
1Web-Based 3D Visualisation of

Biological andMedical Data

Ciril Bohak, Žiga Lesar, Primož Lavric, and Matija Marolt

Abstract
In this chapter we present an overview of web-
based frameworks for visualisation of medical
and biological data, with emphasis on visuali-
sation of volumetric data such as radiological
data (e.g. magnetic resonance imaging, com-
puted tomography or positron emission to-
mography) and microscopy data (e.g. focused
ion beam scanning electron microscopy). We
compare web-based frameworks with state-of-
the-art standalone visualisation tools and point
out the advantages and disadvantages of both.
We also present our open-source web-based
visualisation environment Med3D.

Keywords
Volumetric data · Collaborative
visualisation · Web-based visualisation ·
WebGL 2.0 · Volumetric rendering

C. Bohak (�) · Ž. Lesar · M. Marolt
Faculty of Computer and Information Science, University
of Ljubljana, Ljubljana, Slovenia
e-mail: ciril.bohak@fri.uni-lj.si; ziga.lesar@fri.uni-lj.si;
matija.marolt@fri.uni-lj.si

P. Lavric
Faculty of Computer and Information Science, University
of Ljubljana, Ljubljana, Slovenia

Cosylab d.d., Ljubljana, Slovenia
e-mail: primoz.lavric@lgm.fri.uni-lj.si

1.1 Introduction

In recent years, the advances in computer
graphics hardware and software, as well as the
development of novel visualisation techniques,
have allowed the implementation of real-time
visualisation systems for 3Dmedical radiological
data obtained with magnetic resonance imaging –
MRI (Rinck et al. 1990), computed tomography
– CT (Crawford and King 1990; Kalender
et al. 1990), positron emission tomography
– PET (Ollinger and Fessler 1997) and 3D
ultrasound (Krakow et al. 2003). It is also possible
to visualise the biological 3D microscopy data
obtained with electronic microscopy such as
focused ion beam scanning electron microscopy
– FIB-SEM (Briggman and Bock 2012). This
is possible due to the larger system memory
size which allows storing large amounts of data
obtained with the above-mentioned techniques,
due to the increased computational performance
of graphical processing units – GPUs and due to
the improved software systems which enable the
development of highly optimised visualisation
software products.

Such data is typically represented in the form
of 3D scalar or vector fields where the values
represent different properties of the scanned ob-
ject. Depending on the scanning technique the
values could represent various tissues inside the
human body or inside the biological sample. In

© Springer Nature Switzerland AG 2020
P. M. Rea (ed.), Biomedical Visualisation , Advances in Experimental Medicine and Biology 1235,
https://doi.org/10.1007/978-3-030-37639-0_1

1



2 C. Bohak et al.

some cases the desired tissues can be additionally
expressed using a contrast agent.

The first attempt of visualising volumetric data
was developed in the late 1980s by Levoy (1988).
The paper presents a direct surface rendering
technique for volumetric data, which is briefly
presented in Sect. 1.2.3.2. An in-depth review of
volumetric rendering related work from the be-
ginning until 2007 is presented in Šrámek (2006).
Most notable techniques of that time were:

• Volume Ray Casting (Levoy 1988; Ke and
Chang 1993), which is derived directly from
the rendering equation (Kajiya 1986);

• Splatting (Westover 1991), a technique where
all the elements of the volume are splatted on
the canvas in back to front order as disks with
diametrically varied properties (e.g. colour
and/or transparency) according to normal
distribution;

• Shear Warp (Cameron and Undrill 1992;
Lacroute and Levoy 1994), a technique which
decomposes the viewing transformation into
a 3D shear component parallel to the data
slices, projects the data to form an intermediate
distorted image and finally uses a 2D warp to
create an undistorted final image;

• Texture-Based Rendering (Hibbard and San-
tek 1989), a technique which exploits the func-
tionality of dedicated hardware (later GPUs)
for mapping the textures (in this case slices of
volumetric data) onto parallel planes.

In the following years many improvements
of the above techniques were presented and
the methods were integrated into the end-
user applications presented in the following
subsections. Further development of some
methods have also resulted in special purpose
hardware implementations for achieving real-
time performance. Such example is a family of
Cube products (Bakalash et al. 1992; Pfister et al.
1994; Kanus et al. 1997) designed for real-time
volume data visualisation which in the latest
edition enabled users to interactively visualise
volumes of sizes up to 1283. The development
of custom hardware has ended when support
for general purpose computing (GPGPU) was

brought to the GPUs in 2001. Afterwards, the
visualisation systems were implemented for the
GPU hardware using OpenCL1 or CUDA2 APIs
for computation and OpenGL3 or DirectX4 for
visualisation purposes.

1.1.1 Stand-Alone Visualisation

Applications

With development of GPGPUs the implementa-
tion of newly developed visualisation methods
into an end-user application became more vi-
able and, due to broad access and affordability
of the hardware, visualisation applications could
be used on high-end desktop computers without
the need for dedicated hardware. The selection
of such software products, which are still being
developed and maintained, is presented below.

1.1.1.1 VTK

The Visualisation Toolkit5 – VTK (Schroeder
et al. 2000) is a collection of software tools that
allows development of customised visualisation
applications on top of the implemented visuali-
sation pipeline. While the toolkit is not intended
for end-use it simplifies the development of end-
user application, such as ParaView and 3D Slicer
presented in the following subsections. It is one
of the most wide-spread toolkits used in numer-
ous commercial applications, since it is indepen-
dent of the operating system. Unfortunately, it
is based on an outdated version of the OpenGL
standard (version 2.1), which means that many
features cannot be optimised and the interactive
rendering methods cannot be significantly im-
proved performance-wise. Moreover, the toolkit
does not support any physically-based volumetric
rendering and thus does not offer state-of-the-art
volumetric rendering capabilities.

