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a b s t r a c t 

Background and objectives: In recent years, electron microscopy is enabling the acquisition of volumetric 

data with resolving power to directly observe the ultrastructure of intracellular compartments. New in- 

sights and knowledge about cell processes that are offered by such data require a comprehensive analysis 

which is limited by the time-consuming manual segmentation and reconstruction methods. 

Method: We present methods for automatic segmentation, reconstruction, and analysis of intracellular 

compartments from volumetric data obtained by the dual-beam electron microscopy. We specifically 

address segmentation of fusiform vesicles and the Golgi apparatus, reconstruction of mitochondria and 

fusiform vesicles, and morphological analysis of the reconstructed mitochondria. 

Results and conclusion: Evaluation on the public UroCell dataset demonstrated high accuracy of the pro- 

posed methods for segmentation of fusiform vesicles and the Golgi apparatus, as well as for reconstruc- 

tion of mitochondria and analysis of their shapes, while reconstruction of fusiform vesicles proved to be 

more challenging. We published an extension of the UroCell dataset with all of the data used in this 

work, to further contribute to research on automatic analysis of the ultrastructure of intracellular com- 

partments. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Volumetric distribution of intracellular compartments and their 

emporospatial dynamics of interactions define the function and 

tate of eukaryotic organisms [ 1 ]. The Golgi apparatus (GA), mi- 

ochondria, and endolysosomal compartments play the main role 

n the modification and sorting of membrane proteins, cell energy 

roduction, and degradation of endocytosed or autophagic materi- 

ls in all cells [ 1 ]. Although typical functions are assigned to these

rganelles, there are differences in their distribution, organization 

nd consequently, in the roles within different cell types. More- 

ver, there can be large differences between differentiation stages 

f the same cell types, and among normal cells and cells with dis- 
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ases (i.e., the structure of organelles may reflect pathological con- 

itions) [ 2–5 ]. 

The urothelium is the epithelium of the urinary bladder and 

resents a good model to study intracellular compartments in- 

olved in the formation and polarized transport of membranes [ 6 ]. 

n differentiated urothelial cells, GA glycosylates transmembrane 

roteins (i.e., uroplakins), which are organized into 2D crystalline 

embrane domains (i.e., urothelial plaques) in the post-Golgi com- 

artments are termed fusiform vesicles (FVs) [ 7–9 ]. FVs transport 

rothelial plaques to the apical plasma membrane of superficial 

rothelial cells, where they crucially contribute to the blood-urine 

arrier [ 10 ]. Plaques, endocytosed from the plasma membrane, or 

ther compounds of the cell, can be degraded and removed by 

he endolysosomes if sufficient mitochondria-derived energy (i.e., 

TP) is available [ 11 ]. It has been shown that many bladder dis- 

ases (e.g., urinary bladder cancer, cystitis, uroinfections), chem- 

cal agents, aging, or even relatively distant events (e.g., spinal 

ord injuries), affect urothelial functions, and that is reflected in 

he altered ultrastructure of the GA, mitochondria, and endolyso- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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omes [ 12 ]. Thus, observing the ultrastructure of these compart- 

ents may lead to novel findings on how different factors affect 

he cells. 

Electron microscopy (EM) is the only method with resolving 

ower to directly observe the ultrastructure of intracellular com- 

artments. In recent years, the availability of dual-beam micro- 

copes (i.e., FIB-SEM) pawed the way to acquire volumetric EM 

ata on a large scale [ 13,14 ], but their (manual) segmentation and 

econstruction, needed to study the ultrastructure of the compart- 

ents, is a major bottleneck, both in terms of time and exper- 

ise. Computer-assisted automatization of the process is expected 

o significantly facilitate and simplify analysis of volumetric elec- 

ron microscopy data, however, currently available approaches are 

till not accurate enough. 

We are addressing this bottleneck by proposing software meth- 

ds for fully automatic segmentation and reconstruction of intra- 

ellular compartments from the FIB-SEM data. We refer to segmen- 

ation as the process of labeling each voxel of a volume with its 

orresponding semantic label, e.g., mitochondria, GA, fusiform vesi- 

le and background (semantic segmentation), whereas we refer to 

econstruction as the process of assigning organelle voxels to indi- 

idual instances, thus separating them (instance segmentation). 

This work is an extension of our previous work on segmenta- 

ion of mitochondria and endolysosomes [ 15 ]. We pre-sent the fol- 

owing novel contributions: (1) methods for segmentation of FVs 

nd the GA in FIB-SEM data, (2) reconstruction methods for FVs 

nd mitochondria, and (3) methods for morphological analysis of 

itochondria. Except for the methods for the reconstruction of mi- 

ochondria and segmentation of the GA, we are to our knowledge 

he first to present methods for the described tasks and we believe 

ur work will enable further studies of the ultrastructure of cellu- 

ar compartments. In addition, we also make public an extension 

f the UroCell dataset [ 15 ] by including all of the data used in this

ork. 

. Related work 

We divide related work into three sections: segmentation, re- 

onstruction and datasets. 

.1. Segmentation 

Segmentation of volumetric data labels each voxel of the 3D 

olume with an appropriate label (e.g., mitochondria, endolyso- 

ome, background). It has become a fast-growing field with the 

uccess of convolutional deep neural networks, which can be ap- 

lied to complex segmentation problems. The most widely adopted 

rchitectures in the field of volumetric segmentation of biomedical 

mages such as the 3D U-Net [ 16 ], the V-Net [ 17 ], DeepMedic [ 18 ],

nd HighRes3DNet [ 19 ] are achieving high segmentation accuracy 

n different domains. Although general segmentation approaches 

an be successful, added expert knowledge about the target do- 

ain is usually as important as the choice of the segmentation 

etwork [ 20 ]. Lately Isensee et al. [ 21 ] presented the importance

f parameter configuration. With the nnU-Net self-configuring 

ethod for deep learning-based biomedical image segmentation, 

hey showed that with the right choice of parameters they can 

vercome most of the existing state-of-the-art methods on many 

ublic challenges. 

In our work, we present a method for segmentation of FVs and 

he GA. We are aware of only a few works that address automatic 

egmentation of the GA, and none so far for FVs. Recently, Müller 

t al. [ 22 ] presented a method for segmentation of the GA from 

IB-SEM data of the primary mouse β cell using the 3D U-Net ar- 

hitecture. The focus of the approach is on the reconstruction of 
2 
icrotubule-organelle interaction in cells and not so much on seg- 

entation accuracy, therefore they do not provide an evaluation of 

he segmentation algorithm. Another method for segmentation of 

ultiple organelles, including the GA, was presented by Heinrich 

t al. [ 23 ]. Their method is based on several multi-channel 3D- 

-Net architectures, that predict signed tanh boundary distances 

f binary labels for each organelle class. The distances are finally 

onverted to binary labels of each target class. The authors present 

n extensive dataset and segmentation approaches for 35 different 

rganelle classes, which will have a significant impact on the de- 

elopment of the field. The GA is segmented in the same fashion 

s all other organelles, but the authors do not evaluate its segmen- 

ation, since the test volumes do not include GA. 

