
Web-based vascular flow simulation visualization with
lossy data compression for fast transmission

Rok Oblak, Ciril Bohak, and Matija Marolt

Faculty of Computer and Information Science, University of Ljubljana,
Večna pot 113, 1000 Ljubljana, Slovenia,

2448.rok@gmail.com,
{ciril.bohak, matija.marolt}@fri.uni-lj.si

Abstract. In this paper, we present a web-based system for visualization of flow
simulation results in the vascular system for use with consumer-level hardware.
The presented tool allows users to design, execute and visualize a flow simula-
tion with a simple workflow on a desktop computer or a mobile device. The web
interface allows users to select a vascular model, define the flow simulation pa-
rameters, execute the simulation, and interactively visualize the simulation results
in real time using multiple visualization techniques. The server-side prepares the
model for simulation and performs the simulation using SimVascular. To provide
a more efficient transfer of the large amounts of simulation results to the web
client, as well as reduce storage requirements on the server, we introduce a novel
hybrid lossy compression method. The method uses an octree data subdivision
approach combined with an iterative approach that regresses the data points to a
B-Spline volume. The evaluation results show that our method achieves compres-
sion ratios of up to 5.7 for the tested examples at a given error rate, comparable
to other approaches while specifically intended for visualization purposes.

Keywords: visualization toolkit, blood flow simulation, data visualization

1 Introduction

Cardiovascular diseases are the primary cause of deaths in modern developed world
and consist of conditions with any kind of cardiovascular system malfunction caused
by the heart or the vascular system itself [1]. Many of these can be predicted, explained
or identified in an early stage by examining the blood flow dynamics causing various
loads and stresses to the cardiovascular system [2].

There were many attempts to describe the cardiovascular system using mathemati-
cal models, but in recent years the most efficient ones directly simulate the blood flow
in the veins and arteries. They include the generation of patient-specific cardiovascu-
lar structures models [3], construction of hypothetical vascular structures to test their
flow dynamics, and the combination of both to examine the implications of surgeries
changing the patient’s vasculature. Such example applications are a stent placement or
a bypass surgery, procedures that change the blood vessel geometry and pose significant
risks because of various unknowns in hemodynamics. The simulation results can be an-
alyzed to provide insights that could not otherwise be obtained. These simulations are

non-invasive and do not require the presence of a patient. They can be performed many
times with many different parameters and thus provide more detailed data about flow
dynamics. Their applications have been expanded in recent years as modern advances
in imaging technologies enabled scans of live patients to be used for patient-specific
model generation and medical result analysis.

The goal of the presented work was to develop a web application focused on ac-
cessibility, ease of use and fast workflow iterations where the user can quickly and
effortlessly advance from a basic input model to the final visualization of simulation
results. Nevertheless, the practical use-cases of the application cover the most frequent
cases and offer the same quality of results as other proprietary systems without the
need of installing any additional user-side tools. The application integrates the most
common simulation result visualization options, relieving the user from need of export-
ing the results and importing them into a third-party tool, thus shortening the workflow.
The simulation result files are compressed in an efficient manner with visualization pur-
poses in mind, enabling large simulation results to be saved on the server without taking
up too much of disk space and speeding up the data transmission to the user. The advan-
tages of using the presented client-server approach to simulation are: (1) accessibility
of simulation and visualization on low-end devices (such as ultra books, tablets and/or
mobile phones), (2) the accessibility of the system from any location with fast enough
Internet connection and (3) a possibility of queuing multiple simulation calculations on
the server and their overview after they are finished at later time.

2 Related work

The complete process from taking patient observations to analyzing the simulated blood
flow results typically involves four major stages: (1) data acquisition where patient-
specific data is gathered, (2) model generation where meshes are created from the gath-
ered data and prepared for simulation, (3) the simulation itself and lastly, (4) results
gathering and post-processing [2]. Our application workflow follows the same steps,
excluding the step (1) of data acquisition.