1https://www.khronos.org/opencl/
2https://www.nvidia.com/cuda/
3https://www.opengl.org/
4http://msdn.microsoft.com/directx
5https://vtk.org/



1 Web-Based 3D Visualisation of Biological and Medical Data 3

Fig. 1.1 ParaView application window displaying sample volumetric data

1.1.1.2 ParaView

Built on top of VTK, ParaView6 (Ahrens et al.
2005) is a general data analysis and visualisation
application used in a variety of research fields
such as engineering, geology, climate science,
astrophysics, etc. The application is open-source
and runs on all major platforms. It is presented
in Fig. 1.1 for a sample dataset. Its main purpose
is to support large-scale datasets (up to terascale)
and to exploit the power of distributed computing.
It is designed as an application framework as well
as an end-user application, and can be modified
by developers for specific use cases. While the
application can be used for visualisation of data
from the medical and biological domains, it does
not offer state-of-the-art volumetric rendering ca-
pabilities since it is built on top of VTK.

1.1.1.3 Voreen and Inviwo

Voreen7 (Meyer-Spradow et al. 2009) is an open
source application development framework for
visualisation of multi-modal volumetric datasets.
It supports GPU accelerated volume rendering
and data analysis and allows users high flexibility

6https://www.paraview.org/
7https://www.uni-muenster.de/Voreen

with the development of custom data analysis
and visualisation workflows. The development of
the framework split into two branches: Voreen
and Invivo8 (Jönsson et al. 2018). While both
current versions offer better volumetric rendering
capabilities implementing ray casting with global
illumination, it is not defined how global illumi-
nation is implemented and none of the application
is using volumetric path tracing or equivalent
state-of-the-art volumetric rendering techniques.
A sample data visualisations using both applica-
tions are presented in Fig. 1.2.

1.1.1.4 3D Slicer

3D Slicer9 (Fedorov et al. 2012) is a visualisation
and analysis software platform for medical image
informatics, image processing and 3D visualisa-
tion. It is an open source cross-platform tool for
physicians, and other researchers connected to
biological and medical domains. The tool sup-
ports plugin development in Python using the
provided API. It is build on top of VTK which
is also the reason why it does not offer any state-
of-the-art volumetric rendering capabilities. It is

8http://www.inviwo.org
9https://www.slicer.org/



4 C. Bohak et al.

Fig. 1.2 Voreen application (left) and Inviwo application (right) displaying sample volumetric data visualisation

Fig. 1.3 3D Slicer application displaying segmented electronic microscopy volumetric data visualisation

broadly accepted analysis tool and has very active
developer community. An example data visuali-
sation of segmented electronic microscopy data
is displayed in Fig. 1.3.

1.1.1.5 SimVascular

An example of very specialised application for
simulation and visualisation of blood flow in ves-
sels SimVascular10 (Updegrove et al. 2017) was
designed for specific purpose: providing a com-
plete pipeline from segmented medical images to
patient specific blood flow simulation, analysis
and visualisation. It is build on top of VTK and

10http://simvascular.github.io/

has same limitations regarding the volumetric
rendering, but offers good composed visualisa-
tion of the vessel data and simulation results. An
example use-case is presented in Fig. 1.4.

1.1.1.6 NeckVeins

A specialised, platform-independent framework,
developed in Java, is intended for fast volume-
to-mesh conversion (Bohak et al. 2014) and indi-
rect visualisation of volumetric data converted to
mesh geometry for the interactive vessels visuali-
sation. The tool supports visualisation of complex
mesh geometry obtained form volume data using
Marching Cubes (Lorensen and Cline 1987) or
MPUI (Ohtake et al. 2003). The application with
sample data is presented in Fig. 1.5.



1 Web-Based 3D Visualisation of Biological and Medical Data 5

Fig. 1.4 SimVacular application displaying sample data visualisation

Fig. 1.5 Neckveins application displaying sample data visualisation



6 C. Bohak et al.

Fig. 1.6 Exposure Render application displaying sample data visualisation

1.1.1.7 Exposure Render

Exposure Render11 (Kroes et al. 2012) is the first
open source physically based volumetric ray trac-
ing renderer for medical domain which combines
volumetric and surface rendering capabilities in
a single solution. The application focuses on in-
creasing the visual realism using light occlusion,
depth of field and realistic lighting. This also has a
positive effect on user perception. The presented
work was basis for development of many com-
mercial products used in clinical domain (e.g.
Cinematic rendering (Eid et al. 2018)). An exam-
ple of rendering output using Exposure Renderer
is presented in Fig. 1.6. The downside is that
the application is platform dependant (Microsoft
Windows only) and requires Nivida CUDA sup-
port, meaning that end-users have to buy the
specific hardware and software.

All the presented applications are open-
sourced and available to users for free of charge.
While VTK and ParaView are developed for very
broad range of use-cases and domains, others
are more specialised for medical use-cases. The
realistic and even hyper-realistic rendering is now
also being used by radiologists (Eid et al. 2018).

11https://graphics.tudelft.nl/exposure-render/

There are also numerous commercial
applications developed for similar purposes (e.g.
Amira,12 MeVisLab,13 and ScanIp14).

