
Vulkan Abstraction Layer for Large Data Remote
Rendering System

Primož Lavrič, Ciril Bohak, and Matija Marolt

Faculty of Computer and Information Science, University of Ljubljana,
Večna pot 113, 1000 Ljubljana, Slovenia,
pl9506@student.uni-lj.si,

{ciril.bohak, matija.marolt}@fri.uni-lj.si

Abstract. New graphics APIs require users to implement a lot of needed func-
tionality, such as memory management, by themselves. In this paper we present
an abstraction layer build on top of such API, in our case the Vulkan API, for
purpose of off-screen rendering of large data. We also present a use case for such
abstraction layer implementation – a remote rendering system for simple Path
Tracing accessible through web-based client-side application. The preliminary
evaluation results show that implementation of simple Path Tracer is significantly
faster then comparable implementation in OpenCL. In conclusion we also present
possible extension and improvements of the developed abstraction layer.

Keywords: Vulkan API, graphics library abstraction layer, real-time rendering

1 Introduction

Graphical pipeline for real-time rendering has gone through substantial changes through-
out its development since early 1990s. Over the years, the developers have gained sub-
stantially more control over what is happening in individual stage of the pipeline with
added support for programmable stages. Most recent graphical APIs (Vulkan [1], Di-
rectX 12, Mantle and Metal) are providing the developers with even more control, but
on the other hand also require of them to implement a lot of additional functionality (e.g.
memory management), previously handled by the APIs (OpenGL and DirectX 1–11).

The remote rendering concept of large datasets is not a new concept. It was imple-
mented for different domains such as large volumetric data [2] and was implemented on
different platforms (e.g. a web-based approach [3]). The researchers have also proposed
different approaches for transferring the information between client- and server-side.
Authors of [4] propose to transfer the information in form of 3D video. An interest-
ing approach on high-resolution remote rendering system with collaborative features
for grid environments is presented in [5]. Our approach distinguishes from the above
presented implementation in several ways: (1) developers can implement their own ren-
dering solution (in our case we present shader-based path-tracing implementation), (2)
the approach is very general and allows the extension for use with different kind of data
and (3) our approach supports broad specter of hardware (e.g. not limited to specific
manufacturer like CUDA) and does not necessarily need a GPU.



The rest of the paper is structured as follows: in section 2 we present the devel-
oped abstraction layer, in section 4 we present preliminary evaluation and results and in
section 5 we give the pointers for future work and present the conclusions.

2 Vulkan API Abstraction Layer

Unlike OpenGL, Vulkan provides only basic functionality on top of the driver and re-
quires the developer to implement the rest. The implemented abstraction layer is on a
similar level as OpenGL, but unlike OpenGL, it is not implemented as a state machine,
because that would hinder the multi-thread performance. Rather than implementing a
state machine, we implemented high-level wrappers that employ RAII programming
idiom, each wrapping one or more Vulkan objects. Figure 1 presents the diagram of
the abstraction layer. Unlike Vulkan objects which are independent of each other, the
presented objects form a hierarchy in which each child object is dependent of its parent.
This way we enforce that the objects are created in the correct order and that the child
objects and their resources are automatically disposed of upon its parent’s disposal.
Each object is retrievable from its parent in a form of a raw pointer and all operations
that operate on some object take a raw pointer as input parameter (for example a De-
scriptor Set requires a pointer to Descriptor Set Layout). Raw pointers are used to em-
phasize that the objects are owned by the parent of the object and not by the developer,
and also to prevent the developer from accidentally disposing of the object.

The abstraction layer provides a base-class for the renderer implementation. This
class provides interface for managing Vulkan instance and more importantly Vulkan de-
vices. Vulkan device objects are the core of the abstraction layer. Vulkan device allows
developer to manage enabled features, extensions and to query the device properties,
but more importantly, it provides the structures for compute and graphical operations.
In the following sections we present four key components provided by Vulkan device:
Program Manager, Allocation Manager, Descriptor Pool and Queue Families and their
integration within the abstraction layer.

2.1 Program Manager

The task of the Program Manager is to load shaders and to construct pipeline layouts
and render passes. The Program Manager requires that the developer specifies the di-
rectory that contains shaders and a shader configuration file. Shader configuration file
contains relative paths to all shaders’ source files and a list of pipeline configurations,
each equipped with IDs of shaders that form the pipeline.

