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Finding Nano-Ötzi: Cryo-Electron Tomography
Visualization Guided by Learned Segmentation

Ngan Nguyen*, Ciril Bohak*, Dominik Engel, Peter Mindek, Ondřej Strnad,
Peter Wonka, Sai Li, Timo Ropinski, Ivan Viola

Fig. 1: The image shows a volume containing several intact SARS-CoV-2 virions acquired using cryo-electron tomography 3D
imaging. From left to right: slice of the original data; direct volume rendering of the original data; foreground-background
segmentation; color-coded four-class segmented data (background, spikes, membrane, lumen).

Abstract—Cryo-electron tomography (cryo-ET) is a new 3D imaging technique with unprecedented potential for resolving submicron
structural details. Existing volume visualization methods, however, are not able to reveal details of interest due to low signal-to-noise ratio.
In order to design more powerful transfer functions, we propose leveraging soft segmentation as an explicit component of visualization for
noisy volumes. Our technical realization is based on semi-supervised learning, where we combine the advantages of two segmentation
algorithms. First, the weak segmentation algorithm provides good results for propagating sparse user-provided labels to other voxels in
the same volume and is used to generate dense pseudo-labels. Second, the powerful deep-learning-based segmentation algorithm
learns from these pseudo-labels to generalize the segmentation to other unseen volumes, a task that the weak segmentation algorithm
fails at completely. The proposed volume visualization uses deep-learning-based segmentation as a component for segmentation-aware
transfer function design. Appropriate ramp parameters can be suggested automatically through frequency distribution analysis.
Furthermore, our visualization uses gradient-free ambient occlusion shading to further suppress the visual presence of noise, and to give
structural detail the desired prominence. The cryo-ET data studied in our technical experiments are based on the highest-quality tilted
series of intact SARS-CoV-2 virions. Our technique shows the high impact in target sciences for visual data analysis of very noisy
volumes that cannot be visualized with existing techniques.

Index Terms—Volume Rendering; Computer Graphics Techniques; Machine Learning Techniques; Scalar Field Data; Life Sciences
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1 INTRODUCTION

Since 2014, due to the revolution in resolution [1], cryo-
genic electron microscopy (cryo-EM) has been the main
technique for high-resolution macromolecule structure deter-
mination. Its extension cryo-electron tomography (cryo-ET)
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enables the use of cryo-EM for the 3D reconstruction of spec-
imens. As the technique has become more widely accessible,
the amount of acquired data has far superseded the existing
data analysis pipelines’ capacities. While acquisitions are still
mostly performed manually by microbiology experts, with
the rapid increase in acquired data, new analysis tools need
to be developed.

One crucial analysis step is determining which specimen
is represented in the acquired data and how to proceed
with its processing. This is typically carried out using
3D data visualization methodologies. However, imaging
artifacts can make this quite challenging, and is analogous
to discovering fossils at an excavation site. Due to their
fossilization, specimens have almost the same composition as
the surrounding environment and are difficult to distinguish.
The interesting details in cryo-ET data are similarly buried
in the surrounding noise. Since the noise is a direct result of
the acquisition process, where the energized particles must
be evenly spread so that they cause as little damage to the
specimen as possible, cryo-ET data always suffers from a low
signal-to-noise ratio (SNR).

To excavate the specimens from the surrounding noise,
experts typically annotate the data manually and use those
annotations for further steps in their research (e.g., subto-
mogram averaging [2] to determine the detailed structure
composition or visualization). As this process can only be
completed by domain experts, data processing has become
a bottleneck and researchers are looking into modern auto-
matic segmentation methods based on deep learning (DL).
DL-based semantic segmentation approaches have shown
great potential in a wide range of scientific disciplines, such
as medicine [3] and biology [4]. However, when applying
standard discrete DL-based semantic segmentation to cryo-
ET data, the obtained crisp segmentation masks do not
accurately reflect the uncertainty stemming from the imaging
modality. Rather than having each pixel classified into a
distinct—but possibly wrong—class, the low resolution and
SNR require a higher degree of flexibility in exploring the
data by the domain experts. It would be desirable to use
a transfer function (TF), as is possible when exploring the
medical volume data, but this is not feasible due to the low
SNR of cryo-ET data.

This technical contribution is centered around the key
observation that visual mapping using a TF specification
essentially performs two tasks: (1) TF performs a soft segmen-
tation of objects and, simultaneously, (2) TF assigns optical
properties. Solving both tasks at the same time is non-trivial,
even for easy noise-free modalities like medical CT data.
However, by decomposing the role of visual mapping into
two separate tasks, a solution that allows a high degree of
automation, even for the most challenging and noise-polluted
modalities such as cryo-ET, can be found .

We translate the task of soft segmentation during the
visual mapping stage into the domain of probabilistic seg-
mentation, which results in the desired soft membership
assignment. To achieve this, we adopt the concept of semi-
supervised learning within the volume visualization pipeline.
This methodology provides high-quality, soft segmentation
even from sparse user input. With just a few supervising
sparse strokes, we employ a weaker segmentation algorithm
to generate dense labels, also called pseudo-labels. We

provide these pseudo-labels to a stronger deep-learning
classifier that is robust but more data-hungry, as it requires
dense labels for training. Once trained, it provides a high-
quality probabilistic (soft) segmentation for unseen datasets
fully automatically.

The soft segmentation task is coupled with an optical
properties assignment in direct volume rendering (DVR),
which is much easier to automate when tackled separately.
Together, these two steps form a visual mapping assignment
which results, together with advanced volume illumination
models, in rendered images of high visual quality. Finally,
the 3D visualization can be fine-tuned by the user if the auto-
mated methods do not find the best exact visual parameters.
We summarize our contributions as follows:

• We propose aiding users in designing TF by de-
composing the visual mapping task, as suggested
by Drebin et al. [5], empowered by a modern deep-
learning approach.

• For the soft segmentation, we propose using the
concept of semi-supervised learning based on sparse
user input to employ a weak classifier for obtaining
the pseudo-labels that serve as input for a strong
classifier for obtaining the final labels.

• We propose combining the details of the raw data
with the softness of the segmentation to estimate
the opacity mapping using an iterative thresholding
algorithm.

• We demonstrate and evaluate our concept for pro-
cessing challenging cryo-ET data and gather expert
feedback to assess the potential of the novel volume
visualization pipeline.

Metaphorically, we relate our new visualization technique of
the frozen specimen to the discovery of Ötzi, or Ice Man, the
oldest natural mummy.

In the following section, we relate our proposed approach
to state-of-the-art alternatives and prior work. Next, we give
an overview of the proposed method and show how its
individual components work together to yield a complete
system and contribute to the final visualization. Sections
4 and 5 present the novel components of our approach in
detail level and are followed by a demonstration of our
results and their evaluation, where the results are discussed
with two domain experts. In the final section, we conclude
the paper and present possible future directions. Our code
and pre-trained models are publicly available1.

2 RELATED WORK

Cryo-ET has evolved dramatically over recent years [6] and
has become a go-to method for most high-resolution in
situ structural biology challenges [7]. When combined with
subtomogram averaging [8] to obtain greater detail of the
studied structure, this is a perfect method for examining and
analyzing the molecular architecture of new viruses, such as
SARS-CoV-2 [9].

Due to the nature of the acquisition process, the SNR is
meager. The reasons for this include an inability to create
the perfect vacuum inside the acquisition tube—resulting in

1. https://github.com/nanovis/nano-oetzi
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floating dust particles; imperfect acquisition sensors, which
do not always produce a perfect image; inconsistencies in
the preparation of the specimens; and limitations on the
energy used during the acquisition process. These issues,
amongst others, produce noise which obscures the specimen
and lowers the SNR. Huang et al. [10] addressed this
problem by optimizing wavelet-based filters. Shigematsu and
Sigworth [11] analyzed different noise models. Both studies
concluded that a Gaussian noise model—with preparation
pipeline-dependent parameters—describes the noise in cryo-
ET data best. While we could use a Gaussian filter to denoise
the input data, this would also remove information from
the high-frequency domain, which we want to avoid in our
pipeline. The denoising process itself cannot be simply used
to segment the structures of interest; we would still need to
label the denoised data and use an additional segmentation
method.

