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A B S T R A C T

Automatic segmentation of intracellular compartments is a powerful technique, which provides quantitative
data about presence, spatial distribution, structure and consequently the function of cells. With the recent
development of high throughput volumetric data acquisition techniques in electron microscopy (EM), manual
segmentation is becoming a major bottleneck of the process. To aid the cell research, we propose a technique
for automatic segmentation of mitochondria and endolysosomes obtained from urinary bladder urothelial cells
by the dual beam EM technique. We present a novel publicly available volumetric EM dataset – the first
of urothelial cells, evaluate several state-of-the-art segmentation methods on the new dataset and present a
novel segmentation pipeline, which is based on supervised deep learning and includes mechanisms that reduce
the impact of dependencies in the input data, artefacts and annotation errors. We show that our approach
outperforms the compared methods on the proposed dataset.

1. Introduction

Eukaryotic cells are divided into numerous membrane enclosed
compartments, or organelles [1]. Mitochondria produce most of the
ATP in the cell, but they are also involved in many other cell func-
tions [2]. Endosomes are intracellular compartments of endocytotic
pathway that transport material from the plasma membrane to lyso-
somes [1]. Since degradation of endocytosed material takes place in
late endosomes and lysosomes, we use thereafter the combined term
‘endolysosomes’. All these compartments are highly dynamic and plas-
tic, constantly undergoing fusions and fissions, and moving within
the cell, which reflect physiologic states and/or differentiation stages
of a cell. Since these processes are important for understanding of
diseases at the subcellular level [3,4], a robust pipelines for automatic
segmentation of intracellular compartments are needed.

In the urothelium, an epithelium covering urinary bladder, cells
undergo a unique differentiation from the basal to the superficial
cell layer [5]. Normal superficial cells, called umbrella cells, synthe-
size large amounts of specialized apical plasma membrane that forms
a blood–urine permeability barrier [6]. Numerous intracellular com-
partments, including mitochondria and endolysosomes, contribute to
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maintaining the barrier [5,7–9]. Various diseases of the urinary bladder
compromise the barrier [10]. Our studies have shown that bladder
cancers or various types of cystitis alter the synthesis, transport and
degradation of the apical plasma membrane [11–13], but changes in
the intracellular compartments in large cell volumes have not yet been
studied.

Most intracellular compartments are below or at the resolution
limit of light microscopes, therefore their ultrastructural studies are
only feasible by electron microscopy (EM). To study three-dimensional
(3D) ultrastructure of intracellular compartments and their spatial and
temporal distribution at nanometre resolution, two EM techniques are
particularly suitable [14]. Electron tomography, which is performed
with the transmission electron microscope, has voxel dimensions 1 –
10 nm; however the volumes are limited to ≈ 1 μm3, which represent
only a very limited part of a cell (volume of a single umbrella cell
is approximately 50.000 μm3) [15,16]. On the other hand, dual beam
microscopy, which combines a focused ion beam and scanning electron
microscope (FIB-SEM), enables voxel dimensions 10 nm − 1 μm, but
volumes of material studied are in the range ≈ 1 – 50 μm3 [16,17]. The
FIB-SEM obtains a stack of serial sections by repeated milling of thin
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layers of material by a focused ion beam and acquiring of micrographs
of the exposed inner surfaces. The result is a large set of volumetric
data on intracellular compartments, which needs to be segmented in
order to understand it in a context of cell function.

The manual segmentation of various intracellular compartments
of interest on hundreds or thousands of micrographs is very time
consuming and prone to bias. Therefore, research on methods for
automatic segmentation of microscopy data has recently flourished. As
in other image analysis fields, many recent works are based on deep
convolutional neural networks (CNNs), which are in most of the tasks
outperforming the traditional approaches [18]. In 2015 Ronneberger
et al. [19] proposed an architecture called the U-Net, designed specifi-
cally for two-dimensional (2D) medical image segmentation. The main
idea of the U-Net is to incorporate local and larger contextual informa-
tion from the input image. Based on this concept, many architectures
were proposed for volumetric data. Çiçek et al. [20] proposed the 3D
U-Net architecture, Milletari et al. [21] proposed the V-Net architecture
as an extension to the U-Net layout. At almost the same time, Kamnitsas
et al. [22] presented an architecture named DeepMedic, which is also
a 3D CNN, but has a dual pathway architecture that processes multi-
ple scale inputs simultaneously. Li et al. [23] presented a volumetric
architecture called HighRes3DNet which uses dilated convolutions.

