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ABSTRACT 

In the paper, we explore the performance of deep residual 
convolutional networks for labelling ethnomusicological 
field recordings. Field recordings are integral documents 
of folk music performances captured in the field, and typ-
ically contain performances, intertwined with interviews 
and commentaries. As these are live recordings, captured 
in non-ideal conditions, they usually contain significant 
background noise. Labelling of field recordings is a typical 
step in segmentation of these recordings, where short 
sound excerpts are classified into one of a set of predefined 
classes. In the paper, we explore classification into four 
classes: speech, solo singing, choir singing (more than one 
voice) and instrumental performances. We describe the da-
taset gathered for the task and the labelling tools developed 
for gathering the reference annotations. We compare dif-
ferent input representations and convolutional network ar-
chitectures based on residual modules for labelling short 
audio segments and compare them to the more standard 
feature based approaches, where an improvement in clas-
sification accuracy of over 5% was obtained. 

1. INTRODUCTION 

Field recordings are documents of folk song and music 
performances taken “in the field”, usually in environments 
familiar to musicians. They aim to preserve entire record-
ing sessions and the context in which they were recorded, 
and are thus a mix of performances and speech, which of-
ten consists of interviews with musicians. Since recordings 
are taken in everyday environments, they are often very 
noisy due to background noise (e.g. people talking, doors 
closing etc.), poor recording equipment or the recording 
environment itself. Segmentation of field recordings is one 
of the first tasks that ethnomusicologists perform when 
studying the recorded materials, as they separate the con-
tents into different units, such as speech or individual per-
formances. It is also a prerequisite for computational anal-
ysis of field recordings. 

In the audio processing and music information retrieval 
research fields, automatic segmentation of recordings is a 
well-studied task. It is important for segmentation of 
broadcast news and radio broadcasts, where recordings are 
usually separated into speech and music units, as well as 
in other domains such as for removal of non-speech parts 
in speech recognition systems. Most approaches either first 
label short segments of the recording into a set of classes 

(e.g. speech, music) and then find segment boundaries 
(Lie, Stan, & Hong-Jiang, 2001; Williams  & Ellis, 1999), 
or first find the segment boundaries and later apply classi-
fication into classes (Panagiotakis & Tziritas, 2005; 
Tzanetakis & Cook, 1999). Pikrakis et al. (2008) used a 
three step approach: first they identified regions in the sig-
nal which are very likely to contain speech or music with 
a region growing algorithm. Then, they segmented the re-
maining regions with a maximum likelihood model and fi-
nally, a boundary correction algorithm was applied to im-
prove the found boundaries. Marolt (2009) also used a 
three step procedure where signal fragments were first la-
belled into five classes, then candidate boundaries estab-
lished and finally the actual boundaries estimated with a 
maximum-likelihood criterion. 

More recently, within the Mirex 2015 Music/Speech 
Classification and Detection task ("Mirex 2015 Results," 
2015), 9 authors submitted their algorithms for classifying 
recordings into either speech or music, and for finding seg-
ment boundaries in a set recordings, which also included a 
number of field recordings. The algorithms were very suc-
cessful for the first task, reaching 99.7% accuracy (Lidy, 
2015), which might indicate that the task of music/speech 
classification is solved, however it is more likely that the 
evaluation dataset was too basic and did not include 
enough challenging cases for the algorithms. This is al-
ready obvious if we observe results of the same approaches 
for the second task, where frame-based F1 measure of the 
best system dropped to 89.4% (Marolt, 2009), while the F1 
score of finding segment boundaries was only at 40.3%.  

In the past years, deep learning had become the preva-
lent approach for classification problems in image and au-
dio domains. It is therefore not surprising that it was also 
applied to segmentation of audio recordings. The afore-
mentioned best music/speech classifier at Mirex 2015 by 
Lidy (2015) was based on convolutional neural networks. 
Similarly, Kruspe et al. (2017) use deep networks to dis-
criminate between speech and music sections in broadcast 
signals and reports over 99% F1 measure for speech and 
91% for music discrimination. Authors from Google 
(Hershey et al., 2017) compared a number of deep archi-
tectures for large-scale audio classification on tagged au-
dio from the YouTube-100M dataset, as well as on a large 
scale dataset of labelled sound clips from YouTube videos 
– Audio Set (Gemmeke et al., 2017).  