Stanford Virtual Vascular Laboratory (SVVL) was one of the first attempts to model
blood flow in blood vessels by developing a software framework integrating model
construction, mesh generation, flow simulation and visualization [4]. It introduced a
knowledge-based engineering approach to build a more complex vascular model from
a hierarchy of simpler primitives defined parametrically. The results were collected at
pre-defined nodal points and visualized in different ways, including flow vector fields
and streamlines. [5] was one of the first attempts to reduce the time needed for patient-
specific model generation by performing automatic level-set segmentation of 2D slices
to create a model and a simulation-suitable mesh. In recent years, various more sophis-
ticated approaches have been developed for user-guided modeling and meshing from
medical image data, such as the Vascular Modeling Toolkit [6], Vascular Editor [7],
sweep surfaces based approach presented [8] or SimVascular [9], frameworks which
provide powerful functionality for vascular modeling and mesh generation. SimVascu-
lar was used for meshing the vascular models in our application.

The simulation itself is a task of solving Navier-Stokes equations describing the
flow. The solution to these equations is a flow velocity field, which serves as a basis
for calculating other physical quantities such as pressures or temperatures. Software
CFD solvers have initially simulated blood flow in two dimensions and later in three
as technological progress enabled more detailed and faster simulations. Today, flow
simulations of the entire vasculature can be performed, as demonstrated by [10]. Many
CFD solvers are also available as open source packages, such as: Palabos [11], HemeLB
[12] and MUPHY [13]. Among them is also the solver in SimVascular, which was used
to perform the simulation in our case. Also relevant is a recent survey on cardiac 4D
PC-MRI data processing is presented in [14].

Visual representation of flow simulation results is an important aspect of post-
simulation analysis. Scalar values such as pressures or velocity magnitudes are usu-
ally displayed by sprite points or 3D spheres colored and scaled proportionally to their
values. Volumetric rendering is common for displaying medical images from Magnetic
Resonance Imaging [15] or Computed Tomography scans. Velocity field can also be
visualized with streamlines and derived methods [16] which display flow movement
through space (streamlines) or time (streampaths).

Commercial visualization software is usually limited to use of unconventional file
formats and often requires additional preprocessing for visualization purposes. Visual-
ization Toolkit (VTK) [17] is a very general visualization toolkit supported by many
popular simulation (e.g. Palabos [11]) and visualization software packages (e.g. Par-
aView and ParaViewWeb [18]). The VTK file format is also used internally in our ap-
plication but we also use our own file format for storing and transferring the results due
to our use of a custom compression method.

Flow simulations produce results in form of scalar or vector values for different
quantities (e.g. velocity, pressure, wall shear stress etc.). The results can consist of mil-
lions of values depending of the number of measured quantities and number of time
steps in the simulation yielding gigabytes of data for a single simulation run. To opti-
mize the storage and shorten the transfer times it is meaningful to use data compression.

A general approach to floating point data compression is presented in works [19,20].
To address medical domain, researchers have proposed lossless compression methods,
such as lossless stationary wavelet transform on 2D slices of 4D medical images (volu-
metric data through time) [21]. Wavelets have also been used for flow simulation data,
such as [22] where a discrete wavelet transform was used on an octree subdivision of
airflow simulation data. Other types of regressions have also been described, such as
using polynomials [23] on rectangular blocks of 2D medical images and encoding the
polynomial coefficients with Huffman coding, and also encoding the residual error with
run-length encoding to achieve lossless compression. Another approach for rapid high-
quality compression of volumetric data is presented in [24].

While the above methods are suitable for storing the original simulation data for
further analysis, we can exploit the fact that the data will be used for visualization
purposes only. In this case, the required precision is substantially lower than the IEEE
754 double-precision binary floating-point format [25].

For purposes of real-time rendering of time-varying volumetric data researchers
have extended and adapted an MPEG compression method for isosurface and volumet-

Fig. 1: The pipeline of the proposed system which also presents the user work-flow.

ric data [26]. Another approach [27] aims for high-accuracy compression by linearizing
the data points, sorting them and fitting them to a precise one-dimensional B-Spline.
In [28], authors present a lossy compression method for structured and unstructured
grid simulation data modeled as a graph decomposition problem, where sets of vertices
are replaced with a constant value bounded by a user defined error. Because the above
presented approaches are targeted to specific domains, mostly for non-porous media
and higher compression accuracy, they could not be directly applied to our case.

Our approach combines the meshing, simulation and visualization steps in a sin-
gle application able to process crude 3D models without the need of additional manual
annotations. No additional software is thus needed in the workflow and since the ap-
plication is web-based, no installation is required. Ease of use is also of note, as the
intuitive user interface doesn’t need additional documentation and can be used by any-
body not previously acquainted with CFD software.

