
ERK'2018, Portorož, 384-387 384

Drone segmentation and tracking in grounded
sensor scanned LiDAR datasets

Kristijan Mirčeta1, Ciril Bohak1, Byeong Hak Kim2, Min Young Kim2, Matija Marolt1
1University of Ljubljana, Faculty of Computer and Information Science

2Kyungpook National University (Daegu, South Korea)
E-mail: kristijan.mirceta@gmail.com, ciril.bohak@fri.uni-lj.si, durumy98@hanmail.net,

minykim@knu.ac.kr, matija.marolt@fri.uni-lj.si

Segmentacija in sledenje dronom v podatkih
prizemljenega senzorja LiDAR

V tem članku se spopadamo s problemom sledenja dro-
nom v zunanjih scenah, ki jih skenira prizemljen senzor
LiDAR. Problem razdelimo v 3 podprobleme: (1) seg-
mentacija scene, (2) detekcija dronov, (3) sledenje dro-
nom. Za segmentacijo scene uporabimo metodo radi-
alno omejenih najbližjih sosedov. Za detekcijo dronov
uporabljamo konvolucijske nevronske mreže. Za učenje
mreže in za generiranje učne množice uporabljamo oro-
dje Blensor, s katerim sintetizeramo sceno, ki želimo, da
dobro simulira realnost. Na koncu, po detekciji dronov,
le-tem tudi sledimo skozi več časovno zaporednih okvirjev
s pomočjo Kalmanovega filtra, ki uporablja križno-ko-
relacijski filter kot opazovalni model, skoraj konstantno
hitrost kot model gibanja, ter vokseliziran deskriptor kot
vizualni model.

Abstract
In this paper, we tackle the problem of tracking drones
in outdoor scenes, scanned by a grounded LiDAR sen-
sor. The problem is split into 3 subproblems: (1) seg-
mentation of the scene, (2) drone detection and (3) drone
tracking. For segmenting the scene, we use a Radially
Bounded Nearest Neighbors method. For drone detec-
tion we use a Convolutional neural network (CNN). To
train the CNN and produce a dataset of drones we use
the Blensor framework, with which we synthesize drone
examples, with the goal of them resembling realistic con-
ditions. Finally after detecting the drones, we track them
throughout multiple time frames using a Kalman filter,
which uses a cross-correlation filter as the observation
model, Nearly constant velocity as the motion model and
a voxelized 3D descriptor for the visual model.

1 Introduction
In the cities of the future, Unmanned aerial vehicles (UAV)
will have an important role in many functions of society,
such as transport, delivery of goods, and surveillance sys-
tems [6]. But just as this technology could be very use-
ful for society, it may also be used with malicious intent,
for activities such as unauthorized access to off limits ar-
eas, spying on unsuspecting victims or disruption of other
good-intented UAVs. Because of this, building a system
for combating against malicious drones is an interesting

and worthwhile problem. We want to detect and track
drones to be able to avoid them (as other drones), destroy
them (when they are in off limits areas) or inspect their
activity to reveal patterns signifying malicious intent. In
this paper, we are working with UAVs in LiDAR scenes,
which are sparse 3D point cloud scenes. The sparsity of
the LiDAR data is a big limitation, since it holds that
the further away from the sensor an object is, the more
sparsely it is sampled. This means that the extracted fea-
tures will be less informative for detectors or trackers. In
the following sections, we first present the data we are
working on in Section 2, then we decompose the prob-
lem into 3 stages: segmentation in Section 3, detection in
Section 4 and tracking in Section 5, and elaborate on each
of them. In the final Section 6 we present conclusions and
give pointers for future work.

2 Data
The driving force of today’s AI algorithms is data. This
puts large firms like Google, Amazon and Microsoft in a
strongly advantageous position compared with their com-
petition in the form of start-ups which may have great
ideas, but no data to bring them to fruition. The recently
emerging trend of synthetic data generation may be a
way to democratize AI. The idea is that, instead of gath-
ering massive amounts of data from the real world and
labeling it by hand, we should create artificial datasets
with which we may train our AI. Some researchers have
already shown how synthetic data leverages the perfor-
mance of their models when applied to real world cases.
An example is [8], where the authors generated objects in
the Unity game engine1, and Blender2 where they labeled
key points on the objects in the virtual world and learned
to predict the orientation of the object. This let them pre-
dict orientations of objects in the real world when filmed
with a camera as well. There are also other packages
like [17], which implements a wide range of sensors to
scan these virtual worlds, and learn to predict various tar-
gets from this generated data in the hope of accurately
simulating such data sensors in the real world. Because
the generated data should be as close to real world data
as possible, the Unreal Engine 43 is a great option due to

1https://unity3d.com/
2https://www.blender.org/
3https://www.unrealengine.com/

https://unity3d.com/
https://www.blender.org/
https://www.unrealengine.com/


385

its Physically based rendering (PBR) capabilities which
are unparalleled at the moment in similar software. Some
packages like [18] work as a plugin to Unreal Engine 4,
where both data is synthesized and simulation tests for
self-driving cars can be made, and there are also packages
higher in abstraction which provide capability for general
computer vision tasks. An example is UnrealCV [15].