While the presented applications are useful for
visualisation of medical and biological volumet-
ric data, they are still a stand-alone applications
where users are limited to their use on the ma-
chine(s) where they are installed. Nowadays, this
problem is mostly tackled by developing web-
based applications which can run on almost any
platform, including tablets and mobile phones
and from any location with adequate internet con-
nection. Users only need the web-browser, in-
ternet connection and the access to the data. In
this book chapter we present such web-based
solutions which are being made possible due to
the fast development of accessibility of hardware
acceleration in the web browsers using WebGL

12https://www.thermofisher.com/si/en/home/industrial/
electron-microscopy/electron-microscopy-instruments-
workflow-solutions/3d-visualization-analysis-software/
amira-life-sciences-biomedical.html
13https://www.mevislab.de/
14https://www.synopsys.com/simpleware/products/
software/scanip.html



1 Web-Based 3D Visualisation of Biological and Medical Data 7

standard.15 With modern graphical APIs for web-
browsers the computational power of the GPUs is
accessible from the web applications allowing the
developers to implement solutions similar to the
stand-alone ones presented above.

In the following sections we first present back-
ground methods. Next we present the web-based
implementations of volume data visualisation in
Sect. 1.3, we discuss their use-cases in Sect. 1.4,
and in the conclusions we present the upsides and
downsides of existing approaches. We give some
pointers for what can be expected in the future and
which directions should be pursued.

1.2 Background

In this section we give a basic background of the
volumetric data, the techniques and the methods
used for their visualisation.

1.2.1 Volumetric Data

Volumetric data is a 3D regular grid representa-
tion (see Fig. 1.7) of a desired object or part of
the object, expressing its specific property. Such
data can be obtained using different techniques as
was already presented in the Introduction section
and thus the data represents different properties.
In most cases the data is scalar data, where in-
dividual element (voxel) represents the property
value at the specific location in the object. In some
cases we can even obtain multiple properties per
element making the data multi-modal (e.g. CT
value and segmentation annotations).

The resolution of the data depends on the
acquisition hardware, the acquisition process and
the technique used, and can exceed the sizes of
20483 elements. Even for a 8-bit precision scalar
data of such resolution, this results in more than
8.5GB of data. While this is not a problem for
a modern workstation systems, where working

15https://www.khronos.org/registry/webgl/specs/latest/2.
0/

Fig. 1.7 Example volumetric data

memory (RAM) reaches 64 or in some cases
even 512GB, it still poses a big challenge for
mobile devices where high-end devices offer up
to 12GB of RAM, which is party already used by
system, leaving hardly enough space for storing
such large volumetric data for processing.

1.2.2 Indirect Volume Rendering

First techniques for visualising volumetric data
were designed so that the data was first con-
verted into more appropriate form and then ren-
dered. Most popular was the transformation into
mesh geometry using different surface extraction
techniques such as already mentioned Marching
Cubes or its derivatives (e.g. Marching tetrahe-
dra (Doi and Koide 1991; Bagley et al. 2016))
or more prominent methods such as multi-level
partition of unity implicits (Ohtake et al. 2003;
Berger et al. 2017).

The advantage of using such methods is the
possibility of using existing hardware for acceler-
ated rendering. The downside, is that such meth-
ods can be usually used only to visualise the
surfaces, which is not always what we want to
achieve. In some cases there is also the need of



8 C. Bohak et al.

visualising translucent/transparent materials with
its non-uniform structure. This is typically not
possible using indirect rendering techniques and
is the main reason for using direct volume render-
ing techniques. An example of indirect rendering
is implemented in NeckVeins and SimVascular
applications (some other applications also offer
such a visualisation option – e.g. 3D Slicer and
ParaView).

1.2.3 Direct Volume Rendering

Direct volume rendering (DVR) takes every sam-
ple value and maps it to opacity and colour. This
is usually done with a so-called transfer function
which defines how the values of the volumetric
data remap to colour and opacity values. The final
image is a projection and composition of these
values for each pixel of the output image. We al-
ready presented basic methods in the Introduction
section. In the following subsections we present
the most common methods used in direct volume
rendering which can be implemented in differ-
ent ways (e.g. using ray casting, splatting, shear
warping or other direct rendering technique).

1.2.3.1 Maximum Intensity Projection

One of the simplest direct rendering methods is
the Maximum intensity projection (MIP) (Wallis
et al. 1989). The method projects the data so that
only maximum values along the selected path is
projected onto the canvas and all the other values
are ignored. The data is projected using desired
projection transformation (either perspective or
orthographic). The main benefit of this method
is that it is fast and can be easily implemented
even for large volumetric data. The downside
on the other hand is the fact that we only see
the maximum values in the data. Sometimes this
might not be good enough for specific use cases.
The method also does not provide any shading
informationwhichmeans that 3D structures in the
data are often hard to recognise without the need
of rotating the data. The method also lacks the
depth perception since all the values are treated
the same regardless of their distance from the user
(Fig. 1.8).

Fig. 1.8 An example of maximum intensity projection

1.2.3.2 ISO Surface Rendering

Extracting the surface from the volumetric data
is what is mostly done in Indirect volumetric
rendering. However, this was also one of the first
DVR methods (Levoy 1988). The method can be
implemented using different techniques the most
common one being ray casting. The implementa-
tion using ray casting sends a ray through every
pixel of the canvas and finds the first value in
the volumetric data which exceeds the specified
threshold. Several researchers have presented the
improvements and different implementations of
this method such as Parker et al. (1998) and Mar-
mitt et al. (2004). The method can be further
extended with surface normal calculation which
are used in shading process, as can be see in an
example in Fig. 1.9.