In the paper, we make the following contributions to segmen- 

ation of EM data. We present a new method for segmentation of 

he GA, which in contrast to the presented works does not require 

 precisely annotated training dataset. This is important, because 

uch annotations are very time consuming to obtain due to the 

omplex shape of the GA. We also quantitatively evaluate the seg- 

entation accuracy of the proposed method on a dataset obtained 

rom the urothelial tissue. We should note that the used dataset is 

hallenging for segmentation of the GA, because it contains stacks 

f FVs that look very similar to the GA. Additionally, we present 

 method for segmentation of FVs, which to our knowledge is the 

rst of its kind. 

.2. Reconstruction 

Segmentation labels individual voxels with their respective class 

abels. With reconstruction, the individual compartment instances 

nd their shapes are determined from the output of the segmen- 

ation process, thus enabling the counting of the compartments, 

easurement of their lengths, volumes, distribution, etc. 

Works in automatic reconstruction of volumetric electron mi- 

roscopy data are frequent in brain research, where the task, also 

eferred to as connectomics, aims to reconstruct the full neu- 

oanatomy, including synaptic contacts [ 24–28 ]. The reconstruc- 

ion methods are not generally applicable to other domains, as 

hey focus on the morphology of the target domain. Related to 

econstruction, instance segmentation finds and extracts individ- 

al instances of objects in images and volumes. Many success- 

ul instance segmentation algorithm are derived from the MaskR- 

NN [ 29 ]. Even though there are examples of successful application 

f such algorithms to volumetric data (e.g., [ 30–32 ]), their reliance 

n bounding boxes is limiting with closely spaced objects or elon- 

ated curved objects, as the boxes may highly overlap. This is also 

he main reason that they are not used for instance segmentation 

f neurons. 

In our work, we present methods for reconstruction of mito- 

hondria and FVs in EM data. Segmentation of mitochondria has 

een addressed by many authors [ 33–37 ], a detailed overview has 

een presented in our previous paper [ 15 ]. Lately, several meth- 

ds were proposed that also include reconstruction, where the 

ain goal is to rectify locally incorrect segmentation results. Liu 

t al. [ 35 ] presented a method for automatic reconstruction of 

D mitochondria from automatic 2D segmentations. They use a 

ulti-layer information fusion algorithm and in the end, discard 

ll objects with length smaller than a selected threshold. Hein- 

ich et al. [ 23 ] present a method to prevent over merging of in-

tances in the segmentation output. After smoothing, hole filling, 

nd size filtering, they create an over-segmentation of objects us- 

ng a watershed algorithm which is followed by an agglomera- 

ion, where neighboring segments are merged together depend- 

ng on the voxel values along the shared edges. Both mentioned 

orks describe reconstruction of mitochondria, which is used to 

xtract parameters for biomedical analysis (e.g., length, size, po- 
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1 https://creativecommons.org/licenses/by- nc- sa/4.0/legalcode . 
ition...), but they are evaluated only voxel-wise. Such evaluation 

s valuable to show improvements in segmentation, however to 

how that the reconstruction and thus the calculated mitochon- 

ria parameters are reliable, it is necessary to evaluate the results 

ith metrics that are used for object detection or instance seg- 

entation. Namely, voxel-based metrics show little difference in 

ases where several neighboring mitochondria are falsely merged 

nto one instance (and vice-versa), because such fusions consist of 

 negligible number of voxels in comparison to the size of mito- 

hondria. Such errors will however affect the counting of instances, 

stimation of object sizes, etc. Recently Wei et al. [ 38 ] presented 

 large dataset for instance segmentation of mitochondria, where 

hey showed that existing reconstruction methods are not very 

ccurate when evaluated object-wise. The method with the best 

erformance for instance segmentation of mitochondria on their 

ataset, is 3D U-Net, which predicts instance contours and binary 

asks, followed by a marker-controlled watershed (U3D-BC+MW), 

hich we also evaluate on our data and show that our approach 

ields better results. 

In this paper we present three contributions to reconstruction 

f EM data. We introduce a benchmark method for reconstruc- 

ion of mitochondria based on the segmentation algorithm pre- 

ented in Meku ̌c et al. [ 15 ]. The method consists of a set of post-

rocessing steps that make use of topological properties of mi- 

ochondria [ 39 ] to reconstruct their shapes. We evaluate the ap- 

roach with object-wise metrics. We also introduce novel meth- 

ds for morphological analysis of mitochondria, by classifying their 

hape as classical, branched, and contacting. The introduction of 

uch shape-based classification is important for biomedical anal- 

sis since experimental evidence demonstrate that mitochondrial 

ltrastructure affects mitochondrial and cellular function [ 40–42 ]. 

oth contributions are novel, as in the related work, authors usu- 

lly calculate only the basic quantification parameters, such as 

ounts, volume and surface area, and don’t evaluate their accu- 

acy [ 23,43 ]. Finally, we present and evaluate a method for recon- 

truction of FVs, which, to our knowledge, is the first of its kind. 

he proposed method is unsupervised and generic and can be ap- 

lied to reconstruction of objects with similar topological proper- 

ies. 

.3. Datasets 

The evolution of the fields of automatic segmentation and re- 

onstruction of intracellular compartments from volumetric mi- 

roscopy data is highly dependent on the availability of annotated 

M data. 

Among the intracellular compartments that we are focusing on, 

everal public volumetric datasets exist with annotated mitochon- 

ria [ 15,22,23,34,38,44–47 ]. For the GA, there are to our knowledge 

nly two public volumetric FIB-SEM datasets [ 22,23 ], whereas no 

ublic datasets with FVs are currently available. All the datasets 

onsist of binary class labels, except for the one presented by Wei 

t al. [ 38 ], which also provides labels for instance segmentation 

f mitochondria. Another relevant recently published dataset is the 

EM500K dataset [ 48 ], which is a large unlabeled EM dataset ben- 

ficial for unsupervised pre-training of deep network features for 

egmentation of intracellular compartments. 

With this paper, we make public an extension of the UroCell 

ataset [ 15 ], which contains annotations for mitochondria and en- 

olysosomes. We extend it with manual annotations of FVs and 

he GA. We also add labels for instance segmentation of mitochon- 

ria and FVs, as well as labels for classification of mitochondria 

hape as classical, branched or contacting. This is to our knowl- 

dge the only public dataset obtained from the urothelial tissue, as 

ell as the only one containing labels for instance segmentation 
3 
f FVs and classification of mitochondria instances based on their 

orphological properties. 

. Materials and methods 

In this section, we describe the dataset and the proposed meth- 

ds for segmentation and reconstruction of intracellular compart- 

ents. In Section 3.1 we first describe the dataset used for training 

nd evaluation of the proposed methods. We present a method for 

egmenting FVs and the GA in Section 3.2 , and the reconstruction 

ethods for mitochondria and FVs in Section 3.3 . 