It is also proven that many existing denoising approaches
based on deep learning [10], [11] are unsuited for cryo-ET
data as they require clean targets without noise for training,
which is currently impossible to acquire in this domain. For
this reason, most existing denoising approaches are based
on the Noise2Noise approach [12], which avoids this noise-
free requirement by training on pairs of registered noisy
data. The Topaz Denoise method [13] is an extension of the
Noise2Noise method, which was adapted for cryo-EM data.
While Noise2Noise was not developed with cryo-EM data in
mind, such pairs of registered noisy cryo-EM images can be
acquired using dose-fractioning, which splits the acquired
electron dose in half, resulting in two independent images.
Buchholz et al. [14] used this approach to acquire such data
and proposed Cryo-Care, which builds on Noise2Noise and
provides denoising of both cryo-EM images and tomograms.
Noise2Void [15] also reports promising results for cryo-EM
images. Su et al. [16] presented a generative adversarial net-
work (GAN) trained using synthetic data as clean examples
and synthetically degraded images as input to the denoiser,
resulting in a model that can cope with different varieties
of learned noise. In our case, we could not use Noise2Noise
models, since we have neither registered noisy and denoised
images nor noisy images obtained using dose-fractioning.
While Noise2Void models could be used in the preprocessing
step, annotation would still be required for the segmentation
task. Since we did not want to lose any information, we
omitted such a preprocessing step.

Deep learning approaches have also shown very promis-
ing results in segmentation tasks for both images [17], [18],
[19], [20] and volumetric data [21], [22]. Most segmentation
models are fully convolutional neural networks consisting
of an encoder and a decoder, with skip connections between
them. This encoder-decoder architecture is the basis for
most segmentation networks, including the popular U-
Net [23]. The U-Net, in particular, is the base of many
segmentation architectures that followed. While most ar-
chitectural innovation was pioneered in 2D [17], many of
the successful approaches can be extended to 3D. Following
this recipe, the 3D U-Net [21] was created by extending its
2D counterpart [23]. Lee et al. [24] proposed using residual
blocks in U-Nets, in addition to anisotropic convolution
kernels, to account for worse reconstruction quality in the
z-axis. Both the 3D U-Net [21] and the residually symmetric

U-Net [24] are considered in our initial architecture selection.
Another relevant line of work is that of Bui et al. [25], [26], [27]
and Yu et al. [28], who proposed different versions of a skip-
connected 3D DenseNet for segmentation. We include its best-
performing variant [27] in our initial architecture selection.
Siddique et al. [29] further provide an overview of different
U-Net and DenseNet variants applied to different problems
in the medical domain. While many of the variants discussed
in their work, such as attention U-Nets [30] or UNet++
variants [31], [32], are an improvement over the simple base
variants, we chose to use the aforementioned three simple
representatives of the most prominent directions in this space
for our approach. This is also because most of the presented
approaches do not evaluate the TEM modality, thus their
superiority is not clearly demonstrated for our data. Most
closely related to our approach, Moebel et al. [33] present a
deep learning based approach to macromolecule localization
in Cryo-EM data. Specifically they propose using a 3D variant
of a U-Net for the segmentation step in their approach,
before localizing clusters in the segmented volumes. Lastly,
Gros et al. [34] proposed SoftSeg and investigated techniques
to deal with non-binary segmentation labels. This approach is
orthogonal to the above works. The authors proposed differ-
ent activation functions for the output layer and adapted loss
functions to deal with the soft labels. Using soft labels can be
beneficial because they can elegantly incorporate uncertainty
and inter-expert variability into the labeling process. In this
work, we also make use of soft labels. Having uncertainty in
our trained network’s predictions enables us to visualize the
data with its uncertainty accordingly.

Having discussed the denoising and segmentation ap-
proaches, we highlight here some related works that use
deep learning approaches to replace parts of the visualization
pipeline itself. Cheng et al. [35] proposed using a learned
feature space for TF design instead of the raw intensity
or first and/or second-order derivatives. Users can design
TFs within a widget by choosing features relevant to them
from an ordered feature list extracted by the neural network.
DNN-VolVis [36] goes a step further and uses a neural
network for the shading. Specifically, an unshaded image
is rendered from the desired viewpoint and an image-to-
image translation network applies shading in the style of an
additionally supplied style image. Taking that a step further,
Berger et al. [37] proposed a GAN that fully synthesizes
the desired renderings based on only a viewpoint and a TF,
leaving the whole rendering process to the neural network.

Clear DVR is only possible with a good definition of
how the volume data translates into renderable optical
properties, as defined by a TF. The process of TF design has
been extensively researched. The first rule-based approach
to defining the TF was proposed by Bergman et al. [38]
and used to color meteorological and flow simulation
volumetric data. Kindlman and Durkin [39] presented a
semi-automatic approach for TF generation for visualizing
material boundaries, taking into account intensities and
their first and second derivatives. Correa and Ma [40] later
introduced a semi-automated method for generating TFs
in which they progressively explore TF space to maximize
the visibility of important structures. Lindholm et al. [41]
present an approach for transfer function design with spatial
localization based on user specified material dependencies.
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Fig. 2: System overview. First, sparse user-provided labels are
propagated to obtain dense pseudo-labels. A deep-learning-
based 3D segmentation model is trained on the pseudo-
labeled data; the resulting soft segmentation is next used in
the TF parameter estimation step, where ramping parameters
are estimated. The TF can be further adjusted by the user
before being used together with the raw data and soft
segmentation in the rendering stage to produce the final
visualization output.

Cai et al. [42] introduced automatic TF generation using
visibility distributions and projective color mapping, which
matches the distribution of visible values in the current
view with a target one for equal pronouncement of all the
features. Ljung et al. [43] presented a thorough overview of
TFs for DVR and ongoing challenges. Luo and Dingliana [44]
presented a TF optimization based on visibility and saliency.
A recent study by Ma and Entezari [45] suggested the use of
cell-based isosurface similarity, feature-based classification,
and visibility analysis for a semi-automatic TF design.

Another closely related line of work is uncertainty visual-
ization. When visualizing predicted or approximative data,
it is desirable that the user is informed about the confidence
of those predictions. Prassni et al. [46] visualized unconfident
segmentations using sets of isolines, which naturally coincide
in more certain regions, where there is a distinct line between
the foreground and background. In uncertain regions, these
lines spread out as the transition between the foreground
and background is more gradual. In 3D visualization, they
displayed uncertainty through a set of semi-transparent
iso-surfaces. Lundström et al. [47] proposed an uncertainty-
aware TF design. Their approach allows the definition of two
separate 1D TFs, one for a fully certain prediction and another
for a fully uncertain prediction. Depending on the actual
degree of certainty of a sample classification, the two TFs are
interpolated. In another work [48], the use of an animation to
highlight uncertain regions in the classification is proposed.
Diepenbrock et al. [49] directly lowered the saturation and
value of standardized (HSV) color maps used to encode
directions in fiber visualization to convey uncertainty.

3 TECHNICAL OVERVIEW

Our proposed approach enables semi-supervised DVR. We
show that even 3D visualization of cryo-ET data becomes
possible with this new approach, which is typically not

achievable with current volume rendering systems due to the
low SNR (see Figure 9). To achieve the desired high-quality
visualization, we decompose the visual mapping stage into
two sub-problems. One is automatic opacity mapping using
the iterative thresholding algorithm and a mixture of a soft
segmentation signal with a crisp raw-data signal. The second
sub-problem is soft segmentation through a probabilistic
approach using the semi-supervised learning methodology.
Our probabilistic segmentation is composed of a DL inference
that performs the automatic labeling across unseen datasets
at runtime. This stage works well even on very challenging
modalities; however, it is very training-data hungry. The
probabilistic segmentation is therefore trained in the pre-
training stage from dense labels.

We denote these input labels as pseudo-labels following
the semi-supervised learning literature. While these labels
characterize a particular volume well, the method that
generates them within the volume performs badly when
generalizing across volumes that contain similar structures.
The advantage of the pseudo-labeling method that we
employ is that it produces good results for assigning soft
labels within a volume based on only sparse user input, but
does not generalize across volumes. The other technique
performs good segmentation across volumes but requires
dense input. By integrating these two approaches, the sparse-
input guided segmentation with training a DL classifier,
we obtain a semi-supervised soft segmentation concept
that proves beneficial in the context of visual mapping
within the volume visualization pipeline. We present our
pipeline for visual mapping of two classes, i.e., foreground
and background, or four classes where distinct structures
of a viral specimen are distinguished by distinct colors.
Finally, the volume visualization incorporates integrative
illumination models that further amplify the visual presence
of signal over noise.

As illustrated in Figure 2, the overall method consists
of two parts. The first part is the model generation, which
takes the sparse user-annotated labels as input and produces
dense pseudo-labels. These pseudo-labels are then used
by a DL-based segmentation algorithm to train a final 3D
segmentation model. The second part is the visualization
pipeline, which takes new data, probabilistically segments it
into four classes, estimates the TF parameters, and renders
the data.