1.2.3.3 Emission-AbsorptionModel

MIP and ISO surface rendering only use single
value of the volumetric data along the traced path
through the volume for final rendering output
and thus cannot present the transmittive media.
Emission-Absorption Model (Max 1995b) is one
of the most often used method that also supports
the visualisation of transmittive media in the vol-
ume. It is based on the rendering equation (Kajiya
1986) but only uses the emission and absorption
parts, neglecting in- and out-scattering contribu-
tions. This method is very useful for rendering
continuous volumetric data. The data from medi-



1 Web-Based 3D Visualisation of Biological and Medical Data 9

Fig. 1.9 An example of ISO surface rendering

Fig. 1.10 An example of rendering using Emission-
Absorption Model

cal and biological domain fit well in this category
due to the nature of tissue structure. Users can de-
fine different emission and absorption weights for
different value ranges and thus emphasise desired
tissues. While the method can be implemented
for fast computation and gives good insight into
the data due to the absorption, it still lacks good
depth perception due to the lack of phenomena
such as shading and shadows, which can be seen
in Fig. 1.10.

1.2.3.4 Multiple ScatteringModel

Best state-of-the-art volumetric rendering
techniques cover all aspects of the rendering

Fig. 1.11 An example of rendering using Multiple Scat-
tering Model

equation: emission, absorption, in-scattering
and out-scattering. While first attempts were
developed (Kajiya and Von Herzen 1984) even
before the rendering equation was published,
many methods were developed as can be
seen in an overview of early physically based
volumetric rendering approaches (Max 1995a).
The implementation of the rendering equation
obsolete was implemented in many ways, such
as: path-tracing (Kajiya 1986; Lafortune and
Willems 1993), photon-mapping (Jarosz et al.
2008; Bitterli and Jarosz 2017) and Metropolis
light transport simulation (Veach and Guibas
1997; Pauly et al. 2000).

The main problem of the multiple scattering
models is their computational complexity. Most
of them use approximation techniques such as
Monte Carlo integration for calculating rendering
equation integration estimates, which is compu-
tationally heavy. Still there is no implementation
capable of real-time visualisation of a complex
data using affordable hardware. There are some
attempts of implementing interactive incremental
visualisations such as already mentioned Expo-
sure render (Kroes et al. 2012) and Volumet-
ric path tracing framework (Lesar et al. 2018)
presented in one of the following sections. The
state of the art of physically-based volumetric
rendering methods is presented in Novák et al.
(2018a,b) (Fig. 1.11).



10 C. Bohak et al.

Fig. 1.12 An example of visualisation using VTK.js framework

1.3 Web Based Visualisation
Systems

In the introduction section we presented a selec-
tion of stand-alone applications for visualisation
of volumetric data for general or specialised use-
cases. One of the main downsides of these appli-
cation is their platform and hardware dependence.
To overcome this problem several attempts were
made to use the web platform for implemen-
tation of visualisation systems. In this section
we present the selection of web-based visuali-
sation systems for volumetric data. While some
are the reimplementations of the existing stand-
alone systems, other were build on top of general
web-based visualisation systems and some were
designed and developed from scratch.

1.3.1 VTK.js

VTK.js16 – The Visualisation Toolkit developed
in JavaScript, which is a subset of the origi-
nal VTK C++ library and is intended for 3D

16https://kitware.github.io/vtk-js/

graphics, volumetric rendering and visualisation.
It includes several data processing algorithms and
rendering techniques. VTK.js includes hardware
accelerated volume rendering using ray casting
developed in WebGL 1.0, which can be seen in
Fig. 1.12. It also supports combining volumetric
and mesh geometry rendering. The framework
is not intended for end-users but for developers
who can easily transition the application devel-
oped using original VTK framework on to the
web platform. An example of such application is
ParaViewWeb presented in the following section.
Like original VTK, VTK.js is also missing state-
of-the-art volumetric rendering methods. Since it
is developed using WebGL 1.0 standard it does
not exploit more advanced functionalities being
introduced in WebGL 2.0 resulting in lower ren-
dering performance.

1.3.2 ParaViewWeb

Built on top of VTK-js, ParaViewWeb,17 a
JavaScript Library, is not a reimplemntation of
the original ParaView application, but a web

17https://www.paraview.org/web/



1 Web-Based 3D Visualisation of Biological and Medical Data 11

Fig. 1.13 An example application build using ParaViewWeb framework

framework designed for building interactive
scientific visualisations for the web platform.
It extends the functionalities implemented in
VTK.js with overlaidmodules for user interaction
and connection with the original ParaView
application which can provide the visualisation
data and acts as backend for data processing as
well as rendering.

It includes:

• Visualisation components, which is a set of
interactive 2D visualisation tools for exploring
the data including: a field selector, histograms,
and parallel coordinates.

• Interaction support, which is a crucial prop-
erty of all the implemented components and
allows uses to interact with the data using
standard inputs such as mouse, keyboard and
touch input.

• Data access, which supports loading the data
from the online sources using: (1) XHR (XML
http request built into web browsers) for down-
loading any kind of data, (2) WebSockets for
persistent communication with backend sys-

tems (e.g. ParaView server) and (3) Girder18

– a consistent interface to KitWare Girder data
management backend system.

