithm was implemented using WebGL 2.0, we used Google Chrome and its
developer tools to measure rendering time. We used the performance profiler to measure
the execution of the rendering function as well as the GPU utilization. The measured values
were averaged over multiple consecutive frames for all six test scenes. The average results
are available for each tested algorithm in Table 1.

https://github.com/jakakordez/lidar-orto-photo
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Table 1. Results of all implemented algorithms with values averaged across all test cases. In bold are
the values of best values according to the used metric.

Approach
Performance Quality

Time ↓ GPU ↓ LPIPS ↓ PSNR ↑ SSIM ↑
Rendering with fixed points 0.2 ms 0.2 ms 0.135 18.452 0.491
Nearest neighbors interpolation 11 ms 9.1 ms 0.165 18.290 0.526
Jump Flooding algorithm 132 ms 108 ms 0.164 18.256 0.524
Inverse distance weighting 233 ms 232 ms 0.145 19.033 0.495
Inverse distance weighting with splats 5.2 ms 2.7 ms 0.233 17.344 0.438
Natural neighbors interpolation 188 ms 161 ms 0.137 18.935 0.577
Rendering with paraboloids 0.3 ms 0.2 ms 0.139 18.541 0.497
Our approach 5.3 ms 3.0 ms 0.091 21.475 0.655

5.2. Qualitative Evaluation

Our test models were obtained by scanning the terrain using LiDAR technology,
so we did not have any mesh models or photos for reference. We used a 2D Delaunay
triangulation to reconstruct mesh models, render them and use those images as our targets.
A simple C# program was used to project the points on a horizontal plane by removing
their vertical coordinate. The algorithm from the DelaunatorSharp (https://github.com/
nol1fe/delaunator-sharp, accessed on 19 December 2022) library connected those points
with triangles. In the end, the removed coordinate was returned to the points, and the
model was saved as an OBJ file. An example scene rendered with all of the rendering
methods is shown together with the close-up in Figure 5. Some additional comparisons are
shown in Appendix A, Figure A2.

Figure 5. Rendering results for a scene with complex buildings of the presented rendering methods:
(a) mesh; (b) fixed points; (c) nearest neighbor; (d) jump flooding; (e) inverse distance weighted;
(f) inverse distance weighted with splats; (g) natural neighbor; (h) paraboloids, and (i) our approach.

The similarity between the algorithm output and the reference image was calculated
using three metrics:

Learned Perceptual Image Patch Similarity (LPIPS) metric presented by Zhang
et al. [41] is used to estimate the perceptual similarity between two images and essen-
tially computes the similarity between the activations of two image patches for some
predefined network, and it matches human perception well. A low LPIPS score means that
images are more perceptually similar.

https://github.com/nol1fe/delaunator-sharp
https://github.com/nol1fe/delaunator-sharp
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Peak Signal-to-Noise Ratio (PSNR) metrics expresses a ratio between the maximum
possible value of a signal and the power of distorting noise that affects the representation
quality. A high PSNR score means that the two images are more similar.

Structural Similarity Index Measure (SSIM) [42] is a perceptual metric for quantifying
image quality degradation caused by processing, data compression, or transmission losses.
A high SSIM score means that images are more perceptually similar.

For all six test scenes, we calculated all of the above metrics between the rendering
output from a particular method and the target image produced by the mesh rendering
method. The average score values for each metric are presented in Table 1. The detailed
results for each technique and scene are available in Appendix A.3.

6. Discussion

The performance evaluation shows that our approach is slower than the two fastest
methods (rendering with fixed points and paraboloids) and has similar performance to the
inverse distance weighted rendering with splats. Still, the method is a real-time rendering
method with more than 180 frames-per-second performance on the test scenes. On the
other hand, our approach has the best similarity metrics scores on average. While the
comparison to the mesh representation of the point cloud data does not perfectly reflect
how good the reconstruction is for non-top-down views, it is the best approximation we
could obtain using the available data. The images show that our method fills most of the
holes in the point clouds, resulting in a better-reconstructed scene.