After the shaders are loaded, we need to perform shader reflection in order to build
the pipeline layouts. Shader reflection is a process in which we extract the types, sets,
bindings, layouts and array counts of shader uniforms, attributes and sub-pass attach-
ments from the shader source code. Unlike OpenGL, which has integrated shader re-
flection, Vulkan requires the developer to either implement shader reflection on his own
or provide pipeline layout configuration using other means. In our implementation, we
used library SPIRV-Cross [6, 7] to decompile SPIRV shaders and perform shader re-
flection. Because shader loading is intended to occur during the configuration time, the



Vulkan Device

Renderer Base

Allocation Manager Program ManagerDescriptor Pool

Buffer Image

Buffer View Image View

Descriptor Set

Pipeline Layout

Compute PipelineRender Pass

Graphic Pipeline

Desc. Set Layout

Desc. Binding

Shader Module

Synchronization

Semaphore

Fence

Queue Family

Command Pool

Command Buffer

Descriptors Update

Push Constant Vertex Attribute

Queue

Submit work

Fig. 1. Diagram showing the structure of our Vulkan API abstraction layer. Blue lines represent
the composition association with either one-to-one or one-to-many relation. Orange arrows indi-
cate that the object is used by the object the arrow is pointing to.

speed is not of crucial importance and we can afford to perform shader decompilation.
We use the acquired data to populate pipeline layout descriptor sets, attributes and push
constants and finally build the pipeline layout. Using the generated Pipeline Layout
objects Program manager initializes the Compute Pipelines.

In the current implementation we only support Compute Pipelines, but intend to
provide support for Graphical Pipelines in the future. Graphical Pipelines differ from
Compute Pipelines as they are required to specify additional graphic related configura-
tion, such as: vertex shader input, assembly configuration and depth and stencil state.
In addition to that, Vulkan allows us to specify complex Render Passes, that consist of
many Shader Programs given in a directed acyclic graph. This means that we need to
specify the dependencies between the programs and connect the inputs and the outputs
between the connected programs. In our implementation, we decided to let user provide
additional graphic related configuration via a Pipeline State object and Render Pass con-
figuration as additional data in shader configuration file. Pipeline State object encodes
the configuration in a bit field using only 423 bits while maintaining a 32/64 bit hash
of the bit field to speed up pipeline querying. As for the Render Pass configuration, it
is better that we provide it in th configuration file, because a typical application usually
uses a small number of different Render Passes and they do not change in runtime.

2.2 Allocation Manager

In terms of memory management, there is a huge difference between Vulkan and OpenGL.
In OpenGL, the memory management was handled implicitly by the API. In Vulkan
though, developer needs to allocate and manage the memory used by buffers and im-
ages.



For memory management, we decided to use Vulkan Memory Allocator library
provided by AMD GPUOpen [8]. We decided to use this library, because it provides
very efficient memory management, by allocating very large chunks of memory and
implementing paging on top of it, thus minimizing the number of operating system
allocation calls. It also provides all of the needed functionalities and allows developer
to provide custom allocator implementation.

Vulkan Memory Allocator allocations are managed by the Allocation Manager and
are completely hidden from the developer. The developer can request either Buffer or
Image object from the Allocation manager simply by specifying its size and format.
The user can then manipulate the Buffers and the Image by either writing/reading the
data via the provided interface (CPU visible memory only) or by submitting Command
Buffer object containing write/copy commands to the Queue.

Developer can also create View objects for both Images and Buffers (limited to texel
buffers). A view is quite literally a view into an image/buffer. It describes how to access
the image/buffer and which part of the image/buffer to access, for example, if it should
be treated as a 3D texture, which mip-map levels should be used and so on. Created
Views are used to bind the image/buffer to either frame buffer or descriptor set.

2.3 Descriptor Pool

We already presented the Descriptor Sets in subsection 2.2, more specifically Descriptor
Set Layouts. But before Descriptor Sets can be used, they have to be allocated from the
Descriptor Pool. In Vulkan, the Descriptor Pool requires that the maximum number of
allocated Descriptor Sets and bindings of each type is specified in advance. One could
set these to maximum possible value, but this would be very inefficient. Because of
that, the abstraction layer allow the developer to query the number of Descriptor Sets
and bindings from the Program Manager and provide it to the Descriptor Pool object.
This way, the Descriptor Pool knows the exact number of Descriptor Bindings, and the
developers are also still able to modify the count manually. For example, multiply it by
two for implementation of double buffering.