4 MODEL GENERATION

The final result of the model generation step is a trained
deep neural network for probabilistic semantic segmentation
that can be used in our proposed visualization pipeline. To
achieve this goal, we draw from concepts in semi-supervised
learning [50], [51]. The semi-supervised learning setting
applies to a situation where a smaller set of labeled data
is available together with a (typically) larger set of unlabeled
data. In our context, we have volumetric data. We are given a
smaller set of manually labeled voxels x1, x2, . . . , xl with
labels y1, y2, . . . , yl and a larger set of unlabeled voxels
xl+1, xl+2, . . . , xl+u, where l is the number of labeled voxels
and u is the number of unlabeled voxels. Specifically, in our
setting, the labeled voxels are sparsely distributed within
a given set of volumes. Since each volume is very large,
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it would be too time-consuming to manually create voxel-
precise labels even for a single volume. Our proposed
solution is to use two different segmentation algorithms,
leveraging the advantages of each of them. First, we use a
weak segmentation algorithm provided by a state-of-the-art
semi-automatic segmentation framework [52]. The advantage
of this algorithm is that it is very good at propagating
segmentation information within a volume. However, it
fails almost completely when propagating segmentation
information across volumes. We use this segmentation
algorithm to create dense pseudo-labels for the remaining
unlabeled voxels xl+1, xl+2, . . . , xl+u.

Second, we use a more powerful DL-based segmentation
algorithm to learn from the pseudo-labels of the weak
segmentation algorithm. The advantage of this algorithm is
that it can learn how to generalize across different volumes.
However, it is significantly more data-hungry, and it is
difficult to train it on the sparse user-provided labels only.
The challenge in our context was to adapt existing deep
learning architectures to our data and tasks. After training,
the segmentation network can predict class probabilities
for each trained class, summing up to 1.0, for each voxel.
Using this semi-supervised two-stage labeling approach,
where manual labels are first propagated to subsets of the
data—which is next used for training of a more general
segmentation problem—also reflects other machine learning
concepts, such as self-training [51], [53] and distillation [54].
In the following subsections, we showcase the unique
difficulties of cryo-ET data. Then we provide more details
about each of the two segmentation algorithms. Finally, we
discuss data management strategies for avoiding memory
issues during training and the training protocol.

4.1 Data

Our dataset consisted of 60 cryo-ET volumes containing
several SARS-CoV-2 virions each. One volume from the used
dataset is available and has been deposited in the Electron
Microscopy Data Bank2 under id EMD-33297.

During the cryo-ET data acquisition process, the electrons
must be very carefully spread throughout the whole tilt series
in order to avoid damaging the specimen. This is conveyed in
a single slice of the volume, where individual structures can
be recognized but the objects of interest are mostly masked
by noise. An example of one slice of such data is shown on
the left side of Figure 3, where several SARS-CoV-2 virions
are present. While some of them are just perceivable to the
naked eye, others easily blend with the surrounding noise.
This make images hard to segment not only for the untrained
eye, but also for neural networks.

Each Cryo-ET volume has a resolution of 1024× 1440×
[227− 500] voxels. The raw data is stored with 32-bit preci-
sion, resulting in 122 GB for all volumes. During training, this
data is converted to 16-bit precision due to mixed-precision
training. The pseudo-label data can be stored with 16-bit
precision, resulting in 61.3 GB per class. Following common
best practices in deep learning, we split our 60 volumes
into three sets: 50 volumes for training, five volumes for
validation, and five volumes for an independent test set.

2. https://www.ebi.ac.uk/emdb/EMD-33297

Fig. 3: Comparison of a single slice of the input data (left),
sparse manual labels (middle), and dense pseudo-labels
(right). Labels are background (yellow), membrane (blue),
lumen (green), and spikes (red).

For this data, we use four classes corresponding to the
spikes, membrane, lumen parts, and background of the SARS-
CoV-2 virus cryo-ET data. To address a more general goal of
foreground-background segmentation, we also experimented
with two-class segmentation, which guided some decisions
in the final model design.

4.2 Pseudo-Label Generation
The input to the pseudo-labeling stage is the raw cryo-ET
volume. The outputs are either soft or hard segmentation
pseudo-labels.

The pseudo-labeling of the data was completed using the
Ilastik software [52]. We used a provided pixel classification
pipeline with all 37 available 3D image features, covering
intensity, edge, and texture properties, for propagating
the sparse manual annotations throughout the volume. A
comparison between the sparse manual annotations and
dense pseudo-labels for a single slice is shown in Figure 3.

For each input volume, we defined four classes: (1)
Background, (2) Membrane, (3) Spikes, and (4) Lumen. In
our foreground-background segmentation, we only use
the Background class and combine the other three classes
into a Foreground class. On average, an experienced image-
segmentation user spends around 30 minutes creating sparse
manual labels for a single volume. The amount of manual
annotations and the number of annotated slices along each
axis depends on the individual volume and its content.
After the manual labeling, an additional 1.5-4 hours of
computation time is needed to propagate the labeled features
to the whole volume and produce the pseudo-labels, which
are validated by the annotators (see Figure 3 for a single
slice of annotations). Ilastik works well for single-volume
segmentation and propagating sparse user annotations to
the whole volume, but not for propagating labeled features
from one volume to other volumes (see Figure 4) and for
this reason all the volumes were sparsely labeled manually.
In this study, we use Ilastik as is and do not investigate the
reasons why it fails to propagate the labeled features to the
other volumes, contrary to one of its intended use cases on
2D images. The segmentation algorithm in Ilastik cannot
separate structure from noise. By contrast, our proposed
combination of two learning algorithms, drawing from
semi-supervised learning, produces far better results, as
demonstrated in the results section of this paper. The pseudo-
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Fig. 4: Comparison of a segmentation slice of the same
volume using labeling parameters trained on manual an-
notations of the volume with the use of labeling parameters
estimated either (a) on another volume or (b) in Ilastik.

label generation stage can optionally provide soft or hard
labels as output.

4.3 Manual-Label Generation

To further support the decision of using pseudo-labeled data
as training data in our system, we manually labeled a sub-
volume of the data from the test set. The segmentation was
performed manually on a per-voxel basis by an experienced
annotator and was validated by the domain expert. Due to
the highly time-consuming nature of manual annotation of
such noisy data, we segmented a single SARS-CoV-2 virion
within a sub-volume of 256×256×256 voxels. The annotation
of four classes: Background, Membrane, Spikes, and Lumen took
56 hours and was performed using Amira Avizo3.

4.4 Neural Network Architecture

To make well-informed design choices, we compared
three different neural network architectures for foreground-
background segmentation. The number of 3D segmentation
approaches has grown rapidly in recent times, however, most
approaches do not address the TEM modality; therefore, it is
unclear exactly what constitutes the state-of-the-art approach
for our segmentation problem. To counter this, we chose
representatives of three major branches that have emerged
from prior work on 3D segmentation, namely the standard
U-Net, a residual learning approach, and a DenseNet. This
choice accords with the findings of Moebel et al. [33],
the most closely related to our approach, where authors
used a relatively standard 3D U-Net in their recent work
on macromolecule localization. Based on the experimental
results using the respective official implementations, we
selected the most suitable model taking into account its
performance and training duration.

The first architecture is the 3D U-Net [21]. It contains an
encoder (contracting path) and a decoder (expanding path).
The encoder part extracts features from the studied volume,
and each of its layers contains two 3 × 3 × 3 convolutions,
followed by a rectified linear unit (ReLU). The decoder
upsamples the compressed volume back to its original
resolution. Additionally, there are skip connections between
the corresponding encoder and decoder layers where the
resolution matches. This provides high-resolution low-level
features to the decoder.

3. https://www.fei.com/software/avizo3d/%C2%A0

TABLE 1: Details of three networks

NETWORK LAYERS PARAMETERS (M: MILLIONS)

3D U-Net 18 19M
3D U-Net+ResNet 27 1.5M
3D DenseNet 47 1.6M

The second architecture is the 3D residual symmetric
U-Net [24] (3D U-Net+ResNet). It contains U-Net’s three
main components (encoder, decoder, and same-scale skip
connections). To enhance the propagation of volumetric
context information, each layer is set up as a residual sub-
network instead of using standard convolution layers. The
worst reconstruction quality along the z-axis should be taken
into account by omitting downsampling along z, as well as
by using anisotropic convolution kernels (7× 7× 5) to match
the anisotropic nature of the reconstructed volume data.