In the following section we present the developed application and the novel com-
pression methods used for compressing the simulation results data. In Section 4 we
present the qualitative application evaluation and quantitative evaluation of compres-
sion method. In Section 5 we present the conclusions and give the guidelines for possi-
ble future work.

3 Methods

In this section we present the application workflow, how the system functionality is split
between front-end and back-end part, and a novel lossy compression method for flow
simulation data compression used in our system for optimizing the storage space and
for faster transmission of simulation data from back-end to front-end part of the system
for visualization purposes displayed in the diagram in Figure 1.

3.1 Application Workflow

The application consists of two parts. The back-end is a Node.js server application and
performs the meshing operations and executes the flow simulation. The front-end is

a web application developed using the Angular.js JavaScript framework intended for
flow simulation results visualization using Three.js, a WebGL graphics library, used for
interactive display of the simulation models and simulation results.

Preprocessing The first step in the workflow is to upload a 3D model of a vascu-
lar system in Wavefront .obj file format. The uploaded model must have holes for in-
lets/outlets (inflow and outflow caps) and is converted into VTK polydata format for
further processing. All the faces of the model are annotated as either blood vessel walls
or input/output cap surfaces. This preprocessing is done with a custom back-end Python
script, which centers the mesh geometry, identifies the cap holes, constructs the appro-
priate cap surfaces and annotates the individual faces. The script also estimates each
cap radius from its surface area to provide the user with a suggested initial edge length
value in the following tetrahedral meshing step. The resulting model, along with cap
surface annotations, is displayed in the front-end application for user inspection.

Meshing After the user confirms the preprocessing step results the second step is exe-
cuted on the back-end – a tetrahedral mesh generation. The generated mesh is suitable
for use with numerical simulation methods such as the subsequent flow simulation. The
user has to provide the desired tetrahedron edge length value for defining the simulation
resolution. While the user is already given a suggested edge length from the previous
step, he can define a different value in the dialog window before starting the mesh-
ing process. In our system, TetGen is used for mesh generation, exposed through the
SimVascular TCL (Tool Command Language) shell.

Simulation The most processing-intensive back-end step of the system workflow is
the simulation step. To start a simulation, the user has to define set of simulation pa-
rameters containing the inlet/outlet configuration, inlet flow rates, and outlet flow resis-
tances. The user is already provided with the default parameter values for an individual
inlet/outlet but should adjust them according to the desired simulation scenario. All in-
lets/outlets are displayed in a list (see Figure 2 left). By selecting an individual item
from the list, the selected inlet/outlet cap surface is highlighted and centered on the
screen making it easy for the user to identify it and adjust its parameters. After the user
defines all the simulation parameters, the simulation process can be started.

The simulation is performed using SimVascular-provided command-line utilities:
(1) pre-solver for boundary condition generation, (2) solver for performing the finite-
element simulation and (3) post-solver for collecting the simulation results data. The
solver supports a high-degree of parallelization to speed up the simulation process
through the use of MPICH, a high-performance portable implementation of the Mes-
sage Passing Interface standard.

Compression In the following step, the obtained simulation results in VTK format
are parsed and compressed by the compression module using the compression method
presented in Section 3.2, before they are stored to the disk or sent to the front-end for
visualization. They contain time step data for flow velocities, flow pressures, in-plane
tractions, wall shear stresses and time-derivatives of flow velocities.

Fig. 2: Left: the application interface when previewing cap faces and setting inlet/outlet
parameters. Right: the interface when visualizing the simulation results.

Visualization In the final workflow step, the flow simulation data is transmitted to the
front-end application where it is visualized. The visualization is implemented using the
Three.js library and allows the user to move and rotate the view as well as change the
zoom. The visualization parameters can be set in the side panel of the web application.
The user can also move between the individual time steps of simulation using time slider
at the bottom and see what values are represented by individual colors in the legend on
the right.

The visualization component supports different visualization types:

Mesh display with adjustable mesh opacity, enabling quantities inside the mesh to be
visible while the overall structure of the vascular system is displayed.

Scalar point display shows individual simulation values as 2D sprites colored and
scaled relative to their values, with adjustable scale and attenuation factors (Fig-
ure 3a).

Vector display shows individual lines, scaled and colored relative to the vector data
(Figure 3b).