Despite promising results, our method could use further improvements. The most
noticeable flaw is observed when the camera moves around the scene. The depth image
that the filtering part of the algorithm uses can still have smaller holes. Consequently, some
points from the background may become visible for a short time as the camera moves. This
causes a flickering effect on the screen, which should be addressed in the future. Similar
flickering is also present in some of the other presented methods.

The presented method is especially meaningful when the point cloud data are less flat
(e.g., in mountains and residential areas). In these scenes, our method outperforms others
even more than in flat scenes.

One downside of our method is that some regions in the resulting images are blurrier
than with other methods; the effect is more apparent in scenes with smaller objects and
lower densities of point clouds. This could be solved to some degree with the use of a
post-processing sharpening filter.

While newer deep-learning-based methods, which were not assessed in this paper,
undoubtedly produce better results, the inference step is still far from real-time. In addition,
until new hardware and deep model optimization enable us to run inference of such model
in real time, the presented method is still very relevant for point cloud rendering.

7. Conclusions

During this study, we managed to develop our own algorithm for real-time point cloud
rendering. The algorithm is able to filter occluded points from the scene and fill empty
spaces on the canvas with colors from nearby points. Other interpolation-based algorithms
were also implemented for performance and qualitative comparison. All algorithms were
evaluated on a set of six test scenes. Reference renderings were also made from mesh
reconstructions of those models. The results show that the presented point cloud rendering
method is capable of real-time rendering of point cloud data and outperforms other popular
real-time or interactive point cloud rendering methods.

The method could be further improved with a better filtering step, which would use
some kind of density map. A density map is an image of the scene with higher pixel
values where points are projected closer one to another. Such a map can be efficiently
generated using the same technique as the color blending part of our method. If the render
pass that is generating the depth image would use this density map to increase the size of
paraboloids where density is low, it could potentially fill all empty spaces and therefore



Sensors 2023, 23, 72 13 of 17

give better results. Additionally, when the computational power of new hardware will
enable real-time inference of deep models, the method could be adapted in such a way
that the filtered points would be sent to a deep model, which would then infer the output
image. An additional problem that might arise is how to address the temporal coherence of
such models throughout the sequential frames.
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Appendix A

Appendix A.1. Test Scenes

In this section, we show which scenes were used in the performance tests. All six
scenes are shown in Figure A1.

Figure A1. Test scenes used in performance evaluation. (Top left) complex building; (top right) high
mountain; (middle left) broad mountain region; (middle right) airport; (bottom left) flat land; and
(bottom right) a residential region with houses and trees.
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Appendix A.2. Additional Rendering Results

In this section, we show additional rendering results using the presented methods
from two scenes in Figure A2.

Figure A2. Additional rendering results of the presented rendering methods for high mountain scene
(top) and residential region with houses and trees (bottom) : (a) mesh; (b) fixed points; (c) nearest
neighbor; (d) jump flooding; (e) inverse distance weighted; (f) inverse distance weighted with splats;
(g) natural neighbor; (h) paraboloids; and (i) our approach.

Appendix A.3. Detailed Qualitative Evaluation Results

In this section, we present detailed results of our qualitative evaluation. We used
three metrics for evaluating and comparing our approach to other popular point cloud
rendering techniques. We use LPIPS [41], PSNR, and SSIM [42] scores in our evaluation. In
Tables A1–A3, we present detailed results for all the test scenes.

The tested approaches with their acronyms are:

1. FIXED—Rendering with fixed points
2. NEAR—Nearest neighbors interpolation;
3. JF—Jump Flooding algorithm;
4. IDW—Inverse distance weighting;
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5. IDW-S—Inverse distance weighting with splats;
6. NAT—Natural neighbors interpolation;
7. PARA—Rendering with paraboloids;
8. OUR—Our approach.

Table A1. LPIPS scores of the presented approaches compared with our own approach. Lower score
means higher similarity. The best results are highlighted in bold.