.1. Data 

The data that we use were acquired from tissue sample of the 

rinary bladder of male mice with a FIB-SEM dual-beam electron 

icroscope. The obtained volume is of size 1560 × 1366 × 1180 

oxels, where the voxel dimensions are approximately x = 16 nm, 

 = 16 nm, and z = 15 nm. Details about the data acquisition are

rovided in Meku ̌c et al. [ 15 ]. The dataset used in this study con-

ists of several sub-volumes (256 × 256 × 256 voxels) of the entire 

olume, cut out from different locations to make the dataset as di- 

erse as possible. 

This data is publicly available in the UroCell dataset [ 15 ]. Next 

o the raw data, it includes manual annotations of mitochondria 

nd endolysosomes in five sub-volumes. There are from 15 to 

5 mitochondria and approximately 10 endolysosomes in each of 

he sub-volumes. In this work, we extend the dataset with ad- 

itional annotations, as described below. The enriched dataset is 

vailable on: https://github.com/MancaZerovnikMekuc/UroCell un- 

er the CC-BY-NC-SA 4.0 licence. 1 All the manual annotations were 

reated with the open-source software Slicer3D [ 49 ]. In the end, 

hey were revised by a cell biologist with expertise in urothelial 

iology. An example of a sub-volume showing raw data as well as 

anual annotations is shown in Fig. 1 . 

.1.1. The extended dataset 

In this work, we extend the dataset with manual annotations of 

Vs and the GA. We also include non-binary instance labels for mi- 

ochondria and FVs, and labels denoting branched and contacting 

itochondria instances. 

The annotations for FVs are given in four sub-volumes. There 

re 253 to 574 instances of FVs per sub-volume. For the GA, we 

rovide precise annotations for two sub-volumes, which we use for 

valuation of the proposed segmentation algorithm. For seven sub- 

olumes we provide an approximate manual annotation, where the 

egion of the GA is roughly labeled. Every annotated sub-volume 

ontains from 0 to 3 instances of the GA. 

The labels for instanced, branched, and contacting mitochondria 

re provided for the five sub-volumes that also contain binary mi- 

ochondria labels. To label the instances, we inspected all of the 

xisting binary components and divided or merged them, based 

n a thorough manual inspection of the underlying data. Labels for 

ranched, and contacting mitochondria are based on the obtained 

nstances and were defined with the help of a domain expert. We 

rovide two sets of labels, one where each mitochondria instance 

s labeled as branched or non-branched and the other where each 

itochondria instance is labeled as contacting or non-contacting. 

itochondria that are not in contacting and branched category are 

 part of classical category. 

Classical mitochondria show “normal”, clearly outlined or- 

anelles typically found in cells. Branched category shows mito- 

hondria with branched architecture. We call the third category 

https://github.com/MancaZerovnikMekuc/UroCell
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
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Fig. 1. A sub-volume from the UroCell dataset. ( a ) Raw FIB-SEM data. ( b ) Raw data plus manual annotations for mitochondria (green), endolysosomes (purple), FVs (orange), 

and the GA (pink). ( c ) Manual annotations of the mitochondria (green) and endolysosomes (purple). ( d ) Manual annotation of the FVs (orange) and precise manual annotation 

of the GA (pink). 

Fig. 2. Steps involved in the segmentation of FVs (upper diagram) and the GA (bottom diagram). 
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ontacting mitochondria: such situations represent an intermedi- 

te state during mitochondrial fission or fusion, and the ability to 

ort out these mitochondria gives researchers the opportunity to 

ssess the significance of this situation. We label the mitochon- 

ria as contacting if there is a visible narrow connection between 

he instances, but the category is borderline: they could represent 

unctional contacts or be a technical artifact. Nevertheless, it is im- 

ortant that the interpretation is available to the researcher. The 

ecessary certainty is going to be obtained through the accumu- 

ation of knowledge gained through advances in electron micro- 

copic and complementary methods. 

.2. Segmentation 

We present methods for segmentation of FVs and the GA (out- 

ined in Fig. 2 ). Both methods use deep neural networks and dif- 

erent postprocessing steps to improve the segmentation accuracy. 

.2.1. Segmentation of fusiform vesicles 

For segmentation of the FVs, we used the nnU-Net method de- 

cribed in Isensee et al. [ 21 ]. In the postprocessing stage, compo- 

ents smaller than 4 × 10 5 nm 

3 were removed (an average size of 

he FVs in the dataset is approximately 2 × 10 7 nm 

3 ). We also re- 

oved FVs that were detected over an area with curtaining arti- 

acts, as these are usually false positives due to the artifacts. 

.2.2. Segmentation of the Golgi apparatus 

The GA has a complex outline, due to its numerous cister- 

ae and tubulo-vesicular network, which is difficult and time- 

onsuming to accurately annotate manually - obtaining accurate 

round truth for deep learning is thus difficult. We therefore pro- 

ose a segmentation approach that relies on approximately anno- 

ated ground truth, where GA borders are only roughly traced; 

uch annotations can be obtained much faster. An example of 

n approximate and precise annotation of a GA is shown in 

ig. 3 . 

We train the HighRes3DZMNet network with approximate an- 

otations. Highres3DZMNet is a deep neural network for segmen- 

ation of volumetric data, first presented in Meku ̌c et al. [ 15 ]. It

onsists of 19 layers with 3 × 3 × 3 convolutions and one last 

 × 1 × 1 convolution layer followed by a softmax. Convolutions 
4 
n the first seven layers are 1-dilated, in the next six layers they 

re 2-dilated and in the following six layers, they are 4-dilated. 

etween every two consecutive layers, except for the first and the 

ast one, are residual connections. In the first layer, the network 

ses zero-mean convolutions, which makes it more robust to vary- 

ng brightness levels in different patches of the input volume. Be- 

ause the network is trained with approximate annotations, it will 

utput volumes with regions that likely contain the GA, however 

A borders will not be accurately segmented. To refine the seg- 

entation, we use the active contours algorithm [ 50 ]. The active 

ontours, also called snakes, are an iterative region-growing pro- 

ess that pushes the initially given object estimate to the object 

oundaries by minimizing an energy function. In our case, the ini- 

ial estimates are segmentations obtained by the deep network. 

e use a 2D active contours algorithm [ 51 ], which we run on ev-

ry slice of the analyzed volume along all three dimensions. This 

esults in three different output volumes, which we merge using 

isjunction (a voxel is considered as part of the GA if it is labeled

s GA in at least one of the three volumes). 

The GA is morphologically similar to FVs that are very common 

n our dataset. Thus, false positives may occur as the vesicles get 

arked as a GA by the segmentation network. We therefore added 

n additional postprocessing step that removes such false positives. 

ecause FVs are usually smaller in size, this step simply removes 

ll detected GAs smaller than 0.19 μm 

3 which is 80% of the small- 

st GA in our ground truth. 