The last architecture is the skip-connected 3D
DenseNet [27] (3D DenseNet). This network also includes a
contracting and expanding path. To increase the receptive
field of the feature maps, the contracting path contains
four dense blocks. Each dense block contains four layers
consisting of 3 × 3 × 3 convolution, batch normalization,
and ReLU activation with growth rate k = 16. There are
direct connections from every layer to all subsequent layers.
These connections help strengthen feature propagation. To
utilize the multiple scale features in the intermediate dense
blocks, the expanding path contains four 3D-upsampling
operators to directly upsample the low-resolution features
to the output resolution. The properties of each network are
presented in Table 1.

Using the official implementations, we experimentally
determined that all the network architectures are suitable
for use in such cases but that the standard 3D U-Net
approach is on par with 3D U-Net+ResNet and outperforms
3D DenseNet. Moreover, the training of 3D U-Net-based
networks is far shorter and the U-Net architecture is much
simpler than DenseNet. This led us to choose the 3D U-Net
variant for subsequent experiments (see subsection 6.1).

To specialize the model and to retain generality for a
background extraction that can be applied to other data
in the cryo-ET domain, we trained the forward-background
model with soft pseudo-labels. The soft segmentation aligned
well with the visualization task, retaining the soft informa-
tion throughout the pipeline. For further specialization, as
demonstrated on our data, we retrained the model for four-
class segmentation, this time with hard labels to maximize
the distance between classes. We only needed to retrain the
final layer of the model, which is much faster than training
the model from the beginning. Moreover, the results were
comparable to direct four-class soft and hard segmentation,
as can be seen in Figure 18 in the Supplementary Material.
Not only was the training faster (4 instead of 5 hours
per epoch), it is also easy to change the specialization by
only retraining the last layer. To cope with soft labels in
the foreground-background segmentation, we considered
this segmentation as a regression task, where predictions
represent the probability of a voxel belonging to a specific
class. We experimented with different activation functions for
the output layer of the network. We tested sigmoid, softmax,
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Fig. 5: Schematic of an individual cryo-ET volume divided
into nine partially overlapping chunks.

normalized ReLU [34], and without activation, and paired
them with appropriate loss functions, such as binary cross-
entropy (BCE), mean squared error (MSE), and adaptive wing
loss (AWL) [55]. AWL was initially proposed for heatmap
regression, where regions with high intensity are usually
more relevant for accurate predictions, while a low-intensity
background can be very blurry. In practice, use of this loss
tends towards the MSE on the background prediction and to-
wards the mean absolute error on foreground predictions. We
included this loss in our experiments because the described
loss behavior is also desirable in our soft segmentation.

4.5 Data Management

Due to the high resolution of our volume data, it is currently
infeasible to train deep models on whole volumes directly, as
we run into memory limitations. To alleviate this issue, we
train our models only on blocks of size 128×128×128 voxels.
Since our aim is to train on the blocks in a random order
to prevent catastrophic forgetting, we must load the blocks
from multiple volumes simultaneously, which introduces a
storage bottleneck. To deal with this bottleneck, we divide
each of our volumes into nine partially overlapping chunks
of size 512 × 512 × [227 − 500] prior to blocking to reduce
their storage footprint; see Figure 5. The chunks significantly
overlap to avoid artifacts at the chunk borders. We also
applied min-max normalization for the whole volume before
splitting it into chunks. We iterate over all the chunks in each
epoch during the training and randomly crop the 128×128×
128 input block from each chunk. During the inference, we
block the full volume into the 1283 blocks with an overlap
of 32 × 32 × 32 voxels. To get the prediction of a whole
volume from overlapping blocks, we perform alpha-blended
stitching in the overlapping regions.

4.6 Training

We used PyTorch [56] to implement the network architectures.
For two-class segmentation, we experiment with both soft
and hard labels as targets. For hard labels, we train each
network with binary cross-entropy loss. The performance

of the three network architectures is reported in Table 2
and discussed in subsection 6.1. We select the two best
performing networks (3D U-Net and 3D residual symmetric
U-Net) for evaluation with soft labels using MSE and AWL.
The evaluation shows that the 3D residual symmetric U-Net
with MSE loss performs best for such a task.

Optionally, we experiment with pre-training the four-
class segmentation network with weights from the two-class
segmentation network. In this case, we take the learned
weights from the best performing two-class model, omit the
last layer, and transfer them to a new model used for four
classes. The last layer of the new model is adapted to output
four probabilities and is then fine-tuned for the four-class
segmentation. This is achieved by changing the number of
output channels of the last layer from one to four, initializing
this layer using random weights, and retraining the model.
We use cross-entropy loss in this step. Note that our network
still outputs soft labels (continuously-valued probabilities)
that we use to visualize the segmentation certainty to the
user, regardless of it being trained with hard or soft labels.
The weights of the network are optimized using the Adam
optimizer [57] (β1 = 0.9, β2 = 0.999) with a batch size of 4.
We use a learning rate of 0.001 and weight decay of 0.0001 for
regularization and mixed-precision training [58] to alleviate
memory limitations.

5 VISUALIZATION PIPELINE

The visualization pipeline leverages the neural network
trained in the model generation stage to obtain the prob-
abilistic segmentations of new volumes needed in the TF
estimation and rendering stages described below.

5.1 Opacity Transfer Function Estimation

In our visualization system, we combine soft segmentation
and raw input data. While we could attempt to extract some
local geometric features from the raw data, we cannot do the
same for the segmentation. The segmentation is obtained
with deep neural networks from pseudo-labels, and we
cannot assume that the local geometric features predicted by
such a model reflect the corresponding geometric features
in the original raw data. For this reason, we do not want
to rely on any complex TF design process that takes into
account such features and/or gradient information. We
follow the simple ramping approach, which proves to pro-
duce good results while not relying on complex properties.
In addition to that, the simplicity of the ramp TF allows
simple modifications and fine-tuning by domain experts
after the initial TF configuration is estimated automatically.
After manual experimentation, we realize that the right
limit of the ramp function should be at the end of the
fuzzy value interval of [0.0, 1.0], at 1.0 to obtain the best
visual results, leaving only the left limit of the ramp as an
unknown parameter that we will estimate. To find this ramp
parameter, we first use a simple iterative image thresholding
technique [59] outlined in Algorithm 1 for the calculation
of an appropriate threshold value for each slice, the final
volume threshold is a mean value of the calculated per-slice
values. The algorithm iteratively extracts a foreground object
from the background by determining the best threshold value
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Algorithm 1: Algorithm for determining an ap-
propriate threshold value of an individual slice.
The final volume threshold is a mean value of the
calculated per-slice values.

AutoThreshold (slice)
Input : Slice - slice
Output : Slice threshold - sliceThreshold

T = [], i = 0;
imHist = histogram(slice);
meanInt = mean(imHist);
T [i] = round(meanInt);
do

meanIntBelowT = imHist < T [i];
bgIntegrator = mean(meanIntBelowT );
meanIntAboveT = imHist ≥ T [i];
fgIntegrator = mean(meanIntAboveT );
i = i+ 1;
T [i] = round((bgIntegrator+fgIntegrator)/2);

while (abs(T [i]− T [i− 1]) ≥ 1);
sliceThreshold = normalize(T [i]);

0 a
0

1

1

Fig. 6: Ramp TF. Value (a) is estimated for each class
separately.

through frequency distribution analysis (for more details,
see Supplementary Material). The thresholding algorithm is
applied to all slices (in the vertical direction) of a segmented
volume individually for each class i to take into account
differences in volume due to the data acquisition (water-air
boundary) and reconstruction (missing wedge). For final
rendering, the threshold for an individual segmentation class
i is calculated as:

ai = mean{AutoThreshold(slicej); slicej ∈ volumei}, (1)

where slicej is j-th slice in the volume of the i-th class.
The threshold value ai is taken as the left limit of the ramp
function ri (see Figure 6) for the i-th class:

ri(s) = max

(
pi(s)− ai
1.0− ai

, 0.0

)
, (2)

where s is a sample along the ray, pi(s) is the class probability
for the i-th class at the sample location s in the corresponding
volume, and ai is the left limit of the ramping function. This
could also be viewed as a separable 2D TF [43]. While there
might be some additional benefits of using a non-separable
2D or even higher dimensional TF, we decide to keep the
simple 1D TF design and minimize the user load.

Slice-based automatic thresholding did not return an
equal value for all the slices of the volume. We found that the

Fig. 7: Examples showing how the foreground-background
data (top row) and four-class segmented data (bottom row)
are rendered in different stages of the pipeline: (a) material
color only, (b) added local ambient occlusion, and (c) added
soft shadows and bloom. In all visualizations, the respective
masks are multiplied by the low-pass filtered original data.

thresholds decreased for slices towards the top and bottom
of the volume. We investigated the option of addressing this
phenomenon in our TF—as the threshold changes can be
nicely approximated with a simple quadratic function—but
there is no significant improvement in the final visualization,
making the use of a more complex TF less attractive.

