Hybrid Rendering System for Particle Collision Experimental Data Visualization

Ciril Bohak

ciril.bohak@fri.uni-lj.si
lgm.fri.uni-lj.si

Naples – March 2018
Content

• Background;
• Problem Domains;
• Possible solutions;
• Hybrid Rendering System;
• Collaboration Options;
• Future Work;
• Conclusions;
Background – Med3D

- Custom WebGL 2.0 based rendering pipeline;
- client-server oriented design (NodeJS);
- optional server-side data transformation;
- user annotations;
- user collaboration.
Background – Med3D - Custom pipeline

• Rendering pipeline designed based on deferred rendering pipeline;
• multi pass rendering support for option of combining multiple types of visualizations such as:
 • data rendering + view aligned annotations;
 • mesh rendering + direct volumetric rendering;
 • data rendering + flow visualization;
• option of customizing of scene rendering for individual user during sharing session;
• option for storing output images to single or multiple images.
Problem domain

• Rendering geometry:
 • rendering experiment geometry;
 • not such a big problem;

• Rendering lines:
 • current experiments: ~ 10k lines;
 • future experiments: ~ 200k lines;

• Rendering points:
 • current experiments: ~ 100k points;
 • future experiments: ~ 5M points.
Possible solutions

• Client-side rendering system:
 • Pros:
 • high interactivity;
 • highly responsive;
 • possible off-line work.
 • Cons:
 • high-end hardware for complex visualizations;
 • a lot of data transfer to user;
 • browser limitations.

• Server-side rendering system (remote rendering):
 • Pros:
 • low-end hardware on client side;
 • less data transfer;
 • possibility of data protection.
 • Cons:
 • low interactivity;
 • response depends from network latency;
 • requires server-side system resources per user;
 • no off-line work.
Hybrid Rendering System

- Combining client-side and server-side rendering capabilities;
- client-side rendering of basic geometry;
- server-side rendering of complex geometry and event data (hits, trajectories, etc.);
- high interactivity with basic geometry;
- incremental rendering of more complex geometry and event data;
- optional selection of where to render what data.

- Pros:
 - low-end hardware on client side;
 - high interactivity;
 - less data transfer;
 - possibility of data protection.

- Cons:
 - slower high-quality rendering;
 - requires server-side system resources per user;
 - browser limitations;
 - no off-line work.
Hybrid Rendering System – Architecture

Client side (WebGL)

Server side (Vulcan)

LQ Geometry render

HQ Hits&Tracks render

Final render

HQ Geometry render
Collaboration Options – User annotations

two types of annotations:

• 3D location based annotations:
 • anchored to a specific point of interest on the model;
 • draggable in the view;
 • can be hidden or displayed;

• view aligned sketch based annotations:
 • aligned to a specific camera view;
 • multi-layered annotations;
 • user defined thickness, color and brush hardness.
Collaboration Options – User collaboration

multiple modalities of user collaboration:
• text chat;
• data sharing;
• view sharing;
• annotation sharing.

Med3D future plans:
• voice and video chat sharing;
• user management.
Collaboration Options – Sharing

- data can be stored at user’s computer or on the server;
- collaboration is done through server:
 - the host sends scene description to the server;
 - the host can decide what to share (data, view, annotations or everything);
 - all the scene updates are sent to the server;
 - other users may connect to server at any point and get the current scene description;
 - all the updates are continuously sent to all the users.
Future work

• Use of physically based rendering techniques for visualizing the experiment geometry;
• use of complex visualization techniques for event data;
• support for different kinds of data;
• visualization of user uploaded data;
• scene properties saving;
• image saving;
• server side rendering jobs.
Conclusions

- Possibility of running visualization system on low-end devices (including mobile);
- less data transfer;
- option of high-quality rendering;
- offers high scalability.
Questions?

Research proposal document.