Surface display shows a mesh texture of the vascular system generated by interpolat-
ing between vertex values, intended for quantities along the vessel surfaces such as
wall shear stresses (Figure 3c).

Streamlines generated by sampling starting points at mesh inlets or outlets and fol-
lowing the flow in a forward or backward direction (Figure 3d).

3.2 Compression of flow simulation data

Simulations on meshes with hundreds of thousands to millions of data points can pro-
duce large result files measuring several gigabytes in size if no compression is used
and the data is stored at its original (usually 64-bit) precision. This presents challenges
when transferring these files over the network or storing them on a medium.

(a) Flow velocity displayed as scalar points. (b) Flow velocity displayed as a vector field.

(c) Wall shear stresses displayed on the mesh’s
surface.

(d) Streamlines and resulting vortices of four
inlets and two outlets.

Fig. 3: The four implemented visualization methods.

Our problem domain is specific enough to justify the development of a new com-
pression method. Specifically, (1) the points are not distributed evenly and only take
values on sparse positions of blood vessels, requiring the use of a space-decomposition
method, (2) the targeted accuracy is lower than is usual for others since the data is
intended for visualization purposes only - for example, [27] targets a higher compres-
sion accuracy but requires an index to be stored for each value, requiring an additional
amount of bits per each point.

In our approach we use an octree to subdivide the data points into blocks (N), where
each block is treated independently, to take advantage of local data coherence. The
subdivision level depends on the point density so that the majority of blocks contain a
predefined number of points n (in our experiments, n = 1000 turned out to be the most
suitable for most meshes).

The process of compressing each block consists of a iterative approach that attempts
to fit the data points to a B-Spline volume S:

S(u,v,w) =
n

∑
g=0

n

∑
h=0

n

∑
i=0

Ng,k(u)Nh,k(v)Ni,k(w) pg,h,i,

where u, v and w are our point coordinates and pg,h,i are B-Spline control points in a
cubic formation. We can rearrange the basis function outer products in a single three-
dimensional matrix:

x = [N0,k(u), . . .Nn,k(u)]⊗ [N0,k(v), . . .Nn,k(v)]⊗ [N0,k(w), . . .Nn,k(w)],

where ⊗ is the outer product of two vectors. Having M values we can express this
as a linear system X ∗P = B where X is a matrix of size M× n3 filled with rows of
matrices x flattened into vectors of size 1× n3, P is a vector of control points of size
1×n3 and B is a vector of quantity values of size 1×M. We can find a best fit solution
P = (XT X)−1XT B using linear least squares approach to minimize the sum of squared
differences.

The method attempts to perform iterative B-Spline fitting to encode the data by
going through a list of “presets” defining the number of B-Spline control points Nc in
one dimension, starting with 2 (total 8 points) and going through to 9 (total 729 points).
After every iteration, the average error level is measured and the process is repeated
with the next control point preset until the measured error level is sufficiently low; this
way a suitable B-Spline solution is found. The control points are converted to IEEE 754
half-precision format (16 bits) [25] in order to save additional space. The process for a
single octree block is described in Algorithm 1.

Algorithm 1 Iteration process for an octree block

1: errT hr← getErrorT hreshold(blockVals)
2: bitsPerPoint← getBitsPerPoint(blockVals)
3: solution← null
4: for numCtrlPts ∈ {2, ...,9} do
5: if 16 ·numCtrlPts3 ≥ bitsPerPoint · len(blockVals) then
6: break
7: end if
8: avgErr,encData← encode(blockVals,numCtrlPts)
9: if avgErr ≤ errT hr then

10: solution← encdData
11: break
12: end if
13: end for
14: if solution≡ null then
15: solution← quantize(blockVals)
16: end if

The iteration stops when the number of bits required to encode the control points
(16N3

c) is larger than the number of bits required to do local quantization (bn where b
is the number of bits per point and n is the number of points in the block), or if the
error level was not sufficiently low. If the local value range |Vmax−Vmin| is smaller than
the desired error level, the values are encoded as a constant, implicitly set to be the
midpoint between the minimum and the maximum values (Vmin+Vmax

2).
Each region is encoded in a binary format with the following information: com-

pression type used for this region, minimum local value Vmin, maximum local value
Vmax, followed by data depending on the type of compression used, as displayed in Ta-
ble 1. The constant encoding does not need any further data, while the other two types
need the number of control points along one dimension Nc and the control points ci for

bit block num. 1 2 3 4 5 6 . . .
B-Spline type (2) Vmin (32) Vmax (32) Nc (5) c1 (16) c2 (16) . . .
quantization type (2) Vmin (32) Vmax (32) b (4) v1 (b) v2 (b) . . .
const. enc. type (2) Vmin (32) Vmax (32) - - - -

Table 1: The binary file format of a single octree block, depending on the type of en-
coding used for this block (B-Spline regression, quantization or constant encoding).