5.2 Rendering
Our goal is to achieve real-time speeds for the whole volume
rendering, which limits the selection of the volumetric
rendering technique. As an input, we take a raw cryo-ET
volume Vraw, three soft segmentation volumes Vi, user-
defined segmentation class colors ci, and the estimated
opacity TF parameters presented above, defined with a
corresponding function ri. The raw volume Vi is inverted
and low-pass filtered (mean filter with 3-voxel radius) to
emphasize the structures in the preprocessing step since the
structures in the original data are represented with lower
values.

In order to produce meaningful and clear visualizations
of the fuzzy data, we avoid using normals for illumination.
As normals would have to be estimated by calculating
gradients, not only would we amplify the noise by using the
normals, but we would also increase the amount of texture
fetches that would have to be performed per sample. Instead,
we approximate light scattering effects by sampling areas
surrounding the illuminated voxels. We use a single spherical
light to illuminate the scene for local shadow estimation. The
rendering consists of four stages:

1) Material color: A unique user-defined base color is
used for each segmentation mask, which must be sig-
nificantly different from other classes to distinguish
each class in visualization—see Figure 7 (a).

2) Local ambient occlusion: Local ambient occlusion
(LAO) is calculated in the object space by randomly
sampling a sphere around each voxel and calculating
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the sum of the sampled voxel values from all the
masks [60]. The number of samples can be defined
by the user—for our test case, we used 50 samples.
This adds local shadows that enhance the depth
perception during the interaction. The sampling
sphere is offset upwards so that the illumination
of a surface is not attenuated by the voxels that lie
below it. This in turn creates the illusion of shadows
cast by a very large light source positioned above the
volume. Results are shown in Figure 7 (b).

3) Soft shadows: Soft shadows (SS) are achieved using
Monte Carlo integration of directional in-scattering,
calculated in the object space by sampling a cone
starting at a given voxel oriented towards a spherical
light source [61]. The contributions of the other
voxels are modulated by their distance to the orig-
inal voxel. The SS help distinguish individual ob-
jects from each other and further enhance depth
perception—see Figure 7 (c).

4) Post-processing: In the post-processing step, we add
bloom by separating the brightest parts of the image
via a tone mapping curve, blurring them with
a Gaussian kernel, and adding the result to the
original visualization. The purpose of the bloom
is to increase the perceived dynamic range of the
rendered scene by letting the brightest parts of the
image contribute to the brightness of the surrounding
areas. In combination with tone mapping, which can
help reduce the clipping of the brightest image parts,
the bloom effect can increase the perceived realism
of the scene without obscuring any important details.
This post-processing is executed in the screen space—
see Figure 7 (c).

The first three steps of the rendering can be described by
the following equations:

co =
smax∑
s=s0

imax∑
i=i0

ri(Vi,s) · rraw(Vraw,s) · ci · sscs · laos · as,i

as,i =
s∏

k=s0

i−1∏
j=i0

(1− rj(Vj,k) · rraw(Vraw,k)) (3)

where co is the output color, s0, . . . , smax is the ordered set
of samples along the ray, i0, . . . , imax are the segmentation
classes, ri(x) is the ramping function for the i-th class, Vi,s is
the s-th sample along the ray inside the i-th class volume, ci
is a user-defined material color for the i-th class, sscs is the SS
contribution at sample s, and laos is the LAO contribution at
the s-th sample. The second equation as,i is the accumulated
alpha on the ray up to sample s for class i.

The starting values of all the left ramp limits (for all
volumes) are estimated with the approach presented in the
previous section but are still user-adjustable.

The composition of the contributions along the rays cast
through every pixel of the rendering canvas produces the
real-time visualization demonstrated in the following section;
a video is available in the online Supplementary Material.

6 RESULTS

We tested our technique on a challenging but high-quality
imaging dataset depicting SARS-CoV-2 virions. We were

TABLE 2: Performance on the validation set of three network
architectures for binary segmentation

METHOD BCE LOSS F1 SCORE TRAIN TIME

3D U-Net 0.4280 0.6896 9h 10m
3D U-Net+ResNet 0.4360 0.6776 11h 58m
3D DenseNet 0.4701 0.6254 21h 21m

provided with 300 cryo-ET volumes of approximately 0.5 TB
in total size. Due to limitations on the number of volumes
that can be used for training and the availability of training
segmentation, we limited our experimental dataset to 60 vol-
umes. We performed a series of experiments on visualizing
the noisy cryo-ET data and obtaining the fuzzy interpreta-
tions needed for visual mapping. We briefly summarize the
outcome of these experiments below.

For the segmentation results, we begin by introducing
the evaluation metrics used in our experiments before
outlining our architecture selection, and lastly presenting
the results of our best models for both soft foreground-
background segmentation and segmentation into spikes,
membranes, lumen, and background. For the evaluation of
our visualization, we compare our technique with standard
rendering techniques that are available in current off-the-
shelf solutions and show a substantial improvement in visual
quality.

6.1 Segmentation Results
For evaluation, we use the F1 score or Dice similar-
ity coefficient—a common evaluation metric for image
segmentation—suitable for datasets that contain imbalanced
class distribution. We define TP as the number of true-
positive predictions, FP as the number of false-positive
predictions, FN as the number of false-negative predictions,
and TN as the number of true-negative predictions. The
F1 score measures the similarity between the labels and
predictions and is defined as

F1 =
2TP

2TP+FP+FN
(4)

A higher F1 score indicates a better result. Note that the F1
score requires the use of discrete labels. To calculate an F1
score for our continuous values in the soft segmentation, we
use a threshold of 0.5. This threshold is applied for both the
label and prediction. In the four-class case, we use argmax to
discretize the predictions. We consider pseudo-labels as the
ground truth.

We evaluated different network architectures using binary
labels, as detailed in subsection 4.6. We compared the
standard 3D U-Net [21] with residual symmetric U-Net [24]
(3D U-Net+ResNet) and 3D DenseNet [27] in terms of their
predicted standard binary foreground-background labels on
our data. Table 2 and Figure 15 in the Supplementary Mate-
rial show the results of this experiment. The standard 3D U-
Net and 3D U-Net+ResNet achieved a similar performance,
clearly outperforming 3D DenseNet both in terms of F1
score and training time. Based on these results, we decided
to further investigate the two 3D U-Net-based models.

In the next experiment, we trained the two 3D U-Net-
based models for soft segmentation. In contrast to the
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TABLE 3: Soft segmentation results comparing different
activations (ACT) and loss functions.

MODEL U-Net U-Net+ResNet

LOSS+ACT LOSS F1 SCORE LOSS F1 SCORE

MSE+NONE 0.0184 0.6567 0.0157 0.6801
AWL+NRELU 0.0409 0.5175 0.0561 0.3507

binary label experiment, we faced a regression problem and,
therefore, investigated several activation functions for the
output layer and several loss functions. The results from this
experiment can be seen in Table 3 and in Figures 16 and 17
in the Supplementary Material. The comparison shows that
3D U-Net+ResNet with MSE loss worked best. This is due
to the decoder of this network, which outperformed the 3D
U-Net. Also, note that the F1 score was comparatively low
in this experiment. This was due to the fact that we needed
to binarize both the soft labels and the predictions in order
to compute the F1 score, which may have detrimentally
affected numerically accurate predictions that were near the
binarization threshold.

Lastly, we fine-tuned our best models from the previous
experiment for use with all four classes. As our four-class
labels are rather decisive, we fine-tuned the model using
discrete labels instead of soft labels. We aimed to train a
general foreground-background segmentation model for
soft labels that could be used for other datasets in the
same domain. In the case of SARS-CoV-2, there are four
classes, so we fine-tuned the model for four-class labels.
Another reason is that training directly on four classes
would require too much time and too many resources. For
foreground-background segmentation, we required 512 GB
of RAM; with four GPUs, it took approximately 2 hours
and 15 minutes per training epoch. In the case of four-class
segmentation, because the size of data increases four times
and memory limitation, the batch size had to be drastically
smaller, further prolonging the training to taking 4 hours
per epoch. The F1 score of this fine-tuned model on the
validation set was 0.9773, and the cross-entropy loss was
0.0748. One of the reasons why the F1 score, in this case, was
higher than in the foreground-background case is because
of the nature of the F1 score. The F1 score is a good
measure for incorrectly classified cases. In the foreground-
background segmentation, there were two classes, so the F1
score penalized wrong predictions to a higher degree than in
the four-class segmentation.