With the described approach we obtain a precise segmentation 

f the GA even though we only rely on approximate ground truth 

or training, while the process is still completely automatic. 

.3. Reconstruction 

Each segmentation network outputs a volume, where each 

oxel is labeled with its corresponding class (or as background). 

o count the organelles in a class and to make quantitative analy- 

es of their sizes, shapes and distribution, we need to reconstruct 

ndividual instances of these organelles. This is trivial, if their vox- 

ls are already separated; however mitochondria and FVs are of- 

en found in groups with their membranes touching, thus forming 

arge sets of connected voxels, which must be divided into individ- 

al instances. 
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Fig. 3. A 2D slice containing the GA. (a) Raw data. (b) Approximate manual annotation. (c) Precise manual annotation. 

Fig. 4. Two mitochondria, classified as one connected set of voxels (left). Analysis of EM data (right) shows that they are only touching and are thus two separate instances. 
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This is the goal of reconstruction - extracting the 3D shape of 

ach organelle instance. We propose two algorithms for this pur- 

ose, both making use of the domain knowledge on the shape of 

ndividual organelles. The algorithms are designed for reconstruct- 

ng mitochondria and FVs. Although we also segment the GA and 

ndolysosomes, these are very rarely touching in our dataset, so 

heir reconstruction is simple. In addition, we present methods for 

xploiting the reconstructed information to classify mitochondria 

hape into classical, branched and contacting. 

.3.1. Reconstructing mitochondria 

Mitochondria may often touch, thus forming connected sets of 

oxels. The goal of reconstruction is to separate such instances. An 

xample is shown in Fig. 4 . 

The main goal of reconstruction is to separate closely-spaced 

itochondria, which are falsely connected across membranes, be- 

ause the deep network labeled the voxels between them as mi- 

ochondria (instead of background). We use the active contours al- 

orithm to shrink the labeled components towards mitochondria 

embranes and thus separate the mitochondria. We use the edge- 

ased model for active contours, which is similar to geodesic ac- 

ive contours [ 52 ]. We set the maximum number of iterations of 

volving contours to 3 and set the smoothing factor and contrac- 

ion bias to 0. We run the algorithm along each dimension of the 

D volume, which we merge as already described for segmentation 

f the GA. After applying the process of active contours, we per- 

orm noise removal by removing all components labeled as mito- 

hondria and smaller than 4 . 7 × 10 6 nm 

3 , which is approx. 50% of

he size of the smallest mitochondrion in the ground truth. In this 

ay, we remove small noisy chunks sometimes attached to mito- 

hondria as the result of poor segmentation (often near the cell 

embrane), and now disconnected by our reconstruction method. 

.3.2. Reconstructing fusiform vesicles 

FVs densely populate the urothelial tissue (see Fig. 1 d). Their 

hape can be described as a pancake in 3D space and they are 

sually found in stacks, which makes it difficult to distinguish be- 
5 
ween individual instances. Successful segmentation will result in 

lobs of voxels classified as FVs, however to actually analyze their 

ounts, sizes and interactions, we need a reconstruction method to 

ivide the blobs into individual vesicle instances. An example of 

uch stacks and blobs is shown in Fig. 5 . 

Because we are dealing with thin objects, placed very close 

ogether, existing methods for volumetric instance segmentation, 

uch as the MaskRCNN [ 29 ], do not yield good results, as the 

ounding boxes overlap too much. We therefore present a new 

nsupervised reconstruction method that can be used as a bench- 

ark for the problem. It is based on fitting thin disks to the vesicle 

tacks, output by the segmentation algorithm. As fitting multiple 

D shapes in 3D space can be a challenging optimization prob- 

em, due to the many free parameters, we add steps that limit 

he number and ranges of parameters. We outline the method in 

lgorithm 1 and describe it in more detail below. 

input : Segmentation of FVsdenoted by vol and its 

corresponding FIB-SEM volume denoted by volFIB 

output : A set of divided FVs,denoted by V 
1 V ← ∅ ; 

2 foreach connected component ci in vol do 

3 fibi , rotinfo ← CutFromFIB( ci , volFIB ) ; 
4 CIrot ← Rotate( ci , fibi ) ; 
5 disks ← FitDisks( CIrot ) ; 
6 disksrotated ← RotateBack( disks , rotinfo ) ; 
7 ciclassifed ← NearestValue( disksrotated , ci ) ; 
8 V ← V ∪ ciclassifed ; 

9 end 

10 return V; 

Algorithm 1: Reconstruction of FVs. 

The reconstruction method operates on the output of the al- 

orithm for segmentation of FVs, as well as on the correspond- 

ng original FIB-SEM volume. We first find all connected compo- 

ents (vesicle stacks) in the input volume. Each stack is first ro- 
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Fig. 5. Two stacks of FVs. (a) A 2D slice from the FIB-SEM data showing the two stacks. (b) Manually labeled ground truth for binary segmentation. (c) Instanced ground 

truth. (d) Binary ground truth shown in 3D. (e) Instanced ground truth shown in 3D. 

Fig. 6. Reconstruction of FVs. The steps are illustrated left-to-right as follows: first the vesicle stack segmented from the FIB-SEM data is shown. The stack is then rotated 

to be parallel to the saggital plane. Two disks were fitted with the proposed optimization approach, then rotated back and finally merged with the original segmentation, 

where a separate label is assigned to each vesicle instance. 

t

A

t

W

t

s

p

t

o

d

t

e

p

d

n

p

o

o

a

o

r

 

s

r

o

i

s

i

m

d

s

o

 

w

a

c

t

c

t

p  

o

t

o

b

A

3

t

c

i

a

c

r

p

s

ated so that the vesicles are parallel to the sagittal plane (line 4 of 

lgorithm 1 ). To determine the rotation angle and axis, we analyze 

he cross section of the stack within the original FIB-SEM volume. 

e estimate stack orientation by combining edge detection with 

he Hough transform to detect lines parallel with vesicles in the 

tack. According to the average line rotation, we rotate the stack to 

osition it parallel to the sagittal plane. An example is shown as 

he first step in Fig. 6 . 

In the next step, we use an optimization approach to fit a set 

f disks, representing individual vesicles, to the rotated stack. The 

isks represent a rough approximation of the vesicle shape, we use 

hem because their shape can be described by only one param- 

ter (radius), in contrast to more flexible representations such as 

arametric surfaces. Together with their 3D position, each disk is 

efined by 6 varying parameters and one fixed parameter (thick- 

ess) listed below. As we start the optimization with a stack that is 

arallel to the sagittal plane, we can make a good initial estimate 

f parameter values for each disk. We can also limit their range 

f values, in order to reduce the optimization search space, as we 

lready know their approximate orientation and have knowledge 

f the typical sizes of FVs. We use the following parameters and 

anges (in voxels): 

• radius r ∈ [ 
0 . 4 ∗s y 

2 , min ( 
s y 
2 + 5 , 30)] , 

• coronal rotation crot ∈ [ crot curr − 10 , crot curr + 10] , 
• axial rotation arot ∈ [ arot curr − 10 , arot curr + 10] , 
• position x ∈ [0 , s x ] , 
• position y ∈ [ s y − 10 , s y + 10] , 
• position z ∈ [0 , s z ] . 
• thickness h = 4 , 

s x , s y and s z denote the size of the bounding box of the vesicle

tack, and crot curr , arot curr the coronal and axial rotation of the cur- 

ent optimization iteration. Rotations are initially set to zero, while 

ther parameters are set to the middle of their ranges. Thickness 
6 
s constant and does not vary, its value was determined from ob- 

ervation of the vesicles in our data. 