  
 

In this paper, we explore deep neural networks for la-
belling ethnomusicological field recordings. Unlike broad-
cast recordings, field recordings are more challenging to 
label and segment due to their noisy nature. In contrast to 
most speech/music discriminators, we aim to separate be-
tween four rather than two classes: speech, solo singing, 
choir singing (more than 1 voice) and instrumental record-
ings. We chose the four classes as they are very representa-
tive for a number of field recordings from different regions 
that we analyzed. Also, in contrast to most previous work, 
we do not aim to segment (clean) broadcast recordings, but 
field recordings, which may be of varying quality, as al-
ready described previously. We describe the architecture 
used for classification, the dataset used and our first re-
sults.  

2. DATASET 

Exploration of field recordings revealed four major classes 
of recordings that appear in a variety of cultures: solo sing-
ing, choir (more than one voice) singing, instrumental per-
formances, and speech. Our goal was therefore to classify 
field recordings into the four classes, and not to limit our-
selves to just speech and music. To train deep learning 
classifiers, large datasets are needed - the larger the better 
as recent deep learning experiences show. Apart from the 
Audio Set (Gemmeke et al., 2017), which is an excellent 
large-scale audio classification dataset, there are few suit-
able datasets available for the task. In the presented work, 
we decided not to begin with the Audio Set, as its catego-
ries are not ideal for our purpose; for example, there is no 
solo singing category, examples labeled with singing are 
mostly accompanied by music, while musical genres are 
mostly oriented towards popular music genres (pop, rock 
etc.). 

We therefore gathered short excerpts from a variety of 
recordings from ethnomusicological (and related) archives 
that put their collections online in recent years. The 
sources include: the British Library world & traditional 
music collection 1 , Alan Lomax recordings 2 , sound ar-
chives of the CRNS3 and a number of recordings from the 
Slovenian sound archive Ethnomuse and the Norwegian 
national library, which are not available online, but were 
made available to us by ethnomusicologists with the re-
spective institutions. These field recordings were aug-
mented by the well-known GTZAN music/speech collec-
tion and the Mirex 2015 music/speech detection public da-
taset.  

Altogether 7,000 5 second long excerpts were ex-
tracted from these sources. To manually label them into the 
four target classes, we enhanced the web-based audio an-
notator tool (Cartwright et al., 2017), so that it can be con-
trolled exclusively by the keyboard. This enabled fast 

                                                           
1 https://sounds.bl.uk//World-and-traditional-music 
2 http://research.culturalequity.org/home-audio.jsp 
3 http://archives.crem-cnrs.fr/ 

multi-user annotation of audio excerpts into the four cate-
gories, augmented by three additional categories of “voice 
over instrumental”, “noise” and “not clear”. The latter was 
to be applied when the audio clip was either too noisy to 
be recognized or contained too many short fragments of 
different types of materials, so that it was difficult to select 
a single label. The annotator’s goal was namely, to select 
a single label for the five second clip, where clips were 
randomly chosen from the set of unlabeled clips for each 
participating annotator. The user interface was kept very 
similar to the original audio annotator and is shown in Fig-
ure 1.  

 

Figure 1. The annotation interface. 

3. EXPERIMENT 

Our goal was to evaluate the performance of deep net-
works for the classification task at hand. All the audio ex-
cerpts were first downsampled to 22050 Hz, mixed to a 
single channel and normalized.  

We compared several input representations for the 
task: 46 ms FFT frames (252 bins between 50 and 7000 
Hz) and 64 channel mel-scale spectrograms (50-8000 Hz) 
extracted from FFT frames of 23ms, 46 ms, and 92ms. We 
log-scaled all representations (adding 1e-5 before applying 
the logarithm) and used 1 or 2 second long feature blocks 
with 50% overlap as network inputs. Stacking of different 
resolution frames (23ms, 46ms, 96ms) was also tested. 