The training of the final foreground-background model
took 5 days and 16 hours to converge. The fine-tuning of the
selected transfer-learned model took an additional 2 days
and 15 hours. The model inference took 20-25 seconds per
volume on a single Nvidia V100 GPU computing node or
10-15 minutes per volume on a workstation with a single
Nvidia Quadro RTX 8000 GPU.

The pseudo-labels were generated using Ilastik on a
workstation computer with 2×Intel Xeon Gold 6230R @ 2.1
GHz, 256 GB of RAM, and a Nvidia Quadro RTX 8000 48
GB GPU running Microsoft Windows 10. The deep learning
experiments were performed on diverse hardware: the model
selection experiments were mostly performed on IBEX—a
heterogeneous group of computing nodes—at KAUST, and

TABLE 4: F1 score comparison for manual and pseudo labels
with our model predictions.

COMPARISON F1 SCORE

Manual labels vs. 3D U-Net+ResNet 0.81
Pseudo labels vs. 3D U-Net+ResNet 0.77
Manual labels vs. Pseudo labels 0.70

TABLE 5: Rendering performance evaluation for both seg-
mentations on two resolutions, given in milliseconds for each
step of rendering: basic DVR, soft shadows (SS), and local
ambient occlusion (LAO).

RESOLUTION BASIC DVR SS LAO

FOREGROUND-BACKGROUND:
Full-HD 16.59 2.55 12.14
4K 19.71 6.98 50.34

FOUR-CLASS:
Full-HD 19.27 1.98 17.21
4K 35.01 6.08 46.93

the final model optimization was performed on a single
computing node with 2×Intel Xeon Gold 6242 @ 2.8 GHz,
512 GB RAM, and 4×Nvidia Quadro RTX 8000 48 GB GPUs
running Ubuntu Linux. The neural network’s inference time
was measured on both the machine used for labeling as well
as the computing node.

For validation, we compared the performance of our
model for manual and pseudo labels using the F1 score on
an annotated subvolume. Additionally, we compared both
types of labeled data, also using the F1 score. As can be seen
from Table 4 they are all on par with each other. For the
specific manually labeled subvolume, the model results are
even closer than to the pseudo labels.

6.2 Rendering Results

The final visualizations of the proposed approach are dis-
played in several figures. The teaser image in Figure 1
shows how we get from the solid cryo-ET volume, over
the foreground-background segmentation, to the four-class
segmented rendering. We show segmentations and final
renderings of a single virion segmented with the foreground-
background model, as well as with the four-class model, in
Figure 8. The dimension of this single virion sub-volume is
246× 264× 340 voxels.

For visualization purposes, the visualization input data—
soft segmentation generated with our model—was reduced
to 8-bit precision. In the case of the foreground-background
segmentation visualization, two volumes were loaded to the
GPU, consuming 0.69 - 1.37 GB of GPU memory. In the case
of the four-class segmentation visualization, four volumes
were loaded to the GPU, resulting in 1.37 - 2.75 GB of memory
use. We also tested our system on the full 16-bit precision—
resulting in 2.75 - 5.49 GB of memory consumption. Apart
from the loading times, there were no other differences in
the performance, i.e., the rendering times were the same.
This shows that the method is compute and/or texture fetch
bound and not bandwidth bound. In Table 5, we see how
rendering performance varies by segmentation method and
viewport resolutions.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3186146

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



11

Fig. 8: One slice comparison of a single virion segmented
with the foreground-background approach (a) and with
the four-class approach (b)—spikes in blue, membrane in
green, and lumen in red. The 3D visualization of these
segmentations with our rendering pipeline is shown in (c)
and (d), respectively—spikes in pink, membrane in gray, and
lumen in blue.

We ran an automated visualization task of 360° tilt rota-
tion of all five test volumes for the foreground-background
segmentation (two volumes) and the four-class segmentation
(four volumes). Each experiment was run five times on full-
HD (1080p) and 4k (2160p) resolution, respectively; then,
the measurements were averaged. The portion of the screen
covered by the volume rendering was the same for both
resolutions. The visualization evaluation was done on a
workstation computer with 2×Intel Xeon Gold 6230R @ 2.1
GHz, 256 GB of RAM, and an Nvidia Quadro RTX 8000 48
GB GPU running Microsoft Windows 10.

To show the difficulty of rendering the cryo-ET data
directly, we showcase comparisons with other volume
rendering approaches of the raw data: ISO surface render-
ing, emission-absorption model (EAM), maximum intensity
projection (MIP), and volumetric path tracing (VPT). All
these methods were used for rendering on a 2k canvas
and run in real-time, except VPT, where one needs to wait
for the convergence. Since the results using the original
data were unusable, we show the renderings performed on
inverted low-pass filtered data, which we also used in our
approach to suppress high-frequency noise and emphasize
the specimen structures. The visual comparison with other
DVR techniques is displayed in Figure 9. The output images
might significantly vary with the use of different rendering
parameters, e.g., ISO values and transfer functions. In the
presented examples we used two different ISO-values and
tried to set the best 2D transfer functions we could. While the
basic shape outlines are visible—even with inverted low-pass
filtered data—the details are unrecognizable. There is also
no easy way to configure a 2D TF to distinguish among the
four classes we segmented in our approach. In Figure 10,

Fig. 9: Comparison with other DVR techniques: (a) and (b)
ISO surface rendering with two different ISO values, (c) VPT,
(d) MIP, (e) EAM with color TF, and (f) our approach.

Fig. 10: Comparison of our method using only the segmenta-
tion volume (a), and multiplying the segmentation volume
with the raw data (b).

we show the impact of including the original data in the
visualization. Specifically, we multiplied the original data
with the segmentation volumes after opacity mapping of
each volume (with low-pass filtered data) according to the
equations 3 to reveal the fine details and structures of the
original data.

To further demonstrate the difference between our ap-
proach and common DVR techniques, we used the data
from our preprocessing pipeline for rendering with common
DVR techniques with the same parameters. In Figure 11, we
see that most details were retained with our approach (a),
while EAM (b) blurred the structures, ISO (c) failed to show
all the desired data, and MIP (d) propagated values from
structures in the back to the rendering. For comparison, we
also added the VPT (d) results obtained after 30 minutes of
convergence, which showed the most details. The top row
shows the rendering without LAO and SS; the bottom row
adds both (except for VPT).
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Fig. 11: Comparison of our approach with other DVR
techniques. The top row shows the output of regular DVR
approaches, while in the bottom row we add LAO and SS:
our approach (a), EAM (b), ISO (c), MIP (d). Image (e) shows
VPT after 30 min convergence.

7 DISCUSSION

A common problem in biological research, especially in cryo-
EM, is the lack of ground-truth data. One of the hazards
of basing a visualization technique on segmented data is
that it is difficult or impossible for a researcher to detect
errors in the segmentation pipeline. Traditional approaches
used for obtaining such visualization consist of manually
segmenting the data or combining denoising and threshold-
ing steps. The denoising is achieved with low-pass filtering
or DL-based denoising methods. While complete manual
segmentation is not feasible for large datasets, we show how
our approach compares to the denoising and thresholding
approach. In Figure 12, we present the results on a single slice
of a tomogram. We compare the thresholded results after
applying the mean-3 filter and Topaz Denoise [13] method
to the data with our approach. Specifically, we compare local
and global automatic thresholding methods implemented
in the Fiji [62] image processing package. The in-depth
comparison of automatic thresholding is presented in the
supplementary material. We manually selected the results of
the best performing method, which produced results with
the least visible noise and highest specimen preservation. For
mean-3 filtered data, this was Yen [63] global thresholding
method, and Moments [64] global thresholding method for
Topaz Denoise denoised data. Still, this is only foreground-
background separation. Further segmentation is traditionally
performed using a DL approach which is in line with our
proposed approach.

We discussed the results of our work with two domain
experts. One domain expert is the co-author of this paper,
and the other is an independent domain expert.

The first expert is a physicist specializing in biophysics.
He has 12 years of experience in the field and eight years
in cryo-ET. He is head of the cryo-ET laboratory at his
university and works with cryo-ET data almost daily, of
biological specimens only. He was involved in the design
process and provided the motivation from the view of a
structural virologist. He was in charge of the acquisition of
the data used in this study.