B-Spline compression, or the number of bits per point b and quantized values vi for
quantization.

Decompression is performed on the front-end to decode the data. Since point posi-
tions are sent separately, the octree can be reconstructed implicitly.

4 Results

The application was deployed on a Ubuntu server with an 8-core, 16-thread Intel Xeon
CPU enabling fast simulations (the tested scenarios all completed within a few min-
utes). To evaluate our application, we tested the simulations on seven blood-vessel
models, most of which were modeled after real volumetric scans in SimVascular or
other modeling and segmentation tools. We needed to validate the proper input param-
eter parsing - the inlet-outlet mappings, flow rates and resistances - as well as how the
visualized results (after a lossy compression) compared with an external tool, ParaView
(Figure 4). The main differences between left (our system) and right (ParaView) image
in Figure 4 is the used color map and the orientation of the vascular model. One can
clearly see that the emerging parts of the vessel tree are same in both cases.

Another thing we tested was rendering performance since real-time 3D interac-
tion is crucial for informative visualizations. While the web interface was intended
for larger displays, the visualizations were rendered with smooth framerates even on
mobile phones, including the largest of scenarios tested in Table 2, which is an impor-
tant advantage of our web-based approach with server-side computational offloading.
Table 2 contains the properties of simulation models used during system testing. While
the smallest model has approx. 43 thousand mesh points and 685 thousand total simula-
tion data points in the 16-step simulation scenario the most complex model consists of
more than 200 thousand mesh points and over 3.4 million total simulation data points
in 16-step simulation scenario.

The streamlines present the largest rendering bottleneck because of the high number
of individual line segments they consist of. A mobile phone (Samsung Galaxy S6) could
render a combined display of 26,695 scalar points and 752,949 streamline line segments
with an average framerate of 18 frames per second. A larger model with 181,411 points
rendered at 27 frames per second in case of scalar points and 34 frames per second in
case of velocity vectors. A larger number of streamline segments becomes unpractical
for the mobile phone, but can still be rendered on a laptop computer. A scenario with

DoubleCylinder ForkFlat AortaSmall ForkSmall Coronary AortaBig ForkBig
caps 3 3 6 3 11 18 20
mesh pts. 42864 50674 185447 107652 212519 132049 181411
6 st. pts. 257184 304044 1112682 645912 1275114 792294 1088466
16 st. pts. 685824 810784 2967152 1722432 3400304 2112784 2902576

Table 2: Model set used along with the number of caps, mesh points and total data
points for 6 and 16 simulation steps

4,356,391 streamline segments renders at 48 frames per second, on average on a 2015
MacBook Pro.

Fig. 4: Comparison of pressure visualizations in our application (left) and ParaView
(right).

The first part of our evaluation was ensuring the input parameters affect the sim-
ulation as intended. For this task, we tested several models using different inlet-outlet
mappings and different flow rates and outlet resistances, and visually evaluated the sim-
ulation results. An example of two quantities being displayed in a model of aorta can
be seen on Figure 5.

4.1 Compression results

The developed compression method was compared with (1) the baseline method where
6 or 8 bits of precision is used to quantize the values (yielding an average target error
rate of 0.09 % and 0.39 %, respectively), (2) a method where the values are quantized in
a time dimension over consecutive time steps, and (3) the hybrid method without using
B-Spline regression (instead quantizing all blocks). We evaluated the performance on
the set of models presented in Table 2 for two main quantities – pressures and velocities
– over four scenarios, dividing them in terms of precision (6-bit or 8-bit error target or
0.09 % / 0.39 % maximum average error rate, respectively) and simulation parameters.
The simulation was performed over 16 consecutive time steps with varying sinusoid-
shaped pulse flow.

Fig. 5: Simulation results in a model of aorta, with pressures displayed as scalar points
alongside streamlines.