All of the described architectures are achieving state-of-the-art re-
sults in different medical domains. As stated in the review paper [18]
which revised 380 deep learning papers from the medical image analy-
sis field, the CNNs are currently the top performing approach for many
tasks, but the exact architecture is not necessarily the most important
determinant in getting a good solution. Authors claim that it is the
expert knowledge about the task that can provide advantages, since
many researches use the exact same architectures with the same type of
networks, but have widely varying results. In the following subsection
we describe methods that have been developed specifically for the
segmentation of mitochondria and are thus related to our research.

1.1. Mitochondria segmentation

The field of automated segmentation of volumetric EM data has
been largely driven by connectomics, the effort to reconstruct neural
wiring diagrams, where the CNNs for the segmentation of cellular
boundaries were proposed very early [24,25]. Successful approaches
have been proposed also for segmentation of synapses which is a similar
task to mitochondria segmentation [26,27].

On the basis of related work, several methods have been proposed
that are specifically designed for automatic segmentation of mitochon-
dria. Liu et al. [28] presented a method for segmentation from SEM
images based on the Mask R-CNN [29]. Their main contribution is
in the post-processing of segmentation masks obtained with the deep
network. The post-processing is done in three steps: a morphological
opening operation is first used to eliminate the small regions and
smooth the large regions, a multi-layer (3D) information fusion al-
gorithm is then used to eliminate the mitochondria shorter than a
set threshold and finally an algorithm is employed to improve the
consistency in the adjacent layers. Combining a deep CNN with post-
processing was also proposed by Oztel et al. [30]. They have developed
their own CNN architecture where training is done using 32 × 32 × 1
non-overlapping blocks extracted from the training volume in electron
microscopy volumes. Blocks are assigned a ground truth label based
on the percentage of pixels from mitochondria and non-mitochondria
classes. The last fully connected layer of the network outputs two
channel mitochondria versus non-mitochondria class scores, that are
then converted to binary classification. They also present three steps
of post-processing: 2D spurious detection filtering, boundary refine-
ment, and 3D filtering. All of the described approaches are showing
promising results but contrary to our method they do not use 3D spatial
information in network training.

While all of the described approaches use 2D convolutions, Haberl
et al. [31] presented a 3D convolution based approach called the
CDeep3M. It is a ready-to-use volumetric segmentation solution em-
ploying a cloud-based deep CNN called the DeepEM3D [32]. Results of
mitochondria segmentation with DeepEM3D do not outperform state-
of-the-art results, however the approach is interesting because it is very
robust and achieves good results on different target classes (nuclei,
mitochondria, synaptic vesicles, membrane).

Because of small training datasets, a new type of methods based
on domain adaption algorithms have arisen. By now, they do not
outperform the existing algorithms for mitochondria segmentation, but
results are promising. Bermudez-Chacon et al. [33] proposed domain-
adaptive two-stream U-Net [33]. This approach use training data from
the domain with plenty of training data to improve the segmentation
on another domain with less training data. They propose a method with
dual U-Net architecture where they use one stream for the source do-
main and another one for the target domain. The streams are connected
so that they share some of the weights. In [34], authors propose the
Y-Net architecture which adapts the classical encoder–decoder layout
with an added reconstruction decoder in order to align the source and
target encoder features. They tested their work transferring knowledge
from isotropic FIB-SEM to anisotropic TEM volumes as well as from
brain EM images to HeLa cells.

Public datasets for evaluation of mitochondria segmentation are
scarce. The most widely adopted datasets were developed by Luc-
chi [35] and Xiao [36]. Currently, the best approach according to
evaluations on Lucchi’s dataset is the supervoxel based method of the
same authors [37]. They used a nonlinear RBF-SVM classifier to seg-
ment mitochondria in 3D and 2D data. It is one of the rare approaches
which does not rely on the CNNs. The best approach according to
evaluations on the Xiao’s dataset is the deep learning approach which
exploits 3D spatial information proposed by the same authors [36].
They used a variant of the 3D U-Net with residual blocks. To solve the
problem of vanishing gradients during training, they injected auxiliary
classifier layers into the hidden layers.

Segmentation of mitochondria was addressed also for fluorescence
microscopy data where the target structures were tagged with the
use of fluorescence contrasting. Some of the most recent advances
are presented in [38], where iterative deep learning workflows allow
for generation of initial high-quality three-dimensional segmentations,
which are then used as annotations for training deep learning models.

1.2. The aim

The motivation for the work presented in this paper is to further the
research on segmentation of intracellular compartments. We propose a
method for automatic segmentation of two types of intracellular com-
partments — mitochondria and endolysosomes. We propose a novel,
publicly available urothelial FIB-SEM dataset (the UroCell dataset),
which will enlarge the variety of available datasets with annotated
intracellular compartments.

The new dataset is to our knowledge the first public dataset for seg-
mentation of mitochondria and endolysosomes which is not obtained
from brain tissue, as well as the first isotropic dataset with labelled
endolysosomes.