He explained that experts mostly preprocess data with a
Gaussian filter and analyze it manually (e.g., selecting each
spike position manually on 2D slices). They perform weeks-

Fig. 12: The comparison between traditional foreground-
background segmentation techniques: (a) mean-3 filtered
data and (d) thresholded results using Yen [63] (e); (b)
denoised data using the Topaz Denoise method and (e)
thresholded results using Moments [64]; (c) original data
and the background classification using our approach.

long reconstructions of structures before they are able to see
them in 3D. He confirmed that our foreground-background
pseudo-labels are good but could be improved with voxel-
precise manual annotation, especially for the lumen structure
annotations, where specialized domain knowledge would
be beneficial. Moreover, he suggested that creating pseudo-
labels might be easier on preprocessed (inverted and low-
pass filtered) data, which should be investigated in the future.
He confirmed that the results are satisfactory for the amount
of time spent on the segmentation task and that full voxel-
precise manual annotation, which is used for the parts of the
volumes in their pipeline, would take up to several days per
volume. He suggested omitting the top-most and bottom-
most parts of the volumes where there are artifacts due to an
air-water boundary.

He also confirmed that our neural network’s predictions
are good. Moreover, he supported that, in some cases, the
results are even better than the pseudo-labels, exposing
several structures that were previously not identified as
well as making the class borders sharper. Such structures are
presented in Figure 13. He suggested that a dust removal ap-
proach could further improve the segmentation by removing
particles smaller than a given diameter.

He also validated our labeling of the data. After reviewing
the four-class pseudo-labels, he concluded that the labeling
was performed well but could be further improved with
voxel-precise segmentation. This is true for the lumen
structures and the portions of the membrane and spike
annotations (see Figure 14 (a), (c), and (e)). It was apparent
that there were still some spike outlines in parts of the
membrane and vice versa. He suggested addressing this
in the future by trying to impose some local limitations
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Fig. 13: Comparison of original input data (a), data seg-
mented with our model (b), and pseudo-labels (c). In the
orange boxes parts of viruses that were not labeled during
the pseudo-labeling process but were segmented with our
approach are shown. In the red boxes the areas between the
membrane and spikes, which are cleaner in the results from
our model, are shown.

to the pseudo-labeling process. After seeing the automatic
segmentation results, he was positively surprised at how
well the membrane and spike segmentation performed (see
Figure 14 (d) and (f)). He was delighted that the spikes
were also present in the missing wedge regions, where he
did not expect such good results (see the right-most virions
in Figure 1 and Figure 8 (d)). He confirms that the lumen
segmentation could be further improved, possibly with better
pseudo-labels. Furthermore, under the expert’s supervision,
we voxel-precisely labeled a subvolume of the dataset and
he validated our labels as being as good as if they would be
produced by the domain expert.

We introduced him to three visualization approaches:
EAM, MIP, and our approach. He confirmed that he is
familiar with the basic DVR visualization techniques and
that in his work he mostly uses the visualization pipeline
integrated into Chimera [65]. He confirmed that basic DVR
methods are not suitable for direct rendering of the data and
that our approach is excellent. He supported the claim that
the details added from the original tomogram data enhanced
the surface structure’s comprehension. He pointed out that
existing visualization packages have additional functionality,
which is very useful to the researchers—such as dust removal—
but is orthogonal to the available visualization settings.
He supported that manual transfer function adjustment
is beneficial for fine-tuning the output. Furthermore, he
suggested adding options to change the lighting conditions,
which would help explore further details of the specimen.
Additionally, we asked the expert how the output of different
rendering stages helps with the perception of structures in
the data. He said that adding local ambient occlusion helps
the most with shape comprehension and depth perception.
Soft shadows and post-processing are less beneficial but
still help in distinguishing smaller structures apart from one
another.

The second expert is a cell biologist specializing in
electron microscopy. He has more than 19 years of experience
in EM and 15 years with Transmission Electron Microscopy
specifically. He is a team lead of the electron microscopy
laboratory at our university and works with EM/ET data
on average three times a month. At first, his work only
included biological specimens, but in the last 12 years he
has also worked with polymer membranes and catalytic
nanoparticles. We have not collaborated with this domain

Fig. 14: Comparison between four-class segmentation of
membranes (bottom), spikes (middle), and lumen (top)
for pseudo-labels (left) and results of our model (right).
The clearer output produced by our model is visible. The
background class is not displayed.

expert, and we regard his feedback as fully independent.
His first impression was that the data are good. They are

well aligned, the missing wedge is apparent and supports
the good alignment, and the fiducial markers were mostly
removed. He also confirmed that the pseudo-labels are
good, especially for the time spent per volume since good
fully manual annotation could take up to several days
per individual volume. Due to the resolution of the data,
the segmentation could be further improved by separately
selecting individual layers of the lipid bilayer membrane.

He also confirmed that foreground-background segmen-
tation by our model is good. To some extent, it gave even
better insight into the structures than pseudo-labels. While
the spikes were sharper in the pseudo-labels, they sometimes
overlapped and merged. On the other hand, the space
between the spikes and membrane were often smudged
in the pseudo-labels; the space was much cleaner in the
results from our model (see red boxes in Figure 13). Visually,
the results from our model were closer to the real data
due to less saturated areas. He also pointed out that, in
many occurrences, our model found more structures than
the pseudo-labeling process (see orange boxes in Figure 13,
and the value bleeding was more prominent in the pseudo-
labels than in the results from our model, which showed
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cleaner structures.
We showed him three methods of 3D visualization of the

data: EAM, MIP, and our approach. He pointed out that he
is familiar with even more visualization techniques available
in the EM-related software (IMOD [66], Amira Avizo, and
Chimera [65]). He furthermore mentioned that common
volume rendering techniques (MIP, ISO) are not suitable
for visualizing such data. He mostly uses transparency-
based methods (EAM) that give better insight into the
underlying data structure. Our visualization approach was
very appealing to him. It presented the structures as solid
while still maintaining the surfaces’ textural details that
reveal the specimen’s detailed structure.

Finally, he pointed out that automation in the segmenta-
tion and visualization of EM data is crucial for accelerating
the field’s development. As it was pointed out by the expert,
our work addresses this cryo-ET bottleneck and enables
scientists from these domains to drastically speed up their
research. We present one quote from his statements during
the interview: “I doubt that you are fully aware about how
impactful your technology will be for our field, once it becomes
available as a tool.” Our method allows for a quick inspection
of the acquired data, making it easier to prioritize which data
should be further analyzed first. In the past, vast datasets
were acquired but never selected for analysis. With the use
of the presented approach, one could revisit these datasets
to discover potential interesting specimens.

The experts agreed that “From the view of a structural
virologist, the method proposed in this work offers a quick, semi-
automatic way to quickly de-noise the cryo-ET data. The result
looks far better than simply applying an adapted Gaussian filter.
From the results, at least the number of spikes per virus is easily
discernible, which is very helpful for both vaccine developers and
structural biology work.”

Even though we used generated pseudo-labels for train-
ing our deep model, we showed that this is a viable
alternative to the use of manually labeled training data only.
The same was also shown in [33], where authors compared
two ways of preparing the annotations for training the
deep model: (1) an alignment of subtomogram averaged
structure shape or (2) a sphere with a user-defined radius for
individual structure type. This saves an enormous amount
of laborious manual work for the field experts. Full manual
annotation of datasets of the same size would take several
orders of magnitude more time than pseudo-labeling. More-
over, the expert supported that manual labeling is very rarely
still used in the field, not only because of its time demand
but also due to the subjective nature of annotations. Not
only do the segmentation distinguish between the individual
annotators by a margin, but they also differ a lot for the
same annotator throughout the annotation process. By using
pseudo-labels, we largely omit these problems.

The second expert also provided us with feedback on the
impact of different rendering stages on the final visualization.
While the basic DVR gives a good insight into how the
data is structured and where the individual classes are, the
expert confirmed that LAO adds much-needed shading of the
structures, which enables users to easier comprehend their
shape and depth relation. Additionally, he expressed that
this makes the LAO stage very important for comprehending
structures in the volume. Moreover, he agreed that the SS

and post-processing stage with tone mapping and bloom are
also beneficial, but to a lesser extent. From his observations,
he concluded that the SS stage enables users to more easily
distinguish between individual structures close together, and
the post-processing stage, which includes tone mapping
and bloom, additionally emphasizes the fine details of the
structures.

As with all the DL-based segmentation approaches, also
the presented approach contains uncertainty. By interacting
with the lower ramp TF parameter (a in Figure 6) for
an individual class, the users can obtain insight into the
uncertainty of the particular segmentation class.

A number of vaccines are based on inactivated and
purified viruses. However, SARS-CoV-2 spikes are known
to be fragile and can easily detach or shed their S1 subunits
when subjected to physical shock, a freeze-thaw process,
or improper chemical inactivation. A recent study [67]
showed that 74% of spikes on the BPL-fixed SARS-CoV-
2 viruses were damaged. Such fragility imposes challenges
for vaccine development since losing or damaging spikes
means weakened antigenicity or a less effective immune
response. Therefore, cryo-ET offers a high-resolution control
for checking the intactness of the antigen number and
structure of the inactivated virus. The method proposed
in this work offers a quick and reliable way to count the
number of antigens.