Scene FIXED NEAR JF IDW IDW-S NAT PARA OUR

Scene #1 0.143 0.162 0.161 0.218 0.271 0.122 0.148 0.092
Scene #2 0.168 0.300 0.301 0.097 0.271 0.271 0.169 0.095
Scene #3 0.071 0.097 0.098 0.064 0.140 0.083 0.078 0.075
Scene #4 0.116 0.058 0.060 0.056 0.237 0.043 0.120 0.036
Scene #5 0.177 0.170 0.170 0.179 0.226 0.151 0.184 0.149
Scene #6 0.136 0.205 0.196 0.259 0.252 0.152 0.134 0.096

Mean 0.135 0.165 0.164 0.145 0.233 0.137 0.139 0.091

Table A2. PSNR scores of the presented approaches compared with our own approach. Higher score
means higher similarity. The best results are highlighted in bold.

Scene FIXED NEAR JF IDW IDW-S NAT PARA OUR

Scene #1 18.548 18.902 18.934 18.644 17.996 19.819 18.657 22.463
Scene #2 17.900 12.763 12.773 21.189 13.600 12.921 17.881 19.317
Scene #3 18.617 19.397 19.360 18.917 18.679 20.383 18.197 22.480
Scene #4 22.930 26.565 26.305 24.669 21.614 27.332 23.680 28.737
Scene #5 14.611 14.587 14.587 14.708 14.480 14.748 14.572 14.828
Scene #6 18.107 17.527 17.579 16.070 17.694 18.407 18.263 21.028

Mean 18.452 18.290 18.256 19.033 17.344 18.935 18.541 21.475

Table A3. SSIM scores of the presented approaches compared with our own approach. Higher score
means higher similarity. The best results are highlighted in bold.

Scene FIXED NEAR JF IDW IDW-S NAT PARA OUR

Scene #1 0.547 0.569 0.571 0.509 0.494 0.639 0.563 0.715
Scene #2 0.534 0.499 0.498 0.618 0.421 0.525 0.546 0.696
Scene #3 0.357 0.464 0.459 0.326 0.397 0.527 0.315 0.562
Scene #4 0.630 0.780 0.770 0.689 0.540 0.808 0.678 0.844
Scene #5 0.411 0.397 0.396 0.437 0.354 0.436 0.400 0.467
Scene #6 0.468 0.447 0.449 0.389 0.423 0.527 0.483 0.644

Mean 0.491 0.526 0.524 0.495 0.438 0.577 0.497 0.655

References
1. Rocchini, C.; Cignoni, P.; Montani, C.; Pingi, P.; Scopigno, R. A Low Cost 3D Scanner Based on Structured Light. In Computer

Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2001; Volume 20, pp. 299–308.
2. Reutebuch, S.E.; Andersen, H.E.; McGaughey, R.J. Light Detection and Ranging (LIDAR): An Emerging Tool for Multiple

Resource Inventory. J. For. 2005, 103, 286–292.
3. Hecht, J. Lidar for self-driving cars. Opt. Photonics News 2018, 29, 26–33. [CrossRef]
4. Rekleitis, I.; Bedwani, J.L.; Dupuis, E. Autonomous Planetary Exploration Using LIDAR Data. In Proceedings of the IEEE

International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3025–3030.
5. Zhou, Q.Y.; Neumann, U. Complete Residential Urban Area Reconstruction from Dense Aerial LiDAR Point Clouds. Graph.

Model. 2013, 75, 118–125. [CrossRef]
6. Sainz, M.; Pajarola, R. Point-Based Rendering Techniques. Comput. Graph. 2004, 28, 869–879.
7. Schütz, M.; Krösl, K.; Wimmer, M. Real-Time Continuous Level of Detail Rendering of Point Clouds. In Proceedings of the IEEE

Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, 23–27 March 2019; pp. 103–110. 10.1109/vr.2019.8798284.
8. Schütz, M.; Mandlburger, G.; Otepka, J.; Wimmer, M. Progressive Real-Time Rendering of One Billion Points Without Hierarchical

Acceleration Structures. Comput. Graph. Forum 2020, 39, 51–64. [CrossRef]

http://doi.org/10.1364/OPN.29.1.000026
http://dx.doi.org/10.1016/j.gmod.2012.09.001
http://dx.doi.org/10.1111/cgf.13911


