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Abstract—The Golgi apparatus (GA) is a cellular organelle
involved in the processing and sorting of proteins in eukaryotic
cells. Due to its numerous functions, structural complexity, and
organizational dynamics, the role of the GA in normal and
pathological processes is still under intensive research. In this
work, we present an approach to automatic segmentation of
the GA in electron microscopy volumetric data, consisting of
i) a neural network trained on approximately labelled data, ii)
active contours for refining the segmentation, and iii) filtering of
the segmented regions. Evaluation on 3D volumes of a urinary
bladder epithelial cell shows that the proposed algorithm is able
to segment the GA with 89% sensitivity and 99% specificity.
Using approximate labels reduced the time needed for manual
annotation of the ground truth by a factor of five.

Keywords—Golgi apparatus, Segmentation, Convolutional neu-
ral network, Active contours.

I. INTRODUCTION

Eukaryotic cells build all multi-cellular organisms. In order
to understand their function, we need a good understanding
of the structure and function of the many cellular organelles
inside them, including their spatial distribution, shapes, and
sizes. The understanding of organelles and their relations will
contribute to a better understanding of the functioning of cells
and thus to new discoveries in biology and medicine.

In our research, we focus on the umbrella cells that make up
the urothelium - the specialized epithelium tissue that covers
the bladder. These cells contain fusiform vesicles (FV), which
contain, store and transmit urothelial plaques. Plaques are an
important factor in establishing the blood-urine barrier of the
mammalian bladder. It is still not entirely clear how FVs are
formed, but it has been proven that the Golgi apparatus (GA)
is involved in the process.

The GA is an organelle of the biosynthetic pathway, where
membrane proteins are functionalized and classified. At the
same time, it represents the intersection of the exo- and
endocytic pathways in the cell. Knowing its spatial distribution,
size, and shape within cells can help to better understand
the basic cell processes and observe the effects of various
pathological conditions on the cell.

The development of new technologies for capturing three-
dimensional volumetric microscopic images using the focused
ion beam and scanning electron microscopy (FIB-SEM) has
enabled direct observation of cellular organelles and expanded
the possibilities for understanding their function within cells.
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To establish the positions of individual organelles in three-
dimensional volumetric data, segmentation of such volumes
is needed. Manual segmentation can be performed by skilled
experts that annotate the cellular organelles in individual 2D
volume slices, however, due to the large sizes of the volumes
(e.g. 1280×1024×1024 for part of a cell), it is extremely time-
consuming. Automatic segmentation approaches are therefore
highly desired.

As in all areas of image analysis, most state-of-the-art
approaches for biomedical image segmentation are based on
deep convolutional neural networks. The first modern seg-
mentation methods, such as the FCN [1] and the U-Net
[2], were created to segment 2D data. With the increasing
availability of volumetric data, specialized approaches that
exploit the information present in 3D volumetric data were
soon developed. The 3D U-Net, as an upgrade of the U-Net [3],
was developed for segmenting kidney images, the V-Net [4]
for prostate segmentation and DeepMedic [5] for segmentation
of brain lesions.

Although these architectures are general, they were all de-
veloped for specific domains and imaging techniques and may
not generalize well to different types of data. As it is important
that the characteristics of the target data are considered when
developing segmentation methods [6], we chose to use the
HighRes3DZMNet [7] architecture in our work. The architec-
ture was recently introduced for segmentation of mitochondria
and endolysosomes in volumetric electron microscopy data. As
an upgrade of the HighRes3DNet [8], this architecture adds
the use of zero-mean convolutional filters at the first levels of
the convolutional neural network to equalize the brightness of
the input data. Such preprocessing is especially important in
microscopic images where uneven lighting artefacts are often
present.

In this paper, we present an approach for automatic seg-
mentation of the GA in volumetric electron microscopy data.
Although many approaches were introduced for segmenta-
tion of different cellular organelles (e.g. mitochondria and
endolysosomes [7], endoplasmic reticulum [9], nuclei [10]),
no approach, to our knowledge, currently exists for automatic
segmentation of the GA in volumetric data. Our approach is
based on a deep neural network segmentation model, trained
with approximately labelled data, which speeds up the acqui-
sition of training data significantly. We present the approach
in Section II and its evaluation in Section III.
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Fig. 1: Our proposed approach to automatic segmentation of the GA.

II. SEGMENTATION

Deep architectures usually need a large amount of annotated
data to train properly. Due to the large variety of the GA within
the cell and due to their complex shape, their precise manual
annotation in volumetric data is extremely time-consuming and
very error-prone.

We propose a three-step approach to GA segmentation.
First, we train the HighRes3DZMNet deep architecture in a
controlled way on approximately labelled data, which yields a
model that is able to roughly locate the areas where the GA is
located. We then use the active contour method [11] to refine
the obtained areas and obtain more precise GA shapes. Finally,
we filter the obtained GA segments, to remove false positives.
The approach is fully automatic and is outlined in Fig. 1.

We describe the individual steps in the following subsections
and visualize their outputs in Fig. 4.

A. Data

Fig. 2: One of the subvolumes used for testing.