For structural biology, our proposed method offers a
quick way to segment and identify the spikes of SARS-CoV-2.
Once their positions are converted to 3D coordinates, the
spikes can be cropped out for subtomogram averaging and
solving structures. Prior to using this method, which will
save a lot of time, cryo-ET specialists typically established
the coordinates through tedious manual identification or
unreliable template-matching.

The overall feedback from the experts was very positive.
They confirmed that meaningful and expressive visualization
is crucial for understanding the data. They gave us some
directions for possible future extensions of the presented
work in the segmentation and the visualization aspects. They
agreed that having such a tool in their processing pipeline
would definitely speed up and simplify their analysis work-
flow.

8 CONCLUSION

With this work, we have shown how, with a suitable
approach and a set of tailored techniques, one can excavate
and visualize information hidden by an extremely low signal-
to-noise ratio, such as within cryo-ET data. We demonstrate
how the power of deep neural networks can be harnessed to
infuse the visualization pipeline with detailed automatic seg-
mentation, yielding high-quality visualization results, where
common volume rendering approaches using a simplistic TF
fail.

There are limitations to using such a system for a specific
pipeline by feeding it with specific segmentation in the
training step. However, it still promises to save days if
not weeks of laborious manual segmentation work for
visualization specialists while achieving great visual results.
By providing even more precise segmentation data—instead
of fuzzy semi-automatic segmentation—to our system, the
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final visualization is expected to be even better. Embedding
our system into the cryo-ET pipeline would give domain
scientists access to high-quality data visualization with
almost no additional effort. The segmentation that domain
experts prepare daily can be used as training input to our
system. Moreover, using the data from different laboratories
working on similar problems can lead to the development
of specialized visualization models for specific cases, which
could be shared and benefit the research community.

While we tested our method on data obtained using
the same sample preparation and data acquisition pipeline,
it is still necessary to investigate the degree to which the
parameters in the preparation and acquisition process can
vary for such an approach to still work well.

While the inference part of the system is fast—20-25
seconds per volume—it is still not interactive. This could be
achieved if the inference was performed per block/chunk,
which would also allow for a fast change of the model used
in the visualization pipeline.

The presented system could be further extended to
become an end-to-end deep learning system. Not only fuzzy
segmentation masks, but other visualization parameters
(e.g., TF parameters and rendering parameters) could also
be trained for a specific domain. This would include a
differentiable volumetric rendering system, which would
allow the optimization of rendering parameters.

Our next step will be to integrate the volume visualiza-
tion into data preparation pipelines for the subtomogram
averaging process. The results of this signal-to-noise ratio
amplification methodology could be fed back into our
volume visualization pipeline to further enhance details and
potentially address the missing wedge artifact.
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[43] P. Ljung, J. Krüger, E. Groller, M. Hadwiger, C. D. Hansen, and
A. Ynnerman, “State of the Art in Transfer Functions for Direct
Volume Rendering,” Computer Graphics Forum, vol. 35, no. 3, pp. 669–
691, 2016. [Online]. Available: https://doi.org/10.1111/cgf.12934

[44] S. Luo and J. Dingliana, “Transfer Function Optimization Based
on a Combined Model of Visibility and Saliency,” in Proceedings
of the 33rd Spring Conference on Computer Graphics, ser. SCCG ’17.
Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3154353.3154357

[45] B. Ma and A. Entezari, “Volumetric Feature-Based Classification
and Visibility Analysis for Transfer Function Design,” IEEE
Transactions on Visualization and Computer Graphics, vol. 24,
no. 12, pp. 3253–3267, 2018. [Online]. Available: https:
//doi.org/10.1109/TVCG.2017.2776935

[46] J.-S. Prassni, T. Ropinski, and K. Hinrichs, “Uncertainty-aware
guided volume segmentation,” IEEE transactions on visualization
and computer graphics, vol. 16, no. 6, pp. 1358–1365, 2010. [Online].
Available: https://doi.org/10.1109/TVCG.2010.208

[47] C. Lundstrom, P. Ljung, and A. Ynnerman, “Local histograms for
design of transfer functions in direct volume rendering,” IEEE
Transactions on visualization and computer graphics, vol. 12, no. 6,
pp. 1570–1579, 2006. [Online]. Available: https://doi.org/10.1109/
TVCG.2006.100

[48] C. Lundström, P. Ljung, A. Persson, and A. Ynnerman,
“Uncertainty visualization in medical volume rendering using
probabilistic animation,” IEEE transactions on visualization and
computer graphics, vol. 13, no. 6, pp. 1648–1655, 2007. [Online].
Available: https://doi.org/10.1109/TVCG.2007.70518

[49] S. Diepenbrock, J.-S. Prassni, F. Lindemann, H.-W. Bothe, and
T. Ropinski, “2010 IEEE visualization contest winner: Interactive
planning for brain tumor resections,” IEEE computer graphics and
applications, vol. 31, no. 5, pp. 6–13, 2011. [Online]. Available:
https://doi.org/10.1109/MCG.2011.70

[50] D. hyun Lee, “Pseudo-Label: The Simple and Efficient Semi-
Supervised Learning Method for Deep Neural Networks,” 2013.

[51] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-training
with noisy student improves imagenet classification,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 10 687–10 698. [Online]. Available:
https://doi.org/10.1109/CVPR42600.2020.01070

[52] S. Berg, D. Kutra, T. Kroeger, C. N. Straehle, B. X. Kausler,
C. Haubold, M. Schiegg, J. Ales, T. Beier, M. Rudy, K. Eren, J. I.
Cervantes, B. Xu, F. Beuttenmueller, A. Wolny, C. Zhang, U. Koethe,
F. A. Hamprecht, and A. Kreshuk, “Ilastik: interactive machine
learning for (bio)image analysis,” Nature Methods, Sep. 2019.
[Online]. Available: https://doi.org/10.1038/s41592-019-0582-9

[53] G. Bortsova, F. Dubost, L. Hogeweg, I. Katramados, and
M. de Bruijne, “Semi-supervised Medical Image Segmentation
via Learning Consistency Under Transformations,” in Medical
Image Computing and Computer Assisted Intervention – MICCAI
2019. Cham: Springer International Publishing, 2019, pp. 810–818.
[Online]. Available: https://doi.org/10.1007/978-3-030-32226-7 90

[54] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3186146

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1002/mp.13300
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.48550/arXiv.1709.03199
https://doi.org/10.1007/978-3-030-11723-8_38
https://doi.org/10.1016/j.bspc.2019.101613
https://doi.org/10.1007/978-3-319-66185-8_33
https://doi.org/10.1109/ACCESS.2021.3086020
https://doi.org/10.1109/ACCESS.2021.3086020
https://doi.org/10.48550/arXiv.1804.03999
https://doi.org/10.1007/978-3-030-00889-5_1
https://doi.org/10.1109/ICASSP40776.2020.9053405
https://doi.org/10.1038/s41592-021-01275-4
https://doi.org/10.1016/j.media.2021.102038
https://doi.org/10.1109/TVCG.2018.2796085
https://doi.org/10.1109/PacificVis.2019.00041
https://doi.org/10.1109/TVCG.2018.2816059
https://doi.org/10.1109/VISUAL.1995.480803
https://doi.org/10.1109/SVV.1998.729588
https://doi.org/10.1109/TVCG.2010.35
https://doi.org/10.1109/TVCG.2010.195
https://doi.org/10.1016/j.compmedimag.2013.08.008
https://doi.org/10.1111/cgf.12934
https://doi.org/10.1145/3154353.3154357
https://doi.org/10.1109/TVCG.2017.2776935
https://doi.org/10.1109/TVCG.2017.2776935
https://doi.org/10.1109/TVCG.2010.208
https://doi.org/10.1109/TVCG.2006.100
https://doi.org/10.1109/TVCG.2006.100
https://doi.org/10.1109/TVCG.2007.70518
https://doi.org/10.1109/MCG.2011.70
https://doi.org/10.1109/CVPR42600.2020.01070
https://doi.org/10.1038/s41592-019-0582-9
https://doi.org/10.1007/978-3-030-32226-7_90


17

Neural Network,” arXiv preprint arXiv:1503.02531, 2015. [Online].
Available: https://doi.org/10.48550/arXiv.1503.02531

[55] X. Wang, L. Bo, and L. Fuxin, “Adaptive wing loss for robust face
alignment via heatmap regression,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 6971–6981.

[56] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
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