We evaluate several state-of-the-art approaches to medical data
segmentation on our dataset, and propose a new CNN-based segmenta-
tion pipeline, which achieves state-of-the-art results for mitochondria
and endolysosomes segmentation. In our approach, we introduce tech-
niques to increase the robustness of segmentation by reducing the
problem of class imbalance, reducing the impact of varying bright-
ness/contrast and image quality in different parts of the dataset and
reducing the impact of unreliable annotations. By making the segmen-
tation pipeline more robust, we demonstrate that our approach can also
yield state-of-the-art results on other public isotropic dataset as well.
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Fig. 1. A three-dimensional cell sub-volume from the UroCell dataset and the corresponding manual annotations. The size of the sub-volume is 256 × 256 × 256 voxels. (a) Raw
sub-volume. (b) Manual annotations of intracellular compartments shown on the sub-volume. Mitochondria are shown in blue, endolysosomes in orange. (c) Manual annotations
only, shown with default surface smoothing in the Slicer3D Segment Editor [39].

2. Materials and methods

In this section, we describe the novel UroCell dataset, and outline
our proposed method for segmentation of intracellular compartments.

2.1. The UroCell dataset

We obtained tissue samples from urinary bladders of 6–8 weeks old
healthy male C57BL/6J mice in accordance with European guidelines
and Slovenian legislation. The experiments were approved by the Vet-
erinary Administration of the Slovenian Ministry of Agriculture and
Forestry (permit no. U34401-6/2015/4) in compliance with the Animal
Health Protection Act and the Instructions for Granting Permits for
Animal Experimentation for Scientific Purposes. The volumetric data
were obtained from the tissue with a FIB-SEM dual beam electron
microscope.

Briefly, urinary bladders were isolated and immediately cryo-fixed
with a CPC device (Leica), freeze-substituted in AFS (Leica) with 2%
OsO4 in acetone, and embedded in Epon as described previously [40].
To locate the region of interest, which were terminally differentiated
cells of the bladder epithelium (umbrella cells), Epon ultrathin sections
were inspected with the Philips CM100 transmission electron micro-
scope and the location of cells was correlated with their location in the
epon block. The epon block was then taken into a dual beam Helios
NanoLab 650 microscope (FEI) and the umbrella cell was sectioned
with the FIB. The dimensions of each voxel were x = 5.49 nm, y =
5.49 nm, z = 15.0 nm. We binned x and y pixels by 3 to obtain an
almost isotropic resolution in all three directions which resulted in
1056 serial sections of 1366 × 1180 pixels. The voxel dimensions in
the dataset are thus approximately x = 16 nm, y = 16 nm, z = 15 nm.

We manually annotated intracellular compartments in 5
sub-volumes of size 256 × 256 × 256 voxels. An example of a sub-
volume and related annotations is shown in Fig. 1.

To increase variability, the selected annotated sub-volumes come
from different parts of the entire volume and are therefore diverse
in terms of contrast, brightness, artefacts and content. An example is
shown in Fig. 2. We believe that such diversification of annotated sub-
volumes is more appropriate to train and evaluate machine learning
approaches (training and test datasets contain entirely different sub-
volumes); namely in most of the other existing mitochondria datasets
(see Section 3), one volume is split into two parts (the training and the
test set), which may consequently be quite similar, as the last slice of
the training set is a direct neighbour of the first slice of the test set.

We manually labelled two classes of intracellular compartments
in all sub-volumes: mitochondria and endolysosomes. All labels were

revised by a cell biologist with expertise in urothelial biology. Cur-
rently, in each volume there are from 15 to 85 mitochondria and
approximately 10 endolysosomes. For annotation, we used the open
source Slicer3D software [39]. With this paper, we make the UroCell
dataset publicly available on the following link: https://github.com/
MancaZerovnikMekuc/UroCell under the CC-BY-NC-SA 4.0 licence.1

2.2. The segmentation pipeline

To automatically segment mitochondria and endolysosomes, we
propose a novel segmentation pipeline based on an existing CNN archi-
tecture. As both target classes are quite similar in texture, but also quite
unbalanced (there are many more mitochondria than endolysosomes),
we propose to use transfer learning to transition from the problem of
segmenting any of the two classes from the background to the problem
of segmenting each class separately. Thus, we wish to make use of the
available information of the larger mitochondria class to improve the
segmentation of endolysosomes.