• UIwidgets, which is a collection of interactive
widgets that allows the development of com-
plex interactive UIs for interactive visualisa-
tion parameter settings (e.g. equaliser editor,
light properties, editor, transfer function editor
etc.).

• Rendering viewers, which is a set of ded-
icated viewing components such as: image
viewer, WebGL image compositing viewer,
and WebGL viewer for geometry. While orig-
inally ParaViewWeb was using Three.js19 li-
brary for visualisation purposes, it migrated to
VTK.js.

The authors have provided users/developers
with a collection of example applications for dif-
ferent scientific domains (e.g. CT head sample
visualisation presented in Fig. 1.13) covering va-
riety of use-cases. The presented visualisation

18https://girder.readthedocs.io/en/stable/
19https://threejs.org/



12 C. Bohak et al.

Fig. 1.14 An example visualisation of DICOM volumetric data using Ami.js toolkit

system offers many functionalities for data pro-
cessing, analysis and visualisation, but lacks the
support of modern visualisation standard and im-
plementation of state-of-the-art volumetric ren-
dering techniques. The downside is also the use
of custom dataset format which is not compatible
with other applications.

1.3.3 Ami.js

Ami.js – a Medical Imaging JavaScript Toolkit20

(Rannou et al. 2017; Arbelaiz et al. 2017) includes
2D and 3D visualisation of medical data support-
ing most popular medical imaging formats (e.g.
DICOM, NRRD, NIFTI and MHD). It is build
on top of Three.js and integrates several libraries
for parsing the data from different formats. It
supports the composition of 2D images and 3D
model visualisations in the same view. The toolkit

20https://github.com/FNNDSC/ami

also supports real-time interaction and provides a
set of UI elements for visualisation system setting
(Fig. 1.14).

While Ami.js is a lightweight visualisation
toolkit build on top of Three.js framework it of-
fers additional raymarching volumetric rendering
with predefined transfer functions. Currently it
does not support user-defined transfer functions,
but they can be implemented during the devel-
opment stage. It is not intended as a stand-alone
tool, but as a basis for developing custom visual-
isation systems. It relies on existing libraries for
loading volumetric data. Since it is build on top
of Three.js it does not support the use of WebGL
2.0. Also, the UI is less adaptable than the one
implemented in ParaViewWeb.

Ami.js has been used in several web-based
visualisation systems and was also integrated into
a collaborative web-based real-time neuroimage
visualisation system (Bernal-Rusiel et al. 2017).



1 Web-Based 3D Visualisation of Biological and Medical Data 13

Fig. 1.15 Multiple scattering Monte Carlo path tracing of segmented biomedical microscopy data of mitochondria in
mouse urinary bladder cell

1.3.4 VPT

VPT – Volumetric path tracing21 (Lesar et al.
2018) is a web-based visualisation toolkit
designed for visualisation of volumetric data
supporting different techniques implemented
with support for incremental rendering and
is developed in JavaScript with WebGL 2.0
support. It supports visualisation using MIP, ISO
surface rendering, EAM, single and multiple
scattering Monte Carlo based volumetric path
tracing, which is state-of-the-art web-based
implementation. The path tracing implementation
supports the use of user-defined 2D transfer
functions and heterogeneous data. It was
developed for interactive, real-time visualisation
on mobile and desktop devices. An example
of path traced biomedical microscopy data is
presented in Fig. 1.15.

The visualisation techniques are implemented
incrementally, taking the more complex meth-
ods to converge over multiple sequential frames.

21https://github.com/terier/vpt

While simple techniques (e.g. MIP, ISO surface
rendering and EAM) converge in few frames,
more complex techniques need more time for
converging, depending on the used hardware. The
benefit of such implementation is that the visuali-
sation is fully interactive even with use of com-
plex rendering techniques. Once the user stops
interacting (e.g. moving, rotation or zooming) the
image converges to its final version. The system
is extendable and can also be used as a plug-in in
other visualisation systems, as is presented for the
Med3D case in the following section.

1.3.5 Med3D

Med3D22 (Bohak et al. 2016; Lavrič et al. 2017)
is a lightweight web-based visualisation system
developed for medical use-cases. It is developed
in JavaScript with WebGL 2.0 and implements
deferred rendering pipeline, unlike Three.js and
VTK.js, which allows easy multipass rendering

22https://github.com/UL-FRI-LGM/Med3D



14 C. Bohak et al.

Fig. 1.16 A rendering composed of mesh geometry rendered using Med3D integrated renderer overlaid by maximum
intensity projection rendered using VPT

and composition of several output rendering im-
ages into a seamless final image. This also al-
lows the use of external rendering systems used
in specified rendering pass (Bohak et al. 2019)
as can be seen in Fig. 1.16, where basic mesh
geometry is overlaid with maximum intensity
projection obtained with VPT.

On top of fast and customisable rendering
pipeline the framework offers an intuitive easy-
to-use UI. It also implements the use of arbitrary
input devices, which are handled by the under-
neath system (such as 3D mouse, Leap motion
controller, game-pad, etc.). The framework sup-
ports the use of remote rendering system in a
selected rendering pass of the pipeline (Lavrič
et al. 2018). It supports loading of mesh geometry
data and volumetric data. The volumetric data
can be transformed into mesh geometry using
Marching Cubes surface extraction algorithm for
the user-defined ISO value or sent to volumetric
render plug-in. The framework also implements
two types of annotations: (1) 3D pinned annota-
tions, which can be pinned to a selected region
in 3D space on a mesh geometry and (2) view-
aligned hand-drawn annotations which can be

drawn on top of the current camera view. Both
types of annotation can be seen in Fig. 1.17.