In this fashion, we are using Blender with the Blensor
framework [5], to simulate virtual worlds and scan them
using a LiDAR sensor. For our scenes, we are scanning
with a simulated Velodyne HDL-64e grounded sensor.

We use a scene generator, which generates a scene
with a small number of trees, primitive shapes (cubes,
cylinders and prisms) and drones. These shapes are uni-
formly distributed around a 50×50 meter field, and the
drones can fly on heights of up to 12.5 meters. Mean-
while we enforce the constraint that no objects can over-
lap with each other. We do not include the ground, as
removing it is a very well researched problem and has
been shown empirically to improve segmentation results
by [2].

We generated 1000 such scenes, and scanned them
using Blensor, where the scanner was located in the co-
ordinate origin (0, 0, 0), which resulted in our final input
dataset - a point cloud with (x, y, z) values.

When testing out our methods, the scenes would be
split as per standard practice in machine learning, where
there would be a training set and a test set, roughly in the
proportion of 4 : 1.

Because the scenes are generated, we basically had
the labels and bounding boxes for each item in the scene,
and were therefore fully able to measure the accuracy of
our methods using standard procedures. An example pic-
ture of a scanned scene can be seen in Fig. 1.

3 Segmentation
For the segmentation of the scene, we used a simple method
called Radially Bounded Nearest Neighbours (RBNN) [7].
This method basically performs a clustering of the points,
by declaring all points that are transitively less than some
defined threshold (radius r) distant from one another to
belong to the same object. Because there is no overlap-
ping of objects in our scenes, and the objects are not very
close to one another, this method was able to provide a
sufficient segmentation for our needs. Most of the time
the result of applying this method to our scene, was that
each object was its own cluster. This provided a good
basis for the detection of drones.

4 Detection
A bigger problem to tackle was the detection of the dro-
nes within the cluster. While we now know which points
represent which objects, we need to find out which of the
objects are in fact drones, and then track them.

The first thing to do was to find a descriptor for each
cluster of points, then decide on whether it is a drone on
the basis of the descriptor. Researchers have tried various
different descriptors for various point cloud classification

Figure 1: Plot of a segmented synthetic LiDAR scene. The
gray object in the middle is the drone.

tasks, most prevalent among which fit into the following
categories:

• Multi-view descriptors, where 2D projections (or
picture) are taken from various angles of the point
cloud . An example is in [19], where they classify
office furniture via feeding multiview pictures into
a CNN.

• Voxelized descriptors, where the point cloud is
transformed into a regularized voxel grid. This can
be done so, that if a point falls into a bin within
the voxel grid, that voxel is set to 1. Then in some
cases a Gaussian filter can be run through this grid,
to give the voxels more volume. Such an approach
is useful with methods that use the notion of simi-
larity between descriptors to aid in their prediction.
An example is in [12], which uses such a descriptor
for registration. Even a descriptor without Gaus-
sian filtering is useful, as it can be fed into a CNN,
and the CNN will find its own filters which may
prove to be even more useful. Examples of these
are [16] and [11], where the latter was considered
state-of-the-art in 2015. A plot of an example vox-
elized descriptor of a drone is show in Fig. 2.

• Raw point clouds, where the point cloud is not
preprocessed, but used directly. Some deep neural
nets have been researched, where this method pro-
duces very good results such as [14, 13]. A thing
to watch out for here is permutational invariance,
where it is ensured that the result of the prediction
is independent of the ordering of the points in the
point cloud.

• Contextual, where not only the point cloud seg-
ment itself is used, but its relations with the other
parts of the scene are also accounted for. Such
methods can be used as a leverage to other ones,
and are currently producing state-of-the-art results
as can be seen in [9].

Many previously listed methods employed CNNs to
solve the problem of detection. We used a similar archi-
tecture as was used by VoxNet [11], where only the last
layer was changed into a dense layer with a softmax ac-
tivation, meant to classify only into two classes - drone
and not a drone. The architecture defines a convolutional
layer with 32 5×5×5 filters with stride = 2 for the first



386

Figure 2: A visualization of the voxelized descriptor of a drone.
The drone is dense because a Gaussian filter has been applied
on it to give it more volume.

layer, another convolutional with 32 3×3×3 filters in the
second layer, then a 2×2×2 max pooling layer, a 128
neuron fully connected layer which is used for the final
prediction. A picture of the architecture can be seen in
Fig.3.