The proposed segmentation pipeline is shown in Fig. 3, each step is
described in more details in the following subsections. We first enhance
the contrast of the input volumes (Section 2.3). The contrast enhanced
volumes are then passed to the upper branch of the pipeline where
we train a convolutional neural network model as a binary classifier
between all compartments and the background. We then transfer all
of the learned weights, except for the last layer, to the lower branch,
where we train a three-class CNN classifier (mitochondria, endolyso-
somes, background), and thus adapt the weights of the new three-class
model. We outline the architecture of the CNN in Section 2.5. To make
the model more robust, we also perform balanced window selection
and data augmentation before training, as described in Section 2.4.

2.3. Contrast enhancement

Although convolutional neural networks are well capable of learn-
ing to recognize the target classes in images and volumes that have
varying brightness and contrast, it still helps to adjust for the difference
before learning due to the relatively small sizes of the FIB-SEM datasets.
We thus employ a contrast enhancement algorithm to preprocess the
data as a first step in our pipeline. The contrast enhancement algo-
rithm emphasizes the target intracellular compartments and their inner
structure, which together with their shape represents the main feature
that helps to distinguish mitochondria from the endolysosomes and also
from other intracellular compartments.

1 https://creativecommons.org/licences/by-nc-sa/4.0/legalcode.
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Fig. 2. Slices from two sub-volumes of the UroCell dataset. The slices (a) and (b) are from one sub-volume and the slices (c) and (d) are from the other. Differences in content,
brightness, contrast and artefacts are clearly visible.

Fig. 3. The proposed pipeline, which consists of two branches and transfer of weights from the upper to lower branch.

Our contrast enhancement approach is based on the adaptive
gamma correction with weighting distribution (AGCWD) method [41],
which represents an efficient way to enhance the contrast in images. An
example of how AGCWD improves contrast is shown in Fig. 4, where 4a
and 4d represent original images, and 4b and 4e their enhanced version
obtained by the AGCWD method.

Intracellular compartments are already much more clearly visible in
the AGCWD enhanced images, however if we inspect the histograms,
we can observe that their range is not optimal because of the back-
ground and outlier (very bright/dark) voxels. Therefore, we propose
an extended AGCWD method that ignores outliers and better rescales
the histogram and thus improves the contrast.

The original AGCWD method is as follows. First, the histogram of
input intensities is calculated:

pdf(𝑙) = 𝑛𝑙∕𝑛total, (1)

where 𝑛𝑙 is the number of input values with intensity 𝑙 and 𝑛total the
total number of input values. As in the original paper, we can view the
histogram as a probability density function of input intensities and thus
denote it as pdf(𝑙).

The weighted probability density function pdf𝑤(𝑙) is then defined
as:

pdf𝑤(𝑙) = pdfmax

(

pdf(𝑙) − pdfmin
pdfmax −pdfmin

)𝛼
, (2)

where 𝛼 is an adjustable parameter, pdfmax the maximum histogram
value and pdfmin the minimum histogram value. The cumulative distri-
bution function, cdf𝑤(𝑙) is formulated as:

cdf𝑤(𝑙) =
∑𝑙

𝑖=0 pdf𝑤(𝑖)
∑𝑙max

𝑙=0 pdf𝑤(𝑙)
. (3)

Finally, the contrast enhanced intensity mapping 𝑇 (𝑙) is calculated as:

𝑇 (𝑙) = 𝑙max(𝑙∕𝑙max)1−cdf𝑤(𝑙), (4)

where 𝑙𝑚𝑎𝑥 is the maximum intensity of the input and 𝑙 the intensity of
each voxel in the input.

The AGCWD method is susceptible to outliers. Very bright or dark
voxels skew the histogram distribution and lead to sub-optimal con-
trasts, as show in Figs. 4b and 4e. In order to reduce the effect of
outliers, we propose the following simple modification of the algorithm.
The modification only considers intensities within the range of 3.5
standard deviations of all intensities. Such range was chosen, because
intensities of the target compartments fall well into it, and thus only
parts of the volume that contain regions of less interest will be pushed
to the edges of the histogram. If we thus consider 𝛼 and 𝛽 to be
the lower and upper values of intensities that fall within the ±3.5
standard deviations (we can find them easily from the cumulative
distribution function of AGCWD corrected intensities), we extend the
final histogram as:

𝑇𝑒(𝑙) =
cdf(𝑙) − cdf(𝛼)
cdf(𝛽) − cdf(𝛼)

𝑙max. (5)

Values that fall outside of the range of allowable intensities are set to
the limits of the range.

The final enhanced slices are shown in Figs. 4c and 4f. They show a
much clearer view of the cell structure. We use such enhanced volumes
for training, validation and testing of deep learning methods.