DoubleCyl ForkFlat AortaSmall ForkSmall Coronary AortaBig ForkBig
base 6 6 6 6 6 6 6
time domain 5.706 6.458 6.234 6.691 6.075 5.542 6.026
octree 4.112 3.227 3.121 2.269 3.102 3.153 2.573
octree+BS 1.747 1.579 1.531 1.358 0.833 1.676 1.136

0
1
2
3
4
5
6
7
8

bi
ts

 p
er

 p
oi

nt

Pressure, 6 bit acc., 16 steps

base time domain octree octree+BS

(a)

DoubleCyl ForkFlat AortaSmall ForkSmall Coronary AortaBig ForkBig
base 6 6 6 6 6 6 6
time domain 5.019 3.601 4.334 3.946 4.974 3.189 3.585
octree 4.594 3.762 3.716 3.781 4.308 3.299 3.792
octree+BS 3.211 3.261 2.667 3.114 2.401 2.662 2.979

0
1
2
3
4
5
6
7

bi
ts

 p
er

 p
oi

nt

Velocity, 6 bit acc., 16 steps

base time domain octree octree+BS

(b)

DoubleCyl ForkFlat AortaSmall ForkSmall Coronary AortaBig ForkBig
base 8 8 8 8 8 8 8
time domain 7.866 8.684 8.435 8.919 8.268 7.678 8.221
octree 5.900 4.947 4.808 3.901 4.816 4.853 4.240
octree+BS 4.976 3.072 2.282 2.395 2.199 2.720 2.105

0
1
2
3
4
5
6
7
8
9

10

bi
ts

 p
er

 p
oi

nt

Pressure, 8 bit acc., 16 steps

base time domain octree octree+BS

(c)

DoubleCyl ForkFlat AortaSmall ForkSmall Coronary AortaBig ForkBig
base 8 8 8 8 8 8

8

time domain 6.765 5.109 6.055 5.506 6.761 4.613 5.088
octree 6.413 5.492 5.482 5.508 6.107 5.016 5.544
octree+BS 6.133 5.226 4.578 5.035 5.281 4.619 5.195

0
1
2
3
4
5
6
7
8
9

bi
ts

 p
er

 p
oi

nt

Velocity, 8 bit acc., 16 steps

base time domain octree octree+BS

(d)

Fig. 6: Comparison ratios of compression methods at 6 bit accuracy target (max. avg.
error of 0.39 %) 6a and 6b and comparison ratios at 8 bit accuracy target (max. avg.
error of 0.09 %) 6c and 6d.

The charts displayed in Figure 6 present the comparison of the four compression
methods in terms of the average number of bits needed to encode a single data point
(each 1D component in case of 3D velocity vectors).

The results show that our hybrid method using a mix of B-Spline regression and
quantization in octree subdivisions is always more effective than the method only using
octree quantization, and only in a single instance minimally less efficient than time-
domain quantization. The amount of improvement over the method using just octree
quantization is larger in case of pressure values than it is in case of velocity vectors,
ranging from 40 % to 55 % and 6 % to 25 % fewer bits per point on average for pressures
and velocity vectors, respectively, translating to compression ratios of up to 5.7 over
the baseline in case of pressures encoded with 6-bit accuracy target, on average. The
method is very sensitive to the initial error rate target, being much more efficient on
larger maximum average error rates (e.g. 6 bit target or maximum average error of 0.39
%), especially in case of velocity vectors.

Velocity vectors encoded under a stricter accuracy constraint (8 bit target or max-
imum average error of 0.09 %) are the least efficient scenario, providing 6 % to 9 %
fewer bits per point compared to just using octree quantization. This is due to larger
numbers of “outliers" skewing the smoothness of the values and making it harder for
a regressed B-Spline volume to fit the data, making the error rate unsuitable and thus
requiring more control points to meet the error rate criterion. If the error criterion is
relaxed, the iteration process can find a suitable B-Spline model in a significantly larger
portion of regions and thus the method’s effectiveness is larger. This is also the rea-
son why this method is more efficient when encoding pressure values, as these values
usually have a much lower number of outliers and values’ transitions are much “softer”.