The framework was used for web-based vas-
cular flow simulation visualisation (Oblak et al.
2018) and medical volumetric data visualisation.
It offers remote user collaboration (Lavrič et al.
2017), where a user can share his current scene
with other users. Collaborative functionality in-
cludes:

• data sharing, which allows users to share their
own data (or data already stored on the server)
with other users;

• annotation sharing, where a user can decide
which annotations to share with other users (it
works for 3D pinned as well as view-aligned
annotations);

• camera view sharing, where a user can share
his view of the data, which is very important
when discussing the structure of the data or
possible abnormalities;

• visualisation properties sharing, where
a user can share their rendering setup
(the selected rendering technique and its
properties);



1 Web-Based 3D Visualisation of Biological and Medical Data 15

Fig. 1.17 Collaborative visualisation with annotations in Med3D visualisation framework

• interactive chat, where users can chat using
text messages.

While the framework is very extendable and
offers the use in many use-cases it also sup-
ports the integration with other rendering libraries
(such as VPT) for providing state-of-the-art vol-
umetric rendering on the web platform.

1.4 Discussion

Majority of the presented solutions are general
purpose visualisation frameworks or toolkits, not
suited for end-use. There are example applica-
tions available for specific use-cases with Par-
aViewWeb, Ami.js and Med3D, however the out-
of-the-box solutions would increase the overall
acceptance by the communities. The biggest com-
munity is behind the ParaViewWeb and VTK.js,
due to their long lasting history in form of stand-
alone application. On the other hand these are
the solutions that do not offer state-of-the-art
volumetric rendering implementations.

Most off the presented solutions support some
kind of composed visualisations using mesh ge-
ometry and volumetric input data (apart from
VPT which is designed for volume rendering
only). VPT is the only solution offering a state-
of-the-art physically based volumetric rendering
support, which is more common in dedicated
systems (mostly the commercial ones).

While the web platform offers great basis
for implementation of collaborative visualisation

environments only two solutions (Med3D and
to some extend Ami.js) have these capabilities
integrated into the system. Since visualisation
in medical domain is often used for diagnostic
purposes where more than single physician is
involved, this poses a great advantage in the
real-life scenarios (e.g. getting second opinion
at the distance or use in distance learning
environments).

Even though the web platform is well accepted
in the everyday life, there are still a lot of op-
portunities where it can be used in professional
scenarios, such as visualisation of medical and
biological data. Such solutions allow users to
access and visualise the data at the distance on
the low-end laptops or even on mobile devices.

1.5 Conclusions

In this book chapter we have presented a short
overview of current open source stand-alone visu-
alisation systems used for medical and biological
visualisations and have presented the overview
of comparable web-based solutions. While some
web-based solutions are reimplementations of
the presented stand-alone solutions with a subset
of features (e.g. VTK.js and ParaViewWeb),
others were developed using existing web-based
libraries and additionally adapted for medical
domain specifics (Ami.js) or are developed
from scratch and designed for such visualisation
scenarios (VPT and Med3D). The later are also
the only solutions that make use of the WebGL



16 C. Bohak et al.

2.0 standard for best GPU performance gain.
Only one solution was developed with extensive
support for collaborative scenarios in its core
(Med3D).

The hardware accelerated rendering has
made a new leap with Khronos’ Vulkan,23

Apple’s Metal24 and Microsoft’s DirectX 12
graphics APIs. While this APIs offer even better
exploitation of the GPUs processing power,
they are not available for the web platform.
This lead to the development of a new API by
W3C group, called WebGPU. It is based on the
above mentioned APIs for native development.
This API will allow developers to create even
more optimised implementations of visualisation
systems making web-based real-time physically
based volumetric rendering a step closer to the
practical use.

References

Ahrens J, Geveci B, Law C (2005) 36 – paraview: an
end-user tool for large-data visualization. In: Hansen
CD, Johnson CR (eds) Visualization handbook.
Butterworth-Heinemann, Burlington, pp 717–731.
https://doi.org/10.1016/B978-012387582-2/50038-1

Arbelaiz A, Moreno A, Kabongo L, García-Alonso
A (2017) Volume visualization tools for medical
applications in ubiquitous platforms. In: ehealth
360◦, pp 443–450. https://www.vicomtech.org/
en/rdi-tangible/publications/publication/volume-
visualization-tools-for-medical-applications-in-
ubiquitous-platforms

Bagley B, Sastry SP, Whitaker RT (2016) A marching-
tetrahedra algorithm for feature-preserving meshing of
piecewise-smooth implicit surfaces. Proc Eng 163:162–
174. (25th International Meshing Roundtable). https://
doi.org/10.1016/j.proeng.2016.11.042

Bakalash R, Kaufman AE, Pacheco R, Pfister H (1992) An
extended volume visualization system for arbitrary par-
allel projection. In: Eurographics workshop on graphics
hardware, pp 64–69

Berger M, Tagliasacchi A, Seversky LM, Alliez P, Guen-
nebaud G, Levine JA, … Silva CT (2017) A survey of
surface reconstruction from point clouds. In: Comput
Graph Forum 36:301–329

Bernal-Rusiel JL, Rannou N, Gollub RL, Pieper S, Mur-
phy S, Robertson R, … Pienaar R (2017) Reusable
client-side javascript modules for immersive web-