2.4. Window selection and data augmentation

At each training iteration, we crop a window corresponding to
the target network’s receptive field from the input volume. Because
of unbalanced distribution of both target classes and the background,
we choose the location of the window  according to the following
probabilities:

𝑃 (𝑊 ) =

⎧

⎪

⎨

⎪

⎩

0.4 if ∃𝑣 ∈  , such that 𝑣 ∈ 
0.4 if ∃𝑣 ∈  , such that 𝑣 ∈ 
0.2 if ∃𝑣 ∈  , such that 𝑣 ∈ ,

(6)

where 𝑣 is a voxel and , , sets of voxels labelled as mitochondria,
endolysosomes, and background respectively. Such rebalancing boosts
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Fig. 4. Examples of contrast enhanced images. (a) and (d) are the original images, (b) and (e) are enhanced using the AGCWD method, (c) and (f) are enhanced using the extended
AGCWD method.

Fig. 5. The HighRes3DZMNet architecture.

both target classes with respect to the background, which is prevalent

in the volumes.

As the size of our training dataset is small, increasing the variability

of input data is crucial for robust segmentation. To augment the input
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data, we perform random flipping of input data over all three dimen-
sions, apply elastic deformations, as used in [21], and random shrinking
or expanding of the input data size by up to 10%. All augmentation
actions are performed on the fly on 3D windows which we crop from
the input volume.

2.5. The proposed network architecture

For segmentation in both branches of the pipeline, we propose a
slight modification of the HighRes3DNet [23], which we call High-
Res3DZMNet. The authors of the HighRes3DNet architecture initially
proposed the architecture for efficient segmentation of volumetric data
and they validated it on a brain parcellation task. To incorporate
larger contextual and local information, the architecture uses dilated
convolutions. The network consists of 20 layers of convolutions. The
first seven layers involve 3 × 3 × 3 convolutions, they are followed by
six layers where the kernels are dilated by 2, and six layers where the
kernels are dilated by 4. At the end there is a gathering convolutional
layer with a 1 × 1 × 1 kernel, followed by a softmax decision layer.
Each stage contains a batch normalization step. The architecture also
uses residual connections between two consecutive convolutional layers
except for the first and the last one.

Even though we use the previously described contrast enhancement
algorithm to equalize histograms in the sub-volumes, different regions
may still exhibit differing levels of brightness, as is also evident in
Fig. 2(c) and (d). To diminish the effect that such varying brightness
levels may have on segmentation, we modify the input layer of the
network by applying zero-mean convolutions, described in the next
section. The final proposed architecture is shown in Fig. 5.

2.6. Zero-mean convolutions

Zero-mean convolutions are a simple and efficient mechanism for
making the features of a convolutional neural network layer insensitive
to varying levels of brightness in the input. They were initially proposed
for processing of sound recordings in order to reduce the impact of
varying sound levels [42]. Invariance may be achieved by forcing the
coefficients of the learned filters on a given layer to sum to zero:
∑

𝑖,𝑗,𝑘
𝐾𝑖,𝑗,𝑘 = 0 (7)

In the upper equation, 𝐾 is a learned kernel which consists of 𝑖 × 𝑗 × 𝑘
coefficients (in our case 3 × 3 × 3). By using kernel constraints, we
enforce each of the kernels in the first layer of the CNN, shown in Fig. 5,
to have zero mean. In this way, we force the network to learn filters
which are based on the differences of voxel values in their receptive
fields and not on their levels, which may vary across the volume. Filters
are thus also invariant to brightness offsets in the input data, which
can be caused by various reasons, such as using a different microscope,
different fixation or different settings of the microscope.

2.7. Segmentation masks

During acquisition of FIB-SEM data, different artefacts can appear.
We propose to detect and reduce the impact that such artefacts may
have on training and evaluation by detecting the artefacts that occur at
the borders of the volume. An example is shown in Fig. 6a, which shows
the so-called curtaining effect. To detect such artefacts, we simply
observe the standard deviation of voxel intensities in each volume
dimension, and mask each line of voxels, if its standard deviation
is lower than a preset threshold (we use a value of 10−2), as this
implies that all voxels in the line have almost the same intensity,
indicating an error during acquisition. The detected artefacts are stored
in segmentation masks, which are volumes of the same size as the input,
where the value of a voxel is 0 if it is part of an artefact, or 1 otherwise.
An example of the resulting masks is shown in Fig. 6b.

Fig. 6. (a) X, Y and Z plane intersections of one of the sub-volumes from our dataset.
Artefacts are clearly visible. (b) The calculated segmentation masks (black colour
represents the masked voxels).

Fig. 7. (a) X, Y and Z plane intersections of the annotation of one of the sub-volumes
from our dataset. (b) Segmentation masks — object borders are masked as they are
difficult to annotate correctly (black colour represents the masked voxels).