The average number of bits per point for compressed data is thus sufficiently low to
enable network transfers and convenient disk storage. For example, in case of pressures
in a Coronary model simulation with 6 time steps, the original data size of 10.2 MB
with 64-bit accuracy was compressed to 0.083 MB with 6-bit accuracy, a compression
ratio of 122.9. In case of velocities and 16 time steps, the original data size of 81.6 MB
at 64-bit accuracy MB was compressed to 3.06 MB with 6-bit accuracy, a compression
ratio of 26.6.

5 Conclusions

Simulation of cardiovascular systems and informative display of results is an interesting
field with great past record and even greater future promises in providing alternative
means for cardiovascular disease study and surgery planning. In this work we developed
an application for accepting cardiovascular models, simulating the blood flow inside
them and visualizing the results in different ways. We exposed the functionality through
a web application with a simple and intuitive GUI to enable fast workflow iterations
and the ability to load previously saved results and models. We connected the web
application to a back-end application performing the computationally intensive parts
of the process. We implemented different ways of visualizing the results through an
interactive 3D canvas. We also implemented a method for result data compression to
minimize the amount of storage needed and maximize network file transfer speeds.

Our evaluations showed successful simulations and visualizations in line with pro-
vided parameters and expectations. The model conversion, meshing and simulation pro-
cesses performed as expected and the simulation results mirrored the desired changes to
the input parameters. The visualizations displayed interesting features formed by blood
flow and were each able to provide an informative and complete display of data. Their
performance was good enough to enable smooth real-time interaction even on mobile
devices. The developed compression method was able to achieve good results, produc-
ing relatively small file sizes and retaining the accuracy needed for the visualization
without the accuracy loss being noticeable to the user, even though the improvement of
the hybrid method compared to the others was not always as big in the best performing
cases.

This work could serve as a base for several further improvements. The user inter-
face could accept more parameters for more advanced usage and more advanced users
wanting more fine-tuning in their simulations. More visualization options could be de-
veloped, such as volumetric rendering which requires the development of an efficient
method to enable real-time rendering, and other 3D structures derived from streamlines,
such as streamribbons.

The hybrid compression method could also see improvements in tweaking the B-
Spline parameters and regression to enable a larger ratio of optimal B-Spline regressions
in octree blocks since its performance is limited by the number of blocks suitable for
efficient B-Spline regression. Different volume subdivision methods could also be at-
tempted to achieve better data distribution in individual subdivisions and limit the num-
ber of subdivisions unfit for B-Spline regression. Finally, the compression algorithm
could be rewritten in a more efficient language and executed on a GPU to improve its
execution speed.

References

1. Mendis, S., Puska, P., Norrving, B., et al.: Global Atlas on Cardiovascular Disease Prevention
and Control. World Health Organization (2011)

2. Doost, S.N., Ghista, D., Su, B., Zhong, L., Morsi, Y.S.: Heart blood flow simulation: a
perspective review. BioMedical Engineering OnLine 15(1) (Aug 2016) 101

3. Arts, T., Lumens, J., Kroon, W., Donker, D., Prinzen, F., Delhaas, T.: Patient-specific mod-
eling of cardiovascular dynamics with a major role for adaptation. In: Patient-Specific Mod-
eling of the Cardiovascular System. Springer (2010) 21–41

4. Taylor, C.A., Hughes, T.J., Zarins, C.K.: Finite element modeling of blood flow in arteries.
Computer Methods in Applied Mechanics and Engineering 158(1-2) (1998) 155–196

5. Wilson, N., Wang, K., Dutton, R.W., Taylor, C.: A software framework for creating patient
specific geometric models from medical imaging data for simulation based medical plan-
ning of vascular surgery. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention, Springer (2001) 449–456

6. Antiga, L., Piccinelli, M., Botti, L., Ene-Iordache, B., Remuzzi, A., Steinman, D.A.: An
image-based modeling framework for patient-specific computational hemodynamics. Medi-
cal & Biological Engineering & Computing 46(11) (2008) 1097

7. Marchenko, Y., Volkau, I., Nowinski, W.L.: Vascular editor: From angiographic images to
3d vascular models. Journal of Digital Imaging 23(4) (Aug 2010) 386–398

8. Kretschmer, J., Godenschwager, C., Preim, B., Stamminger, M.: Interactive patient-specific
vascular modeling with sweep surfaces. IEEE Transactions on Visualization and Computer
Graphics 19(12) (Dec 2013) 2828–2837