After the Descriptor Pool is initialized one can start allocating Descriptor Sets. The
Descriptor Sets can be filled with the data using Descriptor Update object that records
write/copy operations and executes them once submitted to Vulkan Device object. After
the data has been written to the Descriptor Set, one can bind it via a bind command
submitted to the command buffer.

2.4 Queue Families

Each device can have up to three Queue Families: graphic, compute and transfer queues.
Graphic Family supports all operations (including compute and transfer operations),
Compute Family supports both compute and transfer operations and the Transfer Family
supports only transfer operations. This means one could use graphic family to perform
all operations, but it is usually better to perform transfer operations on the Transfer
Family queue and compute operations on the Compute Family queue because of the
driver optimization.



Because of that, we allow the developer to specify how many Queues of each family
he wants to create during the Vulkan device initialization. This allows the distribution
of the operations on different Queues to achieve better performance. Note that using too
many Queues may hinder the performance due to the excessive synchronization.

Each Queue Family object also has a Command Pool object associated with it.
Command Pool allows the allocation of the Command buffer objects for its Queue
Family. One can use the Command buffer objects to record and submit the commands
to the queue. In order to synchronize the command execution among multiple Com-
mand buffers and the host, we can use fences and semaphores wrapped in Fence and
Semaphore objects.

3 Use Case: Remote Rendering

The developed Vulkan abstraction layer was used for implementation of remote render-
ing system. Using the Vulkan abstraction layer, we implemented a showcase example
with a simple GPU Path Tracing renderer that renders and transmits the image to the
user in real time, and listens for the user input.

3.1 System Architecture

The remote rendering system roughly consists of three parts: (1) NodeJS server, (2) web
client and (3) remote renderer. NodeJS servers only task is to provide HTTP server that
serves the web page to the client.

NodeJS HTTP ServerRemote Renderer

Fig. 2. Diagram showing the communication paths between clients and the server.

Web client is used as an interface to the remote renderer. Its job is to display the
images that are broadcasted from the server and to capture the user input and forward it



to the server. To display images, we implemented a basic WebGL renderer that renders a
given texture to the quad and displays it on HTML canvas. In the future we also intend to
perform some lightweight rendering (2D, 3D annotations) on the client side and merge
it with the remote renderer output. All the communication between the client and the
remote renderer occurs via HTML Websockets, because of their very low overhead
latency. The client is always listening for the remote renderer updates, which contain
rendered images in the binary format. Because the remote renderer provides the image
encoded in the format supported by WebGL, the client can simply forward the received
image to its WebGL renderer and display it. In the showcase implementation, we also
use mouse input information to move around the scene. We capture the mouse input on
the client and transmit the data in JSON format to the remote renderer.

The remote renderer’s primary task is to broadcast the rendered images and handle
user input requests. First it opens up a socket and waits for the client to connect. When
the first client connects it starts rendering the scene using renderer implemented on top
of our Vulkan abstraction layer. Each rendering iteration computes one sample per pixel
and send the updated image to all connected clients. When the remote renderer receives
input update request (containing mouse position), it computes a new camera position,
writes it to uniform buffer and triggers a redraw.

3.2 Rendering Example

Fig. 3. Shows the image of the Cornell Box that was rendered by the remote renderer implemented
on our Vulkan abstraction layer and the streamed to the web client.



Renderer computes the image by solving the rendering equation [9] using numerical
integration. We implemented Monte Carlo path tracing with Russian roulette early path
termination in GLSL compute shaders (compiled to SPIR-V). The implementation is
loosely based on [10, 11]. Shader program inputs are scene data (spheres and planes),
camera transformation and timestamp (updated each iteration), used for pseudo-random
number generation. Upon execution, the shader program adds the radiance to the storage
buffer that is used to accumulate radiance. When the shader program finishes, the data
is read from the GPU and forwarded to the client.