The input is a voxelized descriptor, convolved with a
Gaussian kernel with σ proportional to the distance from
the sensor origin, because there is no way to inform the
CNN about the variance in sampling density due to vary-
ing distance from the sensor origin. With applying the
gaussian filter in such a way, we have encoded this infor-
mation into the descriptor.

Figure 3: The original VoxNet CNN architecture. The point
cloud is first mapped on to an occupancy grid (voxelized de-
scriptor), flows through two convolutional layers, and finally
through two fully connected layers to arrive at the prediction.

4.1 Detection Results
To train the CNN we used 2700 samples, of which there
were roughly 300 drones, and the other objects were tree,
cube, torus, cylinder, pyramid. The test set was 1000
samples, with roughly the same proportion (100 drones).

Through 10 random shufflings of the training and test
set, the average AUC was above 0.99 when using a ROC
curve, indicating that the CNN is a reliable classifier, while
still being very fast. Though this result is very good, the
reason is probably that the scenes we are predicting on
are very simple. Nonetheless, it provides a good indica-
tor that our direction of research is promising, and our
next step would be to try this on more complex scenes.

5 Tracking
For the tracking, we were inspired by [12] where to track
an object in a sequence of frames, an object was first seg-
mented, then as stated before, a voxelized descriptor was
used to match the objects in two subsequent frames using
Bhattacharya similarity. If the similarity passed a certain
threshold, then it was declared that the set of points in
frame t + 1 was the same object as in frame t. The gen-
eral idea is the same as the correlation filter [10].

In addition to this, we recognized a problem for the
tracker, if the tracked object either came too close to an-
other object or momentarily overlapped with it. For ex-
ample if the drone passed through the edge of a tree cano-
py. In this case the tracker gets confused and loses track
of the drone due to the similarity quickly dropping below
a defined threshold.

To solve this, we used a Kalman filter [1] where the
used observation model was the correlation filter, the vi-
sual model was the voxel grid, and the motion model
was Nearly constant velocity (NCV). This provided our
method with robustness to the stated problem. It is wor-
thy to note here, that we assume the movement of the
drone to be nearly linear, which is not a realistic assump-
tion. Though research on how to relax this constraint has
already been made with the extended Kalman filter [3]
and unscented Kalman filter [20], which can track non-
linear movement as well.

5.1 Tracking Results
We tried tracking a drone following a linear path, but
would pass through the edge of a tree canopy on its way.
We tried applying only a correlation filter at first, where
the tracker would get stuck in the tree canopy, unable to
track the drone onwards. But as shown on Fig. 4, the
Kalman filter was successful in overcoming its obstacle
and tracking the drone all the way.

Figure 4: The picture shows multiple overlapped frames in a
LiDAR scene, where the linear path of the drone is shown. The
blue sequence of bounding boxes are the intermediate steps of
the Kalman filter tracker. It can be seen that the Kalman filter
was able to follow the linear path of the drone right through the
tree canopy.

6 Conclusion
We have developed a pipeline of subproblems which de-
fines a method for tracking drones in a LiDAR dataset.
There are many opportunities to refine our method in more



387

domains. We could do the segmentation and detection
steps in one single step instead of two, just as the current
state-of-the-art method SPGraph [9]. We could also re-
fine our neural network architecture to use the new infor-
mation we are accounting for with relationships among
objects and object parts. We believe that much more
work should be done regarding the data generation, where
we could use better simulations to extract RGB values
from scenes as well, and perhaps use some modern tech-
niques like Generative Adversarial Networks [4] to gen-
erate scenes that are more believable and realistic than
our randomly crafted ones. By optimizing for realism in
virtual scenes, we are also optimizing for performance in
real-world scenes.

Lastly, regarding tracking, we could upgrade the me-
thod by using an unscented Kalman filter for tracking, to
model nonlinear motion, which is more usable in reality.
As tracking is also a bottleneck to real-time performance
due to slow computation of cross-correlation, we could
replace both the visual and observational models with
faster ones, perhaps in RGB data, we would use color
histograms instead of regularized voxel grids for similar-
ity computation.

References
[1] Gary Bishop and Greg Welch. An Introduction to the

Kalman Filter: SIGGRAPH 2001 Course 8. In Computer
Graphics, Annual Conference on Computer Graphics &
Interactive Techniques, pages 12–17, 2001.