9. Updegrove, A., Wilson, N.M., Merkow, J., Lan, H., Marsden, A.L., Shadden, S.C.: Simvas-
cular: An open source pipeline for cardiovascular simulation. Annals of Biomedical Engi-
neering 45(3) (Mar 2017) 525–541

10. Zhou, M., Sahni, O., Kim, H.J., Figueroa, C.A., Taylor, C.A., Shephard, M.S., Jansen, K.E.:
Cardiovascular flow simulation at extreme scale. Computational Mechanics 46(1) (2010)
71–82

11. Meier, S., Hennemuth, A., Tchipev, N., Harloff, A., Markl, M., Preusser, T.: Towards patient-
individual blood flow simulations based on pc-mri measurements. Informatik Journal 41
(2011) 4–7

12. Mazzeo, M., Coveney, P.: Hemelb: A high performance parallel lattice-boltzmann code for
large scale fluid flow in complex geometries. Computer Physics Communications 178(12)
(2008) 894 – 914

13. Bernaschi, M., Melchionna, S., Succi, S., Fyta, M., Kaxiras, E., Sircar, J.: Muphy: A parallel
multi physics/scale code for high performance bio-fluidic simulations. Computer Physics
Communications 180(9) (2009) 1495 – 1502

14. Köhler, B., Born, S., van Pelt, R.F.P., Hennemuth, A., Preim, U., Preim, B.: A survey of
cardiac 4d pc-mri data processing. Computer Graphics Forum 36(6) 5–35

15. Anastasi, G., Bramanti, P., Di Bella, P., Favaloro, A., Trimarchi, F., Magaudda, L., Gaeta,
M., Scribano, E., Bruschetta, D., Milardi, D.: Volume rendering based on magnetic res-
onance imaging: Advances in understanding the three-dimensional anatomy of the human
knee. Journal of anatomy 211(3) (2007) 399–406

16. Ueng, S.K., Sikorski, K., Ma, K.L.: Fast algorithms for visualizing fluid motion in steady
flow on unstructured grids. In: IEEE Conference on Visualization, 1995. Proceedings. (10
1995) 313–320

17. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit (4th ed.). Kitware (2006)
18. Jourdain, S., Ayachit, U., Geveci, B.: ParaViewWeb: A Web Framework For 3D Visualization

And Data Processing. International Journal of Computer Information Systems and Industrial
Management Applications 3 (2011) 870–877

19. Lindstrom, P., Isenburg, M.: Fast and Efficient Compression of Floating-Point Data. IEEE
Transactions on Visualization and Computer Graphics 12(5) (2006) 1245–1250

20. Lindstrom, P.: Fixed-rate compressed floating-point arrays. IEEE Transactions on Visual-
ization and Computer Graphics 20(12) (2014) 2674–2683

21. Belhadef, L., Maaza, Z.M.: Lossless 4d medical images compression with motion compen-
sation and lifting wavelet transform. International Journal of Signal Processing Systems 4(2)
(2016) 168–171

22. Sakai, R., Sasaki, D., Obayashi, S., Nakahashi, K.: Wavelet-based data compression for flow
simulation on block-structured cartesian mesh. International Journal for Numerical Methods
in Fluids 73(5) (2013) 462–476

23. Al-Khafaji, G., George, L.E.: Fast lossless compression of medical images based on poly-
nomial. International Journal of Computer Applications 70(15) (2013)

24. Nguyen, K.G., Saupe, D.: Rapid high quality compression of volume data for visualization.
Computer Graphics Forum 20(3) (2001) 49–57

25. : Ieee standard for floating-point arithmetic. Standard, IEEE (Aug 2008)
26. Sohn, B.S., Bajaj, C., Siddavanahalli, V.: Feature based volumetric video compression for

interactive playback. In: Proceedings of the 2002 IEEE Symposium on Volume Visualization
and Graphics. VVS ’02, Piscataway, NJ, USA, IEEE Press (2002) 89–96

27. Lehmann, H., Werzner, E., Mendes, M.A.A., Trimis, D., Jung, B., Ray, S.: In situ data
compression algorithm for detailed numerical simulation of liquid metal filtration through
regularly structured porous media. Advanced Engineering Materials 15(12) (2013) 1260–
1269

28. Iverson, J., Kamath, C., Karypis, G.: Fast and Effective Lossy Compression Algorithms for
Scientific Datasets. Euro-Par (2012) 843–856