As noted in Lucchi et al. [43], human annotations at the borders
of volumetric objects may often be inaccurate, as it is often unclear
exactly where an object ends. They propose to exclude the borders of
the objects in the process of evaluation. We therefore also detect the
borders of annotated objects in the manual annotations and add them
to the segmentation masks. An example is shown in Fig. 7.

We use the segmentation masks to ignore the masked voxels during
evaluation, as their true value is uncertain. We carry this idea further
and next to evaluation also modify the training procedure to exclude
the masked voxels.

We modify the loss function to include weights from the segmenta-
tion masks, which reduce the impact of masked voxels. As we use the
Dice loss [21] during training, we modify it as follows:

𝐷𝐿 = 1 − 2
∑3

𝑙=1
∑𝑁

𝑛=1 𝑤𝑛𝑝𝑙𝑛𝑟𝑙𝑛
∑3

𝑙=1
∑𝑁

𝑛=1 𝑤𝑛(𝑝𝑙𝑛 + 𝑟𝑙𝑛)
, (8)

where N is the number of elements in the volume, 𝑟𝑙𝑛 is the annotated
voxel value for 𝑙th class, 𝑝𝑙𝑛 the predicted probability of voxel for the



Computers in Biology and Medicine 119 (2020) 103693

7

M. Žerovnik Mekuč et al.

𝑙th class, and 𝑤𝑛 the segmentation mask value of the 𝑛th voxel. The
segmentation mask thus effectively excludes the masked voxels from
the loss.

3. Experiments and results

3.1. Implementation details

We implemented our segmentation pipeline using the NiftyNet
framework [47], which is an open source convolutional neural net-
work platform for medical image analysis. For comparison, we im-
plemented several CNN architectures: the U-Net [19], the V-Net [21],
DeepMedic [22], HighRes3DNet [23] and our proposed
HighRes3DZMNet. To evaluate the approaches on the UroCell dataset,
we used 5-fold cross validation, each time using 4 volumes for training
and 1 volume for testing, so that each volume from the dataset was
used once as the test volume.

To make a fair comparison between the methods, we set most of the
hyper-parameters to be the same for all architectures. We employed
the L2 regularization with the decay factor set to 0.0001. All of the
parameters in the convolutional layers were initialized according to He
et al. [48]. The differences among the methods in the training phase
were the following: the input window size, the choice of optimizer,
the learning rate and the choice of the loss function. We observed
that the performance of the networks increases with the size of the
input window, therefore for each model we selected a window as large
as possible (the limit was GPU memory). We implemented the loss
functions as proposed by the authors in their original papers. All the
architectures were trained with the Dice loss function.

3.2. Evaluation criteria

For evaluation, we use the following measures, all commonly used
in the field of medical image segmentation: sensitivity, specificity and
the Dice similarity coefficient (DSC). If we define TP to be the number
of true positive voxels (correctly identified target class), FP the number
of false positive voxels (target class identified on background), FN the
number of false negative voxels (missed target) and TN the number of
true negative voxels (correctly classified background), we can define
the metrics as follows. The Dice similarity coefficient measures the
similarity between annotations and predictions and is defined as:

DSC = 2TP
2TP+FP+FN

(9)

Sensitivity, also named the true positive rate (TPR) or recall, measures
the proportion of correctly classified target voxels with respect to all
voxels of the target class:

TPR = TP
TP+FN

(10)

Specificity, also named the true negative rate (TNR), measures the
proportion of correctly classified voxels that do not belong to the target
class:

TNR = TN
TN+FP

(11)

To compare our approach with results published on other public
datasets, we also use the Jaccard index (JI) which is defined as:

JI = TP
TP+FP+FN

(12)

With all metrics, a higher value represents a better result.

3.3. Results on the UroCell dataset

We evaluated the proposed method and four other state-of-the-art
approaches on the UroCell dataset using the metrics described in the
previous section. When calculating the metrics, we also consider the
segmentation masks and ignore the masked voxels, as their classes are
uncertain. The results are shown in Table 1. The proposed method
yields the best results for segmentation of mitochondria, endolysosomes
and also the best results if we consider segmentation of both classes.

3.4. Comparable public datasets

Public datasets with annotated intracellular compartments are few.
We provide an overview of the available datasets for mitochondria
and endolysosomes in Table 2. The proposed UroCell dataset is the
only dataset for these two compartments that does not come from a
brain region, and next to the dataset of Perez et al. [45] the only
one containing annotations for both classes. Apart from the dataset of
Lucchi [44], our dataset is also the only isotropic dataset with labels
for mitochondria and endolysosomes acquired by the FIB-SEM method.