We used the UroCell [7] dataset to train and evaluate our ap-
proach. We selected this dataset because it is to our knowledge
the only public dataset obtained from urothelial tissue which
is the tissue we are interested in. The dataset contains 3D
volumes of umbrella cells from the mouse bladder epithelium,
obtained with a FIB-SEM electron microscope. The entire vol-
ume is divided into subvolumes of size 256×256×256 voxels,
which, given the voxel dimensions of approx. 16 × 16 × 15
nm, yields subvolumes that cover about 4 × 4 × 4 µm. In
this work, subvolumes from different parts of the cell were
selected so that the contrast, brightness, content, and artefacts
are as diverse as possible. Fig. 2 shows one of the subvolumes.

We manually annotated the GA in 9 subvolumes with
the open-source tool Slicer3D [12]. As can be seen in
Fig. 3, the shape of the GA is complex, so we only
approximately annotated the area they occupy. All the
approximate labels were reviewed by an expert in cell
biology. With this paper, we are adding GAs to the
UroCell dataset publicly available on the following link:
https://github.com/MancaZerovnikMekuc/UroCell.

(a) (b)

Fig. 3: (a) A volume slice with a GA and (b) the approximately labelled GA
area.

B. Deep Learning
To perform the initial approximate segmentation, we used

the HighRes3DZMNet deep neural network architecture,
which was developed for segmentation of mitochondria and en-
dolysosomes in electron microscopy data (also for the UroCell
dataset). The HighRes3DZMNet [7] is a convolutional neural
network consisting of 20 layers, which outputs the target class
distribution of each individual input voxel.

To train the network, we used 9 subvolumes of the UroCell
dataset where we approximately labelled the GA positions. We
divided the 9 subvolumes into a training (7) and testing (2) set.
Each of the subvolumes contained 0 to 3 GA instances. We
used the same parameters and data augmentation techniques
for training as in the original HighRes3DZMNet paper, so
despite the relatively small dataset, the network generalized
well to the unknown data.

C. Active Contours
Active contours [11] are often used in the processing of

medical images, mainly for segmentation and demarcation of
objects. According to the initial estimate of the object bound-
ary, the algorithm iteratively adjusts this boundary, minimizing
the energy function and thus approaching the actual boundary.

We use active contours to refine the approximate GA
segmentation produced by the HighRes3DZMNet network.
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(a) (b) (c) (d)

Fig. 4: GA segmentation on a single subvolume: (a) segmentation with the deep model, (b) after active contours, (c) after filtering, (d) the manual ground
truth annotation.

Because active contours work on 2D data, we use the method
on each of the volume slices separately and across all three
dimensions. The HighRes3DZMNet segmentation is used as
the initial estimate of the object boundary. We fuse the results
of active contours across all the dimensions by assigning a
voxel to a GA if it was assigned to the GA in at least one of
the dimensions.

The approach has proven to be well suited to our problem.
As can be seen in Fig. 5, the approach also works well when
part of the initial border is inside the target GA. By minimizing
the energy, the border expands outwards at that point.

(a) (b)

Fig. 5: GA segmentation (a) before and (b) after the use of active contours.
On the lower left edge of the yellow annotation, we can see the initial contour
inside the GA that the active contours method then expands to the border of
the GA seen on the blue annotation.

D. Removing False-positive Segments

In the final step of our approach, we remove excessive (false
positive) segments. Most of these occur because stacks of FVs
are mistaken for a GA. FVs are specific to the urothelial
cells and look very similar in texture to the GA, as can be
seen in Fig. 6[a]. Consequently, the deep neural network pro-
duces some false-positive segments, where it annotates these
stacks as the GA. By analyzing these erroneous segments,
we discovered that such errors can be largely eliminated by
filtering the segments by size, as the stacks of FVs are usually
much smaller than the GA. Thus, we remove all segmented

compartments smaller in volume than 0.19 µm3, which is 80%
of the size of the smallest GA in our dataset.

III. RESULTS

A. Data

We evaluated our approach on the UroCell dataset, which
was divided into the training and test sets as previously
described. Although we are aware that the dataset is small
and our results may therefore be somewhat optimistic, we are
currently not aware of other datasets that we could use to
evaluate our approach. Additionally, we must stress that the
problem of segmentation in the selected cell type is particularly
complex, as the FVs in the cytoplasm of the differentiated
urothelial cells are organized into stacks that are very similar
in texture to the GA. Therefore, even though we evaluated
the approach only on this cell type, we expect that the
proposed procedure would be sufficiently general and useful
for segmentation of the GA in other cell types as well.

B. Evaluation Metrics

For evaluation, we used sensitivity, specificity, and the Dice
similarity coefficient, which are the most commonly used
measures for evaluating segmentation accuracy in biomedical
images.

If we define TP as the number of true positive voxels
(correctly labelled as GA), TN as the number of true negative
voxels (correctly labelled as background), FP as the number
of false-positive voxels (background voxels marked as GA),
and FN as the number of false-negative voxels (GA marked as
background), we can define the selected performance measures
as follows.