[2] B. Douillard, J. Underwood, N. Kuntz, V. Vlaskine,
A. Quadros, P. Morton, and A. Frenkel. On the Segmen-
tation of 3D LIDAR Point Clouds. In 2011 IEEE Inter-
national Conference on Robotics and Automation, pages
2798–2805, May 2011.

[3] Keisuke Fujii. Extended Kalman Filter. Refernce Manual,
2013.

[4] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative Adversarial Nets. In Ad-
vances in neural information processing systems, pages
2672–2680, 2014.

[5] Michael Gschwandtner, Roland Kwitt, Andreas Uhl, and
Wolfgang Pree. BlenSor: Blender Sensor Simulation
Toolbox. In George Bebis, Richard Boyle, Bahram Parvin,
Darko Koracin, Song Wang, Kim Kyungnam, Bedrich
Benes, Kenneth Moreland, Christoph Borst, Stephen Di-
Verdi, Chiang Yi-Jen, and Jiang Ming, editors, Advances
in Visual Computing, pages 199–208, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[6] Ismail Guvenc, Ozgur Ozdemir, Yavuz Yapici, Hani
Mehrpouyan, and David W. Matolak. Detection, Local-
ization, and Tracking of Anauthorized UAS and Jammers.
In 2017 IEEE/AIAA 36th Digital Avionics Systems Con-
ference (DASC), pages 1–10, 2017.

[7] Klaas Klasing, Dirk Wollherr, and Martin Buss. A Clus-
tering Method for Efficient Segmentation of 3D Laser
Data. 2008 IEEE International Conference on Robotics
and Automation, pages 4043–4048, 2008.

[8] Marcel Klomann, Michael Englert, Kai Weber, Paul
Grimm, and Yvonne Jung. Improving Mobile MR Ap-
plications Using a Cloud-based Image Segmentation Ap-
proach with Synthetic Training Data. In Proceedings of
the 23rd International ACM Conference on 3D Web Tech-
nology, Web3D ’18, pages 4:1–4:7, New York, NY, USA,
2018. ACM.

[9] Loı̈c Landrieu and Martin Simonovsky. Large-scale Point
Cloud Semantic Segmentation with Superpoint Graphs.
CoRR, abs/1711.09869, 2017.

[10] Yang Li and Jianke Zhu. A Scale Adaptive Kernel Corre-
lation Filter Tracker with Feature Integration. In Lourdes
Agapito, Michael M. Bronstein, and Carsten Rother, ed-
itors, Computer Vision - ECCV 2014 Workshops, pages
254–265, Cham, 2015. Springer International Publishing.

[11] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d
convolutional neural network for real-time object recog-
nition. In Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on, pages 922–928.
IEEE, 2015.

[12] Daniel D. Morris, Brian R. Colonna, and Paul H. Haley.
LADAR-Based Mover Detection from Moving Vehicles.
CoRR, abs/1709.08515, 2017.

[13] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas.
PointNet++: Deep Hierarchical Feature Learning on Point
Sets in a Metric Space. arXiv preprint arXiv:1706.02413,
2017.

[14] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and
Leonidas J. Guibas. PointNet: Deep Learning on Point
Sets for 3D Classification and Segmentation. In Proceed-
ings of Computer Vision and Pattern Recognition (CVPR).
IEEE, 2017.

[15] Weichao Qiu and Alan Yuille. Unrealcv: Connecting
computer vision to unreal engine. In Proceedings of Eu-
ropean Conference on Computer Vision, pages 909–916.
Springer, 2016.

[16] Xavier Roynard, Jean-Emmanuel Deschaud, and François
Goulette. Classification of Point Cloud Scenes with Multi-
scale Voxel Deep Network. CoRR, abs/1804.03583, 2018.

[17] Raffaele Schiavullo. SYNCITY virtual hyper realistic
simulator for machine learning to train ADAS systems.
Virtual Reality, 4:06, 2018.

[18] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish
Kapoor. Airsim: High-Fidelity Visual and Physical Sim-
ulation for Autonomous Vehicles. In Field and service
robotics, pages 621–635. Springer, 2018.

[19] Vladeta Stojanovic, Matthias Trapp, Rico Richter, and
Jürgen Döllner. A Service-oriented Approach for Clas-
sifying 3D Points Clouds by Example of Office Furniture
Classification. In Proceedings of the 23rd International
ACM Conference on 3D Web Technology, Web3D ’18,
pages 2:1–2:9, New York, NY, USA, 2018. ACM.

[20] Eric A Wan and Rudolph Van Der Merwe. The unscented
Kalman filter for nonlinear estimation. In Adaptive Sys-
tems for Signal Processing, Communications, and Control
Symposium 2000. AS-SPCC. The IEEE 2000, pages 153–
158. IEEE, 2000.