Since our segmentation model is based on volumetric operations,
and does not consider additional preprocessing for anisotropic data,
we compare the performance of our segmentation pipeline on the
improved version of the dataset initially proposed by Lucchi et al. [37],
which contains labels for mitochondria only. The improved version
[44] contains a smaller number of annotation errors, which were
mostly present because of the initial slice-by-slice manual annotation
process, which resulted in very jagged compartment borders in one
dimension. We did not change any of the steps or parameters when we
applied our method for segmentation of mitochondria on the dataset.
The only difference is that since we only classify one class, we did not
use transfer learning and only trained and evaluated the upper branch
of the proposed pipeline. The results of our pipeline for segmentation
of mitochondria are comparable to the results presented in the paper,
which proposed the improved version of dataset [44] - the Jaccard
index of our approach is 0.90 and is the same as in the mentioned
paper.

4. Discussion

Results show that our method yields the best score when segmenting
both types of intracellular compartments in the UroCell dataset. If
we look at the Dice coefficients presented in Table 1, we can see
how different proposed mechanisms and their combinations affect the
results. The proposed contrast enhancement scores the highest for
the mitochondria class, but has difficulties with endolysosomes as it
confuses them often with mitochondria or background. If we compare
the mean DSC results of different parts of the pipeline to the baseline
HighRes3DNet architecture, we can see that each of them contributes
to an improvement and their combination yields the best results.

An example of how the different methods segment both types of
compartments in a volume is shown in Figs. 8 and 9. Fig. 8 shows how
parts of endolysosomes can be mistaken for mitochondria, while Fig. 9
shows how mitochondria and other compartments can be mistaken for
endolysosomes. As the original slices show, the difference in texture of
both compartment types is not very large.

Most segmentation errors are made in regions with poor contrast,
artefacts or with other cellular compartments, which are misclassified
as one of the target classes (e.g. the cellular membrane). As an example,
in Fig. 10 we illustrate a slice from the sub-volume with the lowest
evaluation score for all methods. The sub-volume has the highest
number of artefacts, poor contrast, and also contains parts of the
cellular membrane, all of which contribute to segmentation errors. 3D
segmentation of the entire sub-volume, where the differences between
the methods are clearly visible, is shown in Fig. 11.

As the figures show, with our improved segmentation pipeline we
can reduce misclassifications caused by artefacts, poor contrast and
the presence of other compartments, however results are still far from
perfect for more challenging sub-volumes.

Some of the target objects in very bright areas are not found and
there is a number of false positives from parts of the cell which look
very alike the target classes. For endolysosomes, a problem also arises
when their interior contains large bubbles and during their breakup,
when holes appear in the compartments — these are still labelled
as the compartments in the manual annotations, while the segmen-
tation methods mostly label them as background, thus yielding false
negatives.
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Table 1
The performance of different models on the UroCell dataset with an ablation study for proposed mechanisms. The first three columns show the metrics (the Dice similarity
coefficient, true positive rate, true negative rate) for the mitochondria (M), the next three columns show the metrics for endolysosomes (EL). The last column shows the mean
DSC of both target classes.

Method DSC-M TPR-M TNR-M DSC-EL TPR-EL TNR-EL Mean DSC

U-Net [19] 0.855 0.825 0.997 0.613 0.631 0.994 0.734
V-Net [21] 0.898 0.873 0.999 0.504 0.572 0.993 0.701
DeepMedic [22] 0.867 0.856 0.997 0.565 0.651 0.997 0.716
HighRes3DNet [23] 0.883 0.857 0.999 0.696 0.743 0.997 0.789
HighRes3DNet - binary classifier for M 0.862 0.843 0.999 – – - –
HighRes3DNet - binary classifier for EL – – – 0.750 0.765 0.998 –
HighRes3DNet merged output of binary classifiers 0.862 0.843 0.999 0.732 0.711 0.998 0.797
HighRes3DNet with transfer learning (TRAN) 0.903 0.881 0.999 0.787 0.750 0.998 0.845
HighRes3DNet with contrast enhancement (CON) 0.954 0.942 0.999 0.660 0.812 0.977 0.807
HighRes3DZMNet 0.882 0.852 0.999 0.727 0.730 0.998 0.804
HighRes3DZMNet with CON 0.937 0.921 0.999 0.801 0.774 0.996 0.869
HighRes3DZMNet with CON and segmentation masks 0.939 0.927 0.999 0.803 0.836 0.995 0.871
Proposed pipeline 0.942 0.921 0.999 0.822 0.852 0.999 0.882

Table 2
The comparable public datasets. For the Lucchi and Kasthuri datasets, we show the improved versions of the original datasets, as proposed in [44].