4 Evaluation and Results

We conducted a preliminary performance evaluation by comparing three different im-
plementations of the same path tracer algorithm: C# (CPU), OpenCL (GPU) and Vulkan
(GPU) implementation. On both GPU implementations only one SPP was computed
each kernel/shader program execution. On CPU implementation we parallelized the
work and used 8 threads for the benchmark. We rendered a 1920x1080 image and mea-
sured the time required to reach 1000 SPP (GPU) and 100 SPP (CPU). The performance
was evaluated on the following machine: CPU - Intel i7 6700k, RAM - 16 GB and GPU
- NVIDIA GeForce GTX 1080Ti. We performed 10 time measurements for each imple-
mentation. Results of our testing are presented as average time required to reach 1000
SPP (100 SPP for CPU) and standard deviation in Table 1.

CPU (100 SPP) OpenCL (1000 SPP) Vulkan (1000 SPP)
Average 4850s (∼80 min) 4.27s 3.91s

STD 157s 0.04s 0.06s

Table 1. Performance evaluation results of CPU, OpenCL and Vulkan path tracer implementa-
tions.

The results show that the OpenCL implementation and the Vulkan implementation
on top of the Vulkan abstraction layer both perform very similarly, but the Vulkan im-
plementation is on average 9% faster.

5 Conclusions and Future Work

In this work we present an abstraction layer built on top of the Vulkan API, which allows
faster and easier development of graphics application. The abstraction layer was devel-
oped for purpose of implementing headless remote rendering application connected
to web-based client-side end-user application. The preliminary evaluation, based on
example use case application, shows that the developed system outperforms OpenCL
implementation. Such rendering system could be used for visualizing large data on
lightweight client devices (e.g. smart phones or tablets) by exploiting the processing
power of dedicated server-side system.



There are still many possible extensions of the presented system, for example: im-
plementation of swapchain abstraction that could be optionally used to display the con-
tent window of local application, implementation of streaming compression (GPU/CPU)
for faster transfer of render results and adaptive streaming based on connection qual-
ity, structures that would enable seamless multi GPU support and buffer streamers that
would enable rendering of large data that does not fit the memory of the GPU.

We are also planning to fully implement the remote rendering presented as use case
and integrate it with an existing web-based medical data visualization framework.

References

1. Sellers, G., Kessenich, J.: Vulkan Programming Guide: The Official Guide to Learning
Vulkan. Addison-Wesley Professional (2016)

2. Guthe, S., Wand, M., Gonser, J., Strasser, W.: Interactive rendering of large volume data sets
(Nov 2002)

3. Yoon, I., Neumann, U.: Web-based remote renderingwith ibrac (image-based rendering ac-
celeration and compression). Computer Graphics Forum 19(3) (2000) 321–330

4. Shi, S., Jeon, W.J., Nahrstedt, K., Campbell, R.H.: Real-time remote rendering of 3d video
for mobile devices. In: Proceedings of the 17th ACM International Conference on Multime-
dia. MM ’09, New York, NY, USA, ACM (2009) 391–400

5. Karonis, N.T., Papka, M.E., Binns, J., Bresnahan, J., Insley, J.A., Jones, D., Link, J.M.: High-
resolution remote rendering of large datasets in a collaborative environment. Future Genera-
tion Computer Systems 19(6) (2003) 909 – 917 3rd biennial International Grid applications-
driven testbed event, Amsterdam, The Netherlands, 23-26 September 2002.

6. Arntzen, H.K., et al.: KhronosGroup/SPIRV-Cross. https://github.com/
KhronosGroup/SPIRV-Cross (Accessed on 15-02-2018).

7. Arntzen, H.K.: Using SPIR-V in practice with SPIRVcross
8. Sawicki, A., et al.: Vulkan Memory Allocator 1.0 - GPUOpen. https://gpuopen.

com/vulkan-memory-allocator-1-0/ (Accessed on 15-02-2018).
9. Kajiya, J.T.: The rendering equation. In: ACM Siggraph Computer Graphics. Volume 20.,

ACM (1986) 143–150
10. Beason, K.: smallpt: Global Illumination in 99 lines of C++. http://www.

kevinbeason.com/smallpt/ (2014) (Accessed on 15-02-2018).
11. Shirley, P., Morley, R.K.: Realistic Ray Tracing. 2 edn. A. K. Peters, Ltd., Natick, MA, USA

(2003)