Sensors 2023, 23, 72 16 of 17

9. Otepka, J.; Mandlburger, G.; Schütz, M.; Pfeifer, N.; Wimmer, M. Efficient Loading and Visualization of Massive Feature-Rich
Point Clouds Without Hierarchical Acceleration Structures. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 293–300.
[CrossRef]

10. Schütz, M.; Kerbl, B.; Wimmer, M. Rendering Point Clouds with Compute Shaders and Vertex Order Optimization. Comput.
Graph. Forum 2021, 40, 115–126. [CrossRef]

11. Schütz, M.; Kerbl, B.; Wimmer, M. Software Rasterization of 2 Billion Points in Real Time. In Proceedings of the ACM on Computer
Graphics and Interactive Techniques; ACM: New York, NY, USA, 2022; Volume 5, pp. 1–16. [CrossRef]

12. Schütz, M.; Wimmer, M. High-Quality Point-Based Rendering Using Fast Single-Pass Interpolation. Digit. Herit. 2015, 1, 369–372.
[CrossRef]

13. Pfister, H.; Zwicker, M.; Van Baar, J.; Gross, M. Surfels: Surface Elements as Rendering Primitives. In Proceedings of the 27th
Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 23–28 July 2000; pp. 335–342.
[CrossRef]

14. Zhang, Y.; Pajarola, R. Deferred Blending: Image Composition for Single-Pass Point Rendering. Comput. Graph. 2007, 31, 175–189.
[CrossRef]

15. Zwicker, M.; Pfister, H.; Van Baar, J.; Gross, M. Surface Splatting. In Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques, Los Angeles, CA, USA, 12–17 August 2001; pp. 371–378.

16. Botsch, M.; Hornung, A.; Zwicker, M.; Kobbelt, L. High-Quality Surface Splatting on Today’s GPUs. In Proceedings of the
Eurographics/IEEE VGTC Symposium Point-Based Graphics, Stony Brook, NY, USA, 21–22 June 2005; pp. 17–141. [CrossRef]

17. Rong, G.; Tan, T.S. Jump Flooding in GPU with Applications to Voronoi Diagram and Distance Transform. Proceedings of the
2006 Symposium on Interactive 3D Graphics and Games, I3d ’06, Redwood City, CA, USA, 14–17 March 2006; Association for
Computing Machinery: New York, NY, USA, 2006; pp. 109–116. [CrossRef]

18. Tsidaev, A. Parallel Algorithm for Natural Neighbor Interpolation. In Proceedings of the 2nd Ural Workshop on Parallel,
Distributed, and Cloud Computing for Young Scientists, Yekaterinburg, Russia, 6 October 2016; Volume 6.

19. Zhang, P.; Wang, X.; Ma, L.; Wang, S.; Kwong, S.; Jiang, J. Progressive Point Cloud Upsampling via Differentiable Rendering.
IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 4673–4685. [CrossRef]

20. Yu, L.; Li, X.; Fu, C.W.; Cohen-Or, D.; Heng, P.A. PU-Net: Point Cloud Upsampling Network. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018.

21. Li, R.; Li, X.; Fu, C.W.; Cohen-Or, D.; Heng, P.A. PU-GAN: A Point Cloud Upsampling Adversarial Network. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019.

22. Qian, Y.; Hou, J.; Kwong, S.; He, Y. PUGeo-Net: A Geometry-Centric Network for 3D Point Cloud Upsampling. In European
Conference on Computer Vision, Proceedings of the 16th European Conference, Glasgow, UK, 23–28 August 2020; Vedaldi, A., Bischof, H.,
Brox, T., Frahm, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 752–769. [CrossRef]

23. Li, R.; Li, X.; Heng, P.A.; Fu, C.W. Point Cloud Upsampling via Disentangled Refinement. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 344–353.

24. Mandikal, P.; Radhakrishnan, V.B. Dense 3D Point Cloud Reconstruction Using a Deep Pyramid Network. In Proceedings of
the IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI, USA, 7–11 January 2019; pp.
1052–1060. [CrossRef]

25. Luo, S.; Hu, W. Differentiable Manifold Reconstruction for Point Cloud Denoising. In Proceedings of the 28th ACM International
Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; Association for Computing Machinery: New York, NY, USA,
2020; pp. 1330–1338.