Dataset Technique Region Voxel size (nm) Train size Test size Labels

Haberl et al. a [31] SBEM Cerebellum, Habenula 6 × 6 × 40 1024 × 1024 × 80 1024 × 1024 × 20 M
Kasthuri++b [44] ssEM Somatosensory Cortex 3 × 3 × 30 1463 × 1613 × 85 1334 × 1553 × 75 M
Lucchi++c [44] FIB-SEM Hippocampus 5 × 5 × 5 1024 × 768 × 165 1024 × 768 × 165 M
Perez et al. d [45] SBEM Hypothalamus 30 × 30 × 8 500 × 500 × 50 500 × 500 × 40 M
Perez et al. e [45] SBEM Hypothalamus 30 × 30 × 8 500 × 500 × 50 500 × 500 × 40 EL
Li et al. f [46] ATUM-SEM Cortex 2 × 2 × 50 8416 × 8624 × 31 / M
The UroCell datasetg FIB-SEM Urothelium 16 × 16 × 15 (256 × 256 × 256) × 5 Cross-validation M, EL

aThe dataset is available on request.
bhttps://casser.io/connectomics/.
chttps://casser.io/connectomics/.
dhttp://www.sci.utah.edu/download/chm/.
ehttp://www.sci.utah.edu/download/chm/.
fCurrently not available (http://95.163.198.142/MiRA/mitochondria31/).
ghttps://github.com/MancaZerovnikMekuc/UroCell.

Fig. 8. Segmentation with all of the evaluated methods. The blue colour represents mitochondria, the orange colour represents endolysosomes. Only part of a sub-volume slice is
shown. (a) Input data (b) Manual annotations (c) U-Net (d) V-Net (e) DeepMedic (f) HighRes3DNet (g) The proposed method.

Our work shows that further research is needed to improve the
robustness of segmentation. We believe that the UroCell dataset that
we make public with this paper will contribute to new researches along
these lines, as it expands the range of available datasets, as well as
introduces more challenges (more compartments, sub-volumes from
different parts of the cell with different characteristics). We can see
from our evaluation results that the best methods do not achieve the

same accuracy on the UroCell dataset as they do on others, which shows
its complexity.

5. Conclusions

With our paper, we make the following contributions. We introduce
a novel publicly available dataset with manually labelled intracellular

https://casser.io/connectomics/
https://casser.io/connectomics/
http://www.sci.utah.edu/download/chm/
http://www.sci.utah.edu/download/chm/
http://95.163.198.142/MiRA/mitochondria31/
https://github.com/MancaZerovnikMekuc/UroCell
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Fig. 9. Segmentation with all of the evaluated methods. The blue colour represents mitochondria, the orange colour represents endolysosomes. Only part of a sub-volume slice is
shown. (a) Input data (b) Manual annotations (c) U-Net (d) V-Net (e) DeepMedic (f) HighRes3DNet (g) The proposed method.

Fig. 10. Segmentation with all of the evaluated methods. The blue colour represents mitochondria, the orange colour represents endolysosomes. (a) Input data (b) Manual
annotations (c) U-Net (d) V-Net (e) DeepMedic (f) HighRes3DNet (g) The proposed method.

compartments, which is to our knowledge the first FIB-SEM dataset not
obtained from brain tissue which contains labels for both mitochondria
and endolysosomes for the same region. The dataset is, in comparison
to other public datasets, more diverse, as it consists of five different
sub-volumes from different parts of a cell, as well as annotations for
two compartment types: mitochondria and endolysosomes.

We evaluated several state-of-the-art deep learning based segmen-
tation methods on the novel dataset, and presented a novel pipeline
for segmentation of mitochondria and endolysosomes. With the pro-
posed pipeline, we increase the robustness of segmentation by balanced

sampling, improved contrast and transfer learning. In evaluation, we
show that the proposed approach outperforms other state-of-the-art
methods.

In our future work, we will be exploring several directions. We will
add instance segmentation to our approach, thus isolating individual
intracellular compartments. This will enable the analysis of shapes of
the isolated compartments, e.g. with spectral shape analysis, which
will be useful for improving segmentation accuracy, as well as for
studying the characteristics of various compartments. We will also
add annotations of new compartment types to the dataset, primarily
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Fig. 11. Segmentation of an entire sub-volume with all of the evaluated methods shown with default surface smoothing in Slicer3D Segment Editor [39]. The blue colour represents
mitochondria, the orange colour represents endolysosomes. The chosen sub-volume has the lowest overall evaluation score for all the methods. (a) Manual annotations (b) U-Net
(c) V-Net (d) DeepMedic (e) HighRes3DNet (f) The proposed method.

fusiform vesicles and the Golgi apparatus, and develop methods for
their segmentation. We hope that with our work we will contribute to
a better understanding of cells and their functions.
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