We perform optimization with a pattern search algorithm min- 

mizing an objective function with bound constraints [ 53 ]. To esti- 

ate the number of vesicles in the stack, we iteratively add new 

isks and run the optimization algorithm, while the objective de- 

creases by more than a threshold (we selected the threshold value 

f 0.02). 

We define the objective function as follows: 

f (c, v , n ) = 0 . 7 (1 − dsc (c, v , n )) + 0 . 3 ovl (v , n ) ; (1)

here c is the analyzed component, v is a volume containing the 

lready fitted disks and n the new disk that is being added in the 

urrent iteration. The first part of the objective function measures 

he Dice similarity coefficient (defined in Section 4.2 ) between the 

omponent and the volume containing the fitted disks - the better 

he fit, the larger the value. As disks should not overlap, the second 

art of the objective function ( overlap (v , n ) ) returns the percent of

verlapping disk voxels thus penalizing the overlap. An example of 

he output of this step is shown in Fig. 6 . 

After the disks are fitted, we rotate them back to their initial 

rientation. In the end, we assign instance labels to the voxels 

y assigning each voxel to its nearest disk (lines 6 and 7 of the 

lgorithm 1 and the last two steps in Fig. 6 ). 

.4. Shape classification 

Reconstruction enables researchers to obtain detailed informa- 

ion on the distribution, organization, sizes and shapes of cellular 

ompartments. This in turn enables the study of the differences 

n compartments between different cell types, between differenti- 

tion stages of the same cell types, and among normal cells and 

ells with diseases (i.e., the structure of the compartments may 

eflect pathological conditions). To this end, we present two ap- 

roaches to classify mitochondria according to their shape as clas- 

ical, branched and contacting. 
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Fig. 7. Two examples of contacting mitochondria. The upper example has two contacting sections, the lower has one contacting section. For each mitochondria, we show 

the underlying microscopy data. 
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Fig. 8. Two examples of branched mitochondria. 
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.4.1. Detection of contacting mitochondria 

Contacting mitochondria contain regions, where they are signif- 

cantly narrower with respect to their overall shape. Examples of 

uch objects are shown in Fig. 7 . 

The contacting mitochondria are detected within the set of re- 

onstructed mitochondria instances obtained by the algorithm de- 

cribed in Section 3.3.1 . The main idea of the proposed approach 

s to calculate the skeleton of each instance and then detect the 

arrowed parts by observing the distances of voxels within the in- 

tance to the skeleton. The approach is outlined in Algorithm 2 . 

input : Set of reconstructed mitochondria instances denoted 

by M 

output : Set of contacting mitochondria instances denoted by 

M c 

1 M c ← ∅ ; 

2 foreach instance i in M do 

3 i ← FillHoles( i ) ; 
4 skel ← Skeleton( i ) ; 
5 skeldist ← Distance( i , skel ) ; 
6 skeldist ( skeldist < θ1 ) = 0; 

7 n ← CountComponents( skeldist ) ; 
8 if n > 1 then 

9 M c ← M c ∪ i ; 

10 end 

11 end 

12 return M c ; 

Algorithm 2: Algorithm for detection of contacting mitochon- 

dria. 

The method iterates through all the reconstructed mitochondria 

nstances. Holes within each instance are first filled by a simple 

ole filling algorithm, to avoid errors in further steps. To obtain 

he center of the instance, its 3D medial skeleton is calculated with 

he homotopic thinning algorithm [ 54 ]. In the next step, the short- 

st distance to the skeleton is calculated for each instance voxel, 

hus adding a measure of thickness to the instance and resulting 

n an instance volume skeldist . All the voxels in skeldist with thick- 

ess lower than a selected threshold θ are removed in the next 
1 

7 
tep. The parameter θ1 controls the thickness margin at which we 

enote a mitochondrion as contacting. In the final step, we count 

he components in the skeldist; if more than one is found, the 

nstance is classified as contacting. We do not count components 

maller than 5 voxels, which sometimes appear at the ends of the 

nstances, as they do not represent the narrowings that we are in- 

erested in. 

.4.2. Detection of branched mitochondria 

Mitochondrial fusion and division gives rise to branched mito- 

hondria instances, as well as entire mitochondria networks. Ex- 

mples of branched objects are shown in Fig. 8 . To automatically 

etect branched mitochondria, we again observe the reconstructed 

nstances obtained by the algorithm described in Section 3.3.1 . As 

ith contacting mitochondria, we also observe 3D mitochondria 

keletons, which are transformed into graphs. If these graphs con- 

ain multiple edges, the instance is labeled as branched. The ap- 

roach is outlined in Algorithm 3 . 

The method iterates through all the reconstructed mitochon- 

ria instances. Holes within each instance are first filled by a sim- 

le hole filling algorithm, to avoid errors in further steps. The 3D 

keleton is extracted with the same method as in the previous al- 

orithm for detection of contacting mitochondria. The skeleton is 

hen transformed to a graph [ 55 ], where branches smaller than 

 threshold θ2 voxels are removed, as they likely represent small 

rotrusions or noisy instance boundaries. In the final step, we add 

he instance labeled as branched if there are more than two edges 

n the obtained graph. 
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input : Set of reconstructed mitochondria instances denoted 

by M 

output : Set of branched mitochondria instances denoted by 

M b 

1 M b ← ∅ ; 

2 foreach instance i in M do 

3 i ← FillHoles( i ) ; 
4 skel ← Skeleton( i ) ; 
5 graph ← SkeletonToGraph( skel , θ2 ) ; 
6 n ← CountEdges( graph ) ; 
7 if n > 2 then 

8 M b ← M b ∪ i ; 

9 end 

10 end 

11 return M b ; 

Algorithm 3: Algorithm for detection of branched mitochon- 

dria. 
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Table 1 

Results for segmentation of FVs. 

Method DSC TPR TNR 

nnU-Net [ 21 ] 0 . 757 ± 0 . 03 0 . 701 ± 0 . 05 0 . 979 ± 0 . 00 

Final segmentation 0 . 763 ± 0 . 03 0 . 707 ± 0 . 05 0 . 979 ± 0 . 00 
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. Experiments and results 

.1. Implementation details 

For the segmentation of FV with nnU-Net we ran 4-fold cross- 

alidation for all the proposed architectures. For the prediction, we 

sed automatically selected 3D U-Net cascade. Predictions were 

ade for each fold separately. We used the publicly available 

ode [ 21 ]. 