The Dice similarity coefficient (DSC):

DSC =
2TP

2TP + FP + FN
(1)

The true positive rate - sensitivity (TPR):

TPR =
TP

TP + FN
(2)

The true negative rate - specificity (TNR):

TNR =
TN

TN + FP
(3)
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We also measured the time spent on approximate and precise
manual volume annotation.

C. Results

The results that are shown in Table I were obtained on the
two subvolumes of the test set. For evaluation purposes, both
subvolumes were manually annotated with a precise GA shape.

The results in Table I represent the average score over both
test subvolumes. Since we are not aware of other methods
for automatic segmentation of the GA in volumetric data, we
could not compare our approach with others.

TABLE I:
RESULTS AT DIFFERENT STAGES OF THE PROPOSED METHOD

Method stage DSC TPR TNR
After deep learning 0.515 0.861 0.983
After active contours 0.501 0.876 0.982
Final segmentation 0.926 0.885 0.999

We also estimated the time needed for approximate vs.
precise manual annotation of subvolumes. The time needed to
precisely annotate an average-sized GA was 2.5 hours, while
approximate manual annotation of the same GA took 0.5 hours
- a five-fold speed increase.

D. Discussion

(a) (b)

Fig. 6: Errors: (a) FVs annotated as a GA, (b) empty space in the middle
annotated as a GA.

The accuracy of our approach after all three steps is high.
The DSC is 0.92, the TNR is also very high, only the TPR is
slightly lower.

Although we used filtering to remove false-positive seg-
ments, several stacks of FVs, labelled as the GA, still re-
mained, as shown in Fig. 6[a].

Empty spaces in the middle of the GA also contribute to
errors, as seen in Fig. 6[b]. These were manually annotated
as background but were labelled as GA by the deep model.
We do not consider this to be a big problem, as the external
boundaries of the GA already give us a lot of information,
such as the number of the GA bodies in the cell, their spatial
distribution, size, and the relationships between them. The

internal structure of the GA is not our focus at the moment,
but this is one of the aspects we want to address in the future.

The accuracy of the approach before the filtering step
is much lower due to the fact that the stacks of FVs are
very similar to the GA and are thus incorrectly labelled.
Interestingly, however, we also see a decrease in performance
after using the active contour method. This is mainly due
to the incorrectly segmented stacks of FVs, where only one
part of the stack is annotated as a GA, i.e. the segmentation
edge in some parts takes place within the stack. This causes
edge propagation with active contours and thus an increase in
the number of incorrectly segmented voxels. We can see an
example of this in Fig. 7.

(a) (b)

Fig. 7: An incorrectly segmented stack of FVs (a) before and (b) after the use
of active contours.

Even though we could not compare our results to other
approaches, the qualitative analysis shows that the approach
works well. Fig. 4 shows the ground truth annotation and the
results of the algorithm on one of the test subvolumes. On the
test set, the proposed method found all but one GA; the missed
GA was at the edge of the subvolume, so only a part of it was
included and it was consequently filtered out due to its size.
Such errors would not occur when segmenting the entire cell
volume.

To test how the method performs on a larger dataset, we
ran it on the entire UroCell volume (1280 × 1024 × 1024
voxels), which is the size of around 80 such subvolumes. We
can not quantify these results, as we are lacking the ground
truth annotations, however, qualitative inspection showed that
the approach works similarly well regardless of the size of the
volume.

The advantage of the proposed approach is also that only
approximate annotations are needed for training the deep
learning model. With an average-sized GA, we spent five times
less time with approximate annotations than we would with
precise annotations, so we estimate that in total 50 hours of
laborious annotating work were saved for producing the entire
training and test sets.

IV. CONCLUSION

With the development of technology for capturing increas-
ingly more accurate microscopic data, there is a growing need
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for approaches to analyze them. In this paper, we presented an
approach for automatic segmentation of the GA in volumetric
electron microscopy data, which, to our knowledge, is the first
such approach for this type of data. In addition to successful
segmentation, our approach reduces the time required for
manual annotation of the training and test data by using
approximate labels. The proposed approach is general and
could also be used for other similar segmentation problems,
where objects exhibit complex shapes.

In our future work, we will improve the filtering stage
by including additional parameters, such as the shape of the
segmented regions, to better distinguish the GA from FV
stacks. We will also continue to improve the segmentation
itself with larger training datasets and test the approach on
other databases when they become available.

With our research, we are enabling scientists to more quickly
and accurately analyze 3D cellular data and thus further their
research of the Golgi apparatus and other cellular structures,
which is crucial for an in-depth understanding of how the cell
functions and how outside factors affect its functions. This,
in turn, will further a better understanding of the human body
and its physiology, which can lead to new medical discoveries.
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the Laboratory for Computer Graphics and Multimedia at
the Faculty of Computer and Information Science and Samo
Hudoklin from the Institute of Cell Biology at the Faculty of
Medicine in University of Ljubljana.

REFERENCES

[1] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 39, pp. 1–1, 2016.

[2] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” LNCS, vol. 9351, pp. 234–241,
2015.
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