26. Choe, J.; Joung, B.; Rameau, F.; Park, J.; Kweon, I.S. Deep Point Cloud Reconstruction. In Proceedings of the International
Conference on Learning Representations 2022, Virtually, 25–29 April 2022.

27. Berger, M.; Tagliasacchi, A.; Seversky, L.; Alliez, P.; Levine, J.; Sharf, A.; Silva, C. State of the Art in Surface Reconstruction from Point
Clouds; EUROGRAPHICS Star Report: Strasbourg, France, 2014; Volume 1, pp. 161–185. [CrossRef]

28. Camuffo, E.; Mari, D.; Milani, S. Recent Advancements in Learning Algorithms for Point Clouds: An Updated Overview. Sensors
2022, 22, 1357. [CrossRef] [PubMed]

29. Han, X.; Li, Z.; Huang, H.; Kalogerakis, E.; Yu, Y. High-Resolution Shape Completion Using Deep Neural Networks for Global
Structure and Local Geometry Inference. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),
Venice, Italy, 22–29 October 2017.

30. Yuan, W.; Khot, T.; Held, D.; Mertz, C.; Hebert, M. PCN: Point Completion Network. In Proceedings of the International
Conference on 3D Vision (3DV), Verona, Italy, 5–8 September 2018; pp. 728–737. [CrossRef]

31. Wen, X.; Li, T.; Han, Z.; Liu, Y.S. Point Cloud Completion by Skip-Attention Network With Hierarchical Folding. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [CrossRef]

32. Williams, F.; Gojcic, Z.; Khamis, S.; Zorin, D.; Bruna, J.; Fidler, S.; Litany, O. Neural Fields As Learnable Kernels for 3D
Reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver,
QC, Canada, 18–22 June 2022; pp. 18500–18510.

33. Kuder, M.; Žalik, B. Web-Based LiDAR Visualization with Point-Based Rendering. In Proceedings of the Seventh International
Conference on Signal Image Technology & Internet-Based Systems, Dijon, France, 28 November–1 December 2011; pp. 38–45.
[CrossRef]

http://dx.doi.org/10.5194/isprs-archives-XLIII-B2-2020-293-2020
http://dx.doi.org/10.1111/cgf.14345
http://dx.doi.org/10.1145/3543863
http://dx.doi.org/10.1109/DigitalHeritage.2015.7413904
http://dx.doi.org/10.1145/344779.344936
http://dx.doi.org/10.1016/j.cag.2006.11.012
http://dx.doi.org/10.1109/PBG.2005.194059
http://dx.doi.org/10.1145/1111411.1111431
http://dx.doi.org/10.1109/TCSVT.2021.3100134
http://dx.doi.org/10.1007/978-3-030-58529-7_44
http://dx.doi.org/10.1109/wacv.2019.00117
http://dx.doi.org/10.2312/egst.20141040
http://dx.doi.org/10.3390/s22041357
http://www.ncbi.nlm.nih.gov/pubmed/35214254
http://dx.doi.org/10.1109/3dv.2018.00088
http://dx.doi.org/10.1109/CVPR42600.2020.00201
http://dx.doi.org/10.1109/sitis.2011.36


Sensors 2023, 23, 72 17 of 17

34. Evans, A.; Agenjo, J.; Blat, J. Web-Based Visualisation of on-Set Point Cloud Data. In Proceedings of the 11th European Conference
on Visual Media Production, London, UK, 13–14 November 2014; Association for Computing Machinery: New York, NY, USA,
2014. [CrossRef]

35. Schütz, M. Potree: Rendering Large Point Clouds in Web Browsers. Master’s Thesis, Institute of Computer Graphics and
Algorithms, Vienna University of Technology, Vienna, Austria, 2016.

36. Discher, S.; Richter, R.; Döllner, J. A Scalable WebGL-Based Approach for Visualizing Massive 3D Point Clouds Using Semantics-
Dependent Rendering Techniques. In Proceedings of the 23rd International ACM Conference on 3D Web Technology, Poznań,
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