HighRes3DZMNet for the segmentation of GA was implemented 

ith the Nifty-Net framework [ 56 ]. We ran 30,0 0 0 iterations of

raining with a learning rate of 0.001 using the Adam optimizer. 

or both approaches, we used L2 regularisation with λ equal to 

0 −5 . The reconstruction algorithms are implemented in Matlab. 

he thresholds used by the shape classification methods were 

anually set based on observations of typical sizes of the an- 

lyzed compartments. Their values (in voxels) were set as: θ1 

o 4.25 and θ2 to 2. When applied to volumes of different res- 

lution, these should be changed accordingly. Code is available 

t https://github.com/MancaZerovnikMekuc/HighRes3DZMNet and 

ttps://github.com/MancaZerovnikMekuc/Reconstruction . 

For the mitochondria reconstruction, we evaluated the U3D- 

C+MW method presented in Wei et al. [ 38 ] to compare the meth-

ds on our data. Here we also ran 30,0 0 0 iterations of training.

or the watershed algorithm, we used the same parameters as pro- 

osed for the MitoEM dataset. 

.2. Evaluation metrics 

To quantitatively evaluate the results, we use the well- 

stablished metrics from the field of semantic segmentation and 

bject detection: the Dice similarity coefficient (DSC) also called 

he F1 score (F1), intersection over union (IOU) also called the Jac- 

ard similarity coefficient (JAC), true positive rate (TPR) also called 

ecall (REC) or sensitivity, true negative rate (TNR) also called 

pecificity, and precision (PRE). They are defined as follows: 

SC = F1 = 

2 TP 

2 TP + FP + FN 

(2) 

OU = JAC = 

TP 

TP + FP + FN 

(3) 

PR = REC = 

TP 

TP + FN 

(4) 

o

8 
NR = 

TN 

TN + FP 

(5) 

RE = 

TP 

TP + FP 

(6) 

In the upper equations TP (true positives) is the number of el- 

ments that are correctly classified as the target class, TN (true 

egatives) is the number of elements that are correctly classified 

s the background class, FP (false positives) is the number of ele- 

ents which are falsely classified as the target class, and FN (false 

egatives) is the number of elements which are falsely classified as 

he background class. The highest possible value for all the metrics 

s 1, which we would get if all the elements would be classified 

orrectly. Depending on the evaluated task, those elements can be 

oxels or individual compartment instances. 

For evaluation of segmentation, we measure the DSC, TNR, and 

PR. All the metrics are measured voxel-wise. DSC gives us in- 

ormation on the similarity between the ground truth annotations 

nd the output of the segmentation. TPR measures the proportion 

f voxels that are correctly classified as the target class, and TNR 

easures the proportion of voxels that are correctly classified as 

he background class. 

To evaluate reconstruction, where we extract individual com- 

artment instances, we measure object detection accuracy. First, 

e determine the number of TP, TN, FP, and FN instances. An 

nstance in the result is considered as a TP if it overlaps with 

n instance in the ground truth and if this overlapping, which is 

easured by an IOU metric voxel-wise, is higher than a selected 

hreshold. If we have multiple instances for one ground truth ob- 

ect, the one with the highest IOU is considered as the TP and 

ll the others are counted as FP. From the instance-wise TP, TN, 

P, and FN, we calculate instance-wise PRE, REC, F1. PRE measures 

he proportion of correctly classified instance among all of the de- 

ected instance, REC measures the proportion of detected instance 

mong all the ground truth instances, and F1 is the harmonic mean 

f PRE and REC. We also calculated the Panoptic Quality (PQ) met- 

ic [ 57 ], which aggregates the semantic and instance segmentation 

uality in one metric. It is defined as follows: 

Q = 

∑ 

(p,g) ∈ TP IOU (p, g) 

TP + 

1 
2 

FP + 

1 
2 

FN 

(7) 

In the upper equation the TP, FP, and FN are numbers calculated 

nstance-wise with an IOU threshold of 0.5. In the numerator, p

s a true positive object from the prediction and g stands for its 

orresponding object in the ground truth. 

.3. Results 

In the following subsections, we present the qualitative and 

uantitative results of the proposed approach. It is important to 

ook at both aspects, because the numbers do not always accu- 

ately describe the quality or usability of the results. 

.3.1. Segmentation results 

Table 1 shows results for the segmentation of FVs. They were 

btained by 4-fold cross-validation, so that each sub-volume from 

https://github.com/MancaZerovnikMekuc/HighRes3DZMNet
https://github.com/MancaZerovnikMekuc/Reconstruction
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Table 2 

Results for segmentation of the GA. 

Method DSC TPR TNR 

HighRes3DZMNet [ 15 ] 0.515 0.861 0.983 

Active contours 0.501 0.876 0.982 

Final segmentation 0.926 0.885 0.999 

Table 3 

Results for reconstruction of mitochondria. 

Method TP FP FN PRE REC F1 PQ 

U3D-BC + MW [ 38 ] 159 156 18 0.505 0.898 0.323 0.61 

HighRes3DZMNet [ 15 ] 150 1142 27 0.116 0.847 0.204 0.19 

Noise removal 151 25 26 0.858 0.853 0.856 0.81 

Final reconstruction 157 22 20 0.877 0.887 0.882 0.82 
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Fig. 9. A slice showing two mitochondria (green and yellow) that touched and were 

thus connected in the output of the segmentation (left). They were divided by the 

proposed reconstruction algorithm (right). 
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he dataset was once used as a test volume. The table shows av- 

rages of all four runs, with and without postprocessing. We also 

isualize the segmentation of the sub-volumes with the highest 

nd the lowest DSC scores and the corresponding ground truth in 

ig. 10 . 

Table 2 shows results for segmentation of the GA. We show 

valuation for each step of the proposed method. We trained the 

etwork on five approximately annotated sub-volumes and evalu- 

ted it on two sub-volumes where precise ground truth annota- 

ions were available (these were not included in training). One of 

he test subvolumes is also visualized in Fig. 11 . 

We also evaluated the time needed for annotation of the GA. 

s noted previously, exact annotation is extremely time consum- 

ng, as the shape of the GA is complex, so we based our segmen-

ation algorithm on approximate annotations. An experienced an- 

otator needed approximately 2.5 hours for precise annotation and 

.5 hours for approximate annotation of one GA, resulting in a 5- 

old speed up for making the ground truth annotations. 