23https://www.khronos.org/vulkan/
24https://developer.apple.com/metal/

based real-time collaborative neuroimage visualiza-
tion. Front Neuroinform 11:32. https://doi.org/10.3389/
fninf.2017.00032

Bitterli B, Jarosz W (2017) Beyond points and beams:
higher-dimensional photon samples for volumetric light
transport. ACM Trans Graph (Proc SIGGRAPH) 36(4).
https://doi.org/10.1145/3072959.3073698

Bohak C, Sodja A, Marolt M, Mitrovič U, Pernuš F (2014)
Fast segmentation, conversion and rendering of volu-
metric data using GPU. In: Iwssip 2014: proceedings,
pp 239–242

Bohak C, Lavrič P, Marolt M (2016) Remote interaction in
web-based medical visual application. In: Proceedings
of the 19th international multi conference information
society – is 2016, 11 oct 2016, Ljubljana, volume e,
pp 5–8

Bohak C, Aleksandrov J, Marolt M (2019) Collabora-
tive web-based merged volumetric and mesh rendering
framework. In: Proceedings of augmented reality, vir-
tual reality, and computer graphics 2019 (To appear)

Briggman KL, Bock DD (2012) Volume electron mi-
croscopy for neuronal circuit reconstruction. Curr Opin
Neurobiol 22(1):154–161. (Neurotechnology). https://
doi.org/10.1016/j.conb.2011.10.022

Cameron GG, Undrill PE (1992) Rendering volumetric
medical image data on a simd-architecture computer.
In: Proceedings of the third eurographics workshop on
rendering, Bristol, pp 135–145

Crawford CR, King KF (1990) Computed tomography
scanning with simultaneous patient translation. Med
Phys 17(6):967–982. https://doi.org/10.1118/1.596464

Doi A, Koide A (1991) An efficient method of tri-
angulating equi-valued surfaces by using tetrahedral
cells. In: Ieice transactions of information and systems,
vol E74-D

Eid M, De Cecco CN, Nance JW, Caruso D, Albrecht
MH, Spandorfer AJ, De Santis D, Varga-Szemes
A, Schoepf UJ (2018) Cinematic rendering in CT:
a novel, lifelike 3D visualization technique. Am J
Roentgenol 209(2):370–379. https://doi.org/10.2214/
AJR.17.17850

Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-
Robin J-C, Pujol S, … Kikinis R (2012) 3D Slicer
as an image computing platform for the quantitative
imaging network. Magn Reson Imaging 30(9):1323–
1341. https://doi.org/10.1016/j.mri.2012.05.001

Hibbard W, Santek D (1989) Interactivity is the key. In:
Proceedings of the 1989 chapel hill workshop on vol-
ume visualization, NewYork, pp 39–43. https://doi.org/
10.1145/329129.329356

Jarosz W, Zwicker M, Jensen HW (2008) The beam radi-
ance estimate for volumetric photon mapping. Comput
Graph Forum (Proc Eurograph) 27(2):557–566. https://
doi.org/10.1111/j.1467-8659.2008.01153.x

Jönsson D, Steneteg P, Sundén E, Englund R, Kottravel S,
Falk M, … Ropinski T (2018) Inviwo – a visualization
system with usage abstraction levels. arXiv, Retrieved
from http://arxiv.org/abs/1811.12517

Kajiya JT (1986) The rendering equation. SIGGRAPH
Comput Graph 20(4):143–150. https://doi.org/10.1145/
15886.15902



1 Web-Based 3D Visualisation of Biological and Medical Data 17

Kajiya JT, Von Herzen BP (1984) Ray tracing volume
densities. In: Acm siggraph computer graphics, vol 18,
pp 165–174

Kalender WA, Seissler W, Klotz E, Vock P (1990)
Spiral volumetric ct with single-breath-hold tech-
nique, continuous transport, and continuous scanner
rotation. Radiology 176(1):181–183. https://doi.org/10.
1148/radiology.176.1.2353088

Kanus U, Meißner M, Straßer W, Pfister, H, Kaufman
A, Amerson R, … Snider G (1997) Implementations
of cube-4 on the teramac custom computing machine.
Comput Graph 21(2):199–208. https://doi.org/10.1016/
S0097-8493(96)00083-0

Ke H-R, Chang R-C (1993) Sample buffer: a progressive
refinement ray-casting algorithm for volume rendering.
Comput Graph 17(3):277–283. https://doi.org/10.1016/
0097-8493(93)90076-L

Krakow D, Williams III J, Poehl M, Rimoin D, Platt L
(2003) Use of three-dimensional ultrasound imaging
in the diagnosis of prenatal-onset skeletal dysplasias.
Ultrasound Obstet Gynecol 21(5):467–472. https://doi.
org/10.1002/uog.111

Kroes T, Post FH, Botha CP (2012) Exposure render: an in-
teractive photo-realistic volume rendering framework.
PLOS ONE 7:1–10. https://doi.org/10.1371/journal.
pone.0038586

Lacroute P, LevoyM (1994) Fast volume rendering using a
shear-warp factorization of the viewing transformation.
In: Proceedings of the 21st annual conference on com-
puter graphics and interactive techniques, New York,
pp 451–458. https://doi.org/10.1145/192161.192283

Lafortune EP, Willems YD (1993). Bi-directional path
tracing. In: Proceedings of third international confer-
ence on computational graphics and visualization tech-
niques (compugraphics’93), Alvor, pp 145–153

Lavrič P, Bohak C, Marolt M (2017) Collaborative view-
aligned annotations in web-based 3d medical data vi-
sualization. In: Mipro 2017: 40th jubilee international
convention, Proceedings, Opatija, 22–26 May 2017,
pp 276–280

Lavrič P, Bohak C, Marolt M (2018) Vulkan abstrac-
tion layer for large data remote rendering system. In:
Proceedings of augmented reality, virtual reality, and
computer graphics 2018, pp 480–488

Lesar Ž, Bohak C, Marolt M (2018) Real-time interactive
platform-agnostic volumetric path tracing in WebGL
2.0. In: Web3d 2018: proceedings, pp 1–7

Levoy M (1988) Display of surfaces from volume data.
IEEE Comput Graph Appl 8(3):29–37. https://doi.org/
10.1109/38.511

Lorensen WE, Cline HE (1987) Marching cubes: a high
resolution 3d surface construction algorithm. SIG-
GRAPHComput Graph 21(4):163–169. https://doi.org/
10.1145/37402.37422

Marmitt G, Kleer A, Wald I, Friedrich H, Slusallek P
(2004) Fast and accurate ray-voxel intersection tech-
niques for iso-surface ray tracing. In: Proceedings
of the vision, modeling, and visualization confer-
ence 2004 (VMV 2004), Stanford, 16–18 Nov 2004,
pp 429–435

Max N (1995a) Efficient light propagation for multiple
anisotropic volume scattering. In: Sakas G, Müller S,
Shirley P (eds) Photorealistic rendering techniques.
Springer, Berlin/Heidelberg, pp 87–104

Max N (1995b) Optical models for direct volume ren-
dering. IEEE Trans Vis Comput Graph 1(2):99–108.
https://doi.org/10.1109/2945.468400

Meyer-Spradow J, Ropinski T, Mensmann J, Hinrichs K
(2009) Voreen: a rapid-prototyping environment for
ray-casting-based volume visualizations. IEEE Comput
Graph Appl 29(6):6–13. https://doi.org/10.1109/MCG.
2009.130

Novák J, Georgiev I, Hanika J, Jarosz W (2018a) Monte
Carlo methods for volumetric light transport simula-
tion. Comput Graph Forum (Proc Eurographics – State
of the Art Reports) 37(2). https://doi.org/10.1111/cgf.
13383

Novák J, Georgiev I, Hanika J, Křivánek J, Jarosz W
(2018b) Monte Carlo methods for physically based
volume rendering. In: ACM siggraph courses. https://
doi.org/10.1145/3214834.3214880

Oblak R, Bohak C, Marolt M (2018) Web-based vascu-
lar flow simulation visualization with lossy data com-
pression for fast transmission. In: Proceedings of aug-
mented reality, virtual reality, and computer graphics
2018, pp 3–17

Ohtake Y, Belyaev A, Alexa M, Alexa M, Turk G, Sei-
del H-P (2003) Multi-level partition of unity implicits.
ACM Trans Graph 22(3):463–470. https://doi.org/10.
1145/882262.882293

Ollinger JM, Fessler JA (1997) Positron-emission tomog-
raphy. IEEE Signal Process Mag 14(1):43–55. https://
doi.org/10.1109/79.560323

Parker S, Shirley P, Livnat Y, Hansen C, Sloan P-P (1998)
Interactive ray tracing for isosurface rendering. In: Pro-
ceedings visualization’98 (cat. no.98cb36276), pp 233–
238. https://doi.org/10.1109/VISUAL.1998.745713

Pauly M, Kollig T, Keller A (2000) Metropolis light trans-
port for participating media. In: Rendering techniques
2000. Springer, Vienna, pp 11–22

Pfister H, Kaufman A, Chiueh T (1994) Cube-3: a real-
time architecture for high-resolution volume visualiza-
tion. In: Proceedings of the 1994 symposium on volume
visualization, pp 75–83

Rannou N, Bernal-Rusiel JL, Haehn D, Grant PE, Pienaar
R (2017) Medical imaging in the browser with the
a∗ medical imaging (ami) toolkit. In: Proceedings of
ESMRMB annual scientific meeting 2017

Rinck PA, Muller R, Peterson S (1990) An introduction
to magnetic resonance in medicine: the basic textbook
of the European workshop on magnetic resonance in
medicine

Schroeder WJ, Avila LS, Hoffman W (2000) Visualiz-
ing with VTK: a tutorial. IEEE Comput Graph Appl
20(5):20–27. https://doi.org/10.1109/38.865875

Šrámek M (2006) 20 years of volume rendering. In: Pro-
ceedings of the 22nd spring conference on computer
graphics, pp 7–16. https://doi.org/10.1145/2602161.
2602162



18 C. Bohak et al.

Updegrove A, Wilson NM, Merkow J, Lan H, Mars-
den AL, Shadden SC (2017) Simvascular: an open
source pipeline for cardiovascular simulation. Ann
Biomed Eng 45(3):525–541. https://doi.org/10.1007/
s10439-016-1762-8

Veach E, Guibas LJ (1997) Metropolis light transport. In:
Proceedings of the 24th annual conference on computer
graphics and interactive techniques, pp 65–76

Wallis JW, Miller TR, Lerner CA, Kleerup EC (1989)
Three-dimensional display in nuclear medicine. IEEE
Trans Med Imaging 8(4):297–230. https://doi.org/10.
1109/42.41482

Westover LA (1991) Splatting: a parallel, feed-forward
volume rendering algorithm. Unpublished doctoral dis-
sertation, University of North Carolina at Chapel Hill,
Chapel Hill (UMI Order No. GAX92-08005)