.3.2. Reconstruction results 

Results for the reconstruction of mitochondria, based on 

nstance-wise metrics, are shown in Table 3 . They were calculated 

ith an IOU threshold of 0.75 (the values remain very similar for 

ther threshold values and the F1 measure only falls to 0.7 for the 

hreshold value of 0.9). Reconstruction is based on the segmenta- 

ion algorithm presented in Meku ̌c et al. [ 15 ], which we also eval-

ated; results are shown in the second line of the table. We evalu- 

ted the approach on all sub-volumes that contain instance labels. 

e summed the TP, FP, and FN for all sub-volumes and calculated 

he measures in the table from the summed metrics. As mitochon- 

ria touching the borders of a sub-volume may only be partially 

ncluded in the sub-volume and may thus be incorrectly treated 

y the proposed approach, we removed the border objects smaller 

han 10,0 0 0 voxels from evaluation. A visualization of reconstruc- 

ion on a 2D slice is shown in Fig. 9 . With the same procedure, we

valuated the output of the U3D-BC+MW method on our dataset. 

he results are shown in the first line of the table. We can see that

ur approach outperforms the U3D-BC+MW method, especially be- 

ause of its higher precision. 

For reconstruction of FVs, we used the same instance-wise eval- 

ation metrics. They were calculated from TP, FP, and FN val- 

es summed over all four evaluated sub-volumes. Results are pre- 

ented in Table 4 . In the table, we show the results calculated with

OU thresholds of 0.3 and 0.5. We compare the results with the 

utput of the segmentation algorithm, where we label each con- 

ected component as a separate object. Results of the proposed 

lgorithm are shown in the last line of both parts of the table. Vi- 

ualization of reconstruction on one of the sub-volumes is shown 

n Fig. 12 . 
9 
.3.3. Shape classification 

For the detection of contacting and branched mitochondria, we 

se the same evaluation metrics as for the reconstruction algo- 

ithm. Results are shown in Table 5 . Again we used the IOU thresh-

ld of to 0.75. Examples are visualized in Figs. 13 and 14 . 

.3.4. Reconstruction of the entire volume 

To demonstrate the capability of our approach, we ran the seg- 

entation and reconstruction algorithms on the whole volume 

ith resolution: 1280 × 1024 × 1024 voxels. The results are vi- 

ualized in Fig. 15 , where one can see the dense packing of intra-

ellular compartments within a diferentiated superficial urothelial 

ell. 

. Discussion 

In the following subsections, we discuss the presented results. 

.1. Segmentation 

We presented two approaches for the segmentation of intracel- 

ular compartments, which were to our knowledge not yet evalu- 

ted on the FIB-SEM data. We also make public manual annota- 

ions for both classes as part of the UroCell dataset. 

Our method for the segmentation of FVs achieved the aver- 

ge DSC score of 0.763. We can explain this value better by look- 

ng at the qualitative results. The method segmented the vesi- 

les correctly most of the time ( Fig. 10 (b)), however, results were 

ess satisfying for one sub-volume cut from the edge of the cell 

 Fig. 10 (d)). This sub-volume contains more artifacts, as well as the 

ell membrane, which is sometimes very similar to the FVs and 

s thus incorrectly segmented ( Fig. 16 ). Even though the method 

tself doesn’t present much technical novelty, we pose new chal- 

enges to the field by providing benchmark results and analysis of 

he method’s drawbacks. 

The GA was successfully segmented with a high DSC score 

0.926). In the result table, we can see that the DSC is lower af- 

er the second step of the method (active contours). The reason 

ies in the false positives which are usually enlarged by the ac- 

ive contours, but are later eliminated in the postprocessing step. 

he presented method didn’t miss any of the GA in the test set, 

xcept for one on the border of the sub-volume, which was re- 

oved, because its part inside the sub-volume was too small. Sev- 

ral false positives were caused by stacks of FVs labeled as the GA 

nd empty space in the middle of the GA, which was not labeled 

s empty space. The number of GA in the test set was relatively 

ow, so we also ran the segmentation on the entire volume, which 

ualitatively showed that the method successfully segmented the 

A also in other sub-volumes. 
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Fig. 10. Segmentation of FVs. ( a ) Ground truth of the sub-volume with the highest DSC. ( b ) Segmentation of the sub-volume with the highest DSC. ( c ) Ground truth of the 

sub-volume with the lowest DSC. ( d ) Segmentation of the sub-volume with the lowest DSC. 

Fig. 11. Segmentation of the GA on one of the test sub-volumes. ( a ) Output of the HighRes3dZMNet. ( b ) Segmentation after applying active contours. ( c ) Final segmentation 

after postprocessing. ( d ) Ground truth. 

Table 4 

Results for the reconstruction of FVs. 

Method TP FP FN PRE REC F1 PQ 

IOU thr. = 0.3 Segmentation 183 391 1398 0.319 0.116 0.170 –

Reconstruction 250 295 1331 0.459 0.158 0.235 –

IOU thr. = 0.5 Segmentation 120 454 1461 0.209 0.076 0.111 0.085 

Reconstruction 140 405 1441 0.257 0.089 0.132 0.088 

Fig. 12. Reconstruction of FVs. ( a ) Segmentation. ( b ) Disks fitted to the segmentation. Each disk has its own label. ( c ) The final output from the algorithm. ( d ) Ground 

truth. ( a-d ) Different colours present different labels. The colours don’t match among the different sub-volumes. The only important thing is that a separate instance is of a 

different colour. 

Table 5 

Results for detection of contacting and branched mitochondria. 

Method TP FP FN PRE REC F1 

Contacting detection 16 6 13 0.727 0.552 0.627 

Branched detection 11 4 11 0.733 0.500 0.595 
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With our approach, we also showed that we can get accurate 

egmentation results with approximate ground truth labels, thus 

ignificantly reducing the time needed for annotation (5-fold). We 

elieve that a similar approach is also useful for other segmen- 
10 
ation problems, where objects with complex border needs to be 

egmented. 

.2. Reconstruction 

Reconstruction of mitochondria consists of a few steps. Results 

n Table 3 show that the noise removal step removes many false 

ositives and that the further step of dividing the mitochondria 

nstances successfully divides most of the touching mitochondria. 

here are still some cases where division does not succeed, which 

appens if instances touch along a larger surface, so that the active 
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Fig. 13. Detection of contacting mitochondria. ( a ) Results of reconstruction. ( b ) The output of detection of contacting objects. ( c ) Ground truth. ( d ) Differences between the 

ground truth and the result showing two missing false negatives in red. 

Fig. 14. Detection of branched mitochondria. ( a ) Results of reconstruction. ( b ) The output of detection of branched objects. ( c ) Ground truth. ( d ) Differences between the 

ground truth and the result. False negatives are labeled with red and false positives with purple. 

Fig. 15. Segmentation of the entire volume shows how densely populated the cells are with the intracellular compartments. (a) shows the raw microscopy data, and (b) 

shows the reconstruction with the proposed approach: mitochondria (green), endolysosomes (purple), FVs (orange), and the GA (pink). 

c

F

t

t

c

s

t

t

i

m

t

s

d

t

A

f

s

ontours method does not separate them. An example is shown in 

ig. 17 . 

Reconstruction of FVs is a harder problem, especially because 

he vesicles are very thin and close together, which makes it hard 

o distinguish the individual instances, even to biomedical experts. 

The results in Table 4 show a low F1 measure, although the in- 

reased number of true positives indicate that some stacks were 

uccessfully separated into vesicle instances. We can also observe 

his in the qualitative results visualized in Fig. 10 . Analysis shows 

hat simple stacks are usually well resolved (an example is shown 
11 
n Fig. 6 ), but the method suffers on the more complex ones, 

ainly because of the narrow parametrization and oversimplifica- 

ion of using disks as vesicle models. The vesicles are often curved, 

o disks do not cover their volume well. Vesicles may also have 

ifferent orientations in a stack and if several stacks are touching, 

hey will not be correctly resolved, yielding many false negatives. 

n example of multiple touching stacks is shown in Fig. 18 . 

Another problem arises with small vesicles, as the objective 

unction will prefer fitting a disk to several vesicles, instead of a 

ingle smaller one. We visualize the problem in Fig. 19 , where we 
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Fig. 16. Incorrect segmentation of the cell membrane (left) as FVs. 

Fig. 17. An example of two mitochondria which are erroneously not divided. 

Fig. 18. Multiple stacks of FVs touching each other. Raw data is shown on the left, 

and the ground truth on the right. 
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Fig. 20. An incorrectly labeled contacting mitochondria. 

Fig. 21. A branched mitochondria (right) that was not correctly segmented (left) 

and was thus incorrectly labeled as non-branched. 

i

d

m

g

r

s

o

s

c

b

n

a

i

F

m

f

t

s

o

f

t

w

p

l

0

r

F

(

an see that the red disk was fitted over two vesicles, which has 

 domino effect on the fitting of additional disks. Overall, the pro- 

osed method can be viewed as a baseline with many opportuni- 

ies for improvements in the future. 

.3. Shape classification 

We presented two algorithms for detecting contacting and 

ranched mitochondria. The algorithms both start with the recon- 

tructed mitochondria instances as their input, so their results are 

imited by the accuracy of reconstruction (and segmentation). 
ig. 19. Errors in reconstruction of FVs. (a) Raw data. (b) Output from the segmentation 

incorrect) output of our approach. (e) Ground truth - four instances of FVs. 

12 
The detection of contacting mitochondria is affected by errors 

n the input data, as erroneous touching or divisions of mitochon- 

ria are usually narrow. This can be observed in the lower two red 

itochondria in Fig. 13 (d), which have a narrow connection in the 

round truth but not in the input volume of the detection algo- 

ithm. The method itself is sensitive to cases where the contacting 

ection is quite thick and is thus not labeled as such. This may be 

bserved in Fig. 13 (d) - the upper red false negative object. We 

how an enlarged image of it in Fig. 20 . 

The detection of branched mitochondria is mostly functioning 

orrectly. False positives and false negatives are usually caused 

y the problems in the input data: mitochondria which were 

ot divided by the division algorithm and are therefore branched 

re detected as false positives (an example is the purple object 

n Fig. 14 (d)), objects with incomplete segmentation (example in 

ig. 21 ) are detected as false negatives, objects missing in the seg- 

entation are detected as false negatives and there are also a few 

alse negatives where the objects are not connected in the segmen- 

ation, although they should be. Errors caused by the algorithm it- 

elf and not the input data are mostly due to V-shaped branched 

bjects (the red objects in Fig. 14 (d)). 

We also evaluated the sensitivity of shape classification to dif- 

erent IOU thresholds and found that overall it is not very sensi- 

ive to the choice of the threshold. Performance slightly decreases 

hen the IOU threshold increases (up to 0.75), due to small com- 

onents, which are not taken into account when the threshold is 

ower than approx. 0.75. The performance is stable up to approx. 

.9, when it drops more significantly because of segmentation er- 

ors - some noisy components are not counted as TP anymore. 
algorithm. (c) Disks fitted to the component from the segmentation step. (d) Final 
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Both presented algorithms are nevertheless extracting most of 

he objects of interest; as they are general, they could also be ap- 

lied also to different domains with tubular objects such as ves- 

els, neurons, etc. 

. Conclusion 

For a comprehensive analysis of volumetric microscopy data, we 

eed solutions that combine multiple steps: robust segmentation, 

uality reconstruction, and quantification of important parameters 

hich in addition to simple quantities such as count, density, and 

osition of the observed compartments, also includes more com- 

lex ones related to the analysis of component shapes. In the pa- 

er, we addressed several of these challenges and next to the pro- 

osed methods, we are also releasing a public dataset to encourage 

urther research in the field. 

We presented methods for segmentation and reconstruction of 

Vs which is to our knowledge the first of its kind. We presented 

 method for segmentation of the GA, which relies on approx- 

mately labeled ground truth, thus decreasing the time needed 

or creating manual annotations; a similar methodology can be 

pplied to many related segmentation problems. We presented a 

ethod for reconstruction of mitochondria that improves on the 

riginal segmentation by separating the (incorrectly) merged com- 

onents. Such object-wise reconstruction is necessary, as it allows 

or reliable quantification of objects, such as counting, measuring 

olume, etc. We also presented two methods and ground truth 

ata for analyzing the shape of mitochondria and labeling them 

s contacting or branched. Such properties are important to ana- 

yze as they can indicate different physiologically significant states 

uch as stress or spinal injuries. To our knowledge, such meth- 

ds have not yet been proposed. We also showed that the pre- 

ented methods can generalize well to data outside our test and 

raining sets by showing the reconstruction of a large FIB-SEM 

olume. 

We released a public dataset, which is to our knowledge the 

rst volumetric EM dataset with manual annotation of FVs. Next 

o the recently published dataset by Wei et al. [ 38 ], which pro-

ides labels for instance segmentation of mitochondria, our dataset 

s the only one providing instance labels for several intracellular 

ompartments. A step from semantic segmentation to more com- 

lex instance segmentation is crucial to ensure that we can trust 

n quantification measures derived from reconstructed volumes - 

n current related works, these measures are usually reported and 

sed for the biomedical analysis, but their quality is not analyzed. 

There is still a lot of room for improvements of the presented 

ethods. Our first plans are to improve the reconstruction of FVs, 

hich we will address with proposal-free instance segmentation 

ethods. Inclusion of more diverse datasets will enable training of 

etter segmentation models, which will also positively affect the 

uality of reconstruction. Since many of the presented methods ad- 

ress challenges not tackled before, we hope that with the paper 

e set a benchmark that will be improved in the future by us and

ther researchers. 

We will also continue our cooperation with biomedical experts 

nd hope that the work presents a step towards a comprehen- 

ive analysis of volumetric microscopy data. By focusing on the 

rothelial tissue we want to support researches of the connections 

etween quantitative parameters and bladder diseases, aging, and 

pinal cord injuries for which it has been shown that they are re- 

ected in the altered structures of intracellular compartments. 
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