We chose convolutional deep networks as our main 
classification tool and focused specifically on residual net-
works (K. He, Zhang, Ren, & Sun, 2015), which previ-
ously demonstrated good performance for a variety of im-
age, as well as audio-based tasks. The main feature of re-
sidual networks are their shortcut connections that imple-
ment identity mappings and enable convolutional blocks 
to learn residuals between the underlying mapping of fea-
tures and the input.  

The overall network architecture is shown in Figure 2. 
The input layer is first processed by 𝑚 𝑛𝑥𝑛 convolutions, 
optionally enhanced with 𝑚 𝑛𝑥𝑛  dilated convolutions 
with rate 2, to expand the receptive field of filters. A max 
pooling layer was added to reduce the size of feature maps, 
followed by 𝑝 resnet v2 blocks (Kaiming He, Zhang, Ren, 

 



  
 

& Sun, 2016), where the size of feature maps is halved (in 
each dimension) within each block and the number of fil-
ters doubled. The batch normalized output of resnet blocks 
is gathered by 1x1 convolutions into a 2D feature map. The 
map is finally processed by a small fully connected layer 
with four outputs, where the softmax activation yields final 
class probabilities. We tested different values for the de-
scribed parameters, which we outline in section 4. Batch 
normalization, as well as l2 regularization were used for 
regularizing the network, to avoid overfitting. To intro-
duce non-linearity, we compare the performance of stand-
ard ReLU activation functions with exponential linear 
units ELU (Clevert, Unterthiner, & Hochreiter, 2015).  

 

 

Figure 2. The network architecture. 

Three-fold cross validation was used to assess the per-
formance of each network, where 2/3 of the dataset was 
used for training, the remaining 1/3 for testing, and the pro-
cedure repeated three times. The networks were trained 
with minibatches of 128 examples. For each audio exam-
ple, the block of input features was drawn from a random 
location within the audio, so that for each epoch, the fea-
ture blocks used to train the network differed in their loca-
tion within training files. Such time translation diversifies 
the limited training data available and improves perfor-
mance, as was also demonstrated elsewhere (Jansen et al., 
2017). For testing, the entire test files were used. 

Stochastic gradient descent was used for training over 
500 epochs, and the learning rate set to decay from 0.1 by 

0.75 each 500 steps. The experiments were implemented 
in Tensorflow. 

4. RESULTS 

4.1 Input representation 
A comparison of different input representations is shown 
in Table 1. We report average accuracy over all classes 
over the three cross-validation splits in the last column. 
The same network architecture (described in 4.2) was used 
for all comparisons. We compare two different input rep-
resentations: mel compressed spectrograms vs. FFT, two 
different block sizes (1.1 vs. 2.2 second long blocks of in-
put features), three different window and two different step 
sizes for FFT calculation.  

We see a significant difference only in the choice of 
block sizes: features covering 1.1 seconds of audio give 
around 2% lower accuracy as 2.2 second blocks, indicating 
that it is beneficial for the network to have more context in 
order to distinguish between the categories. Indeed, even 
when listening to, for example speech vs. solo singing, in 
many cases one second of audio cannot not reveal the cor-
rect category. This is even truer for field recordings, which 
are typically amateur performances, many times by older 
people, include strong dialects etc. There are no significant 
differences between different window and step sizes in 2.2 
second blocks. Stacking of different window sizes also 
does not improve the performance significantly. We there-
fore decided to use 2.2 second blocks of 64 channel mel 
spectrograms calculated from FFT frames of 46 ms with 
23ms step size (network input size 96x64) in our further 
experiments. 

 

feature 
block  

(s) 
step  
(ms) 

window 
(ms) 

input  
size 

accuracy 

mel 1.1 12 12 96x64 0.861 
   23 96x64 0.868 
   46 96x64 0.868 
   12,23,46 96x64x3 0.875 
 2.2 12 12 192x64 0.882 
   23 192x64 0.887 
   46 192x64 0.887 
   12,23,46 192x64x3 0.891 
  23 23 96x64 0.886 
   46 96x64 0.890 
   92 96x64 0.891 
   12,23,46 96x64x3 0.895 

fft 2.2 23 46 96x252 0.892 

Table 1. A comparison of different input representations. 

4.2 Network architectures 
The overall network architecture was described in section 
3. We tested the influence of the following parameters on 
network performance: the number of filters in the first con-
volutional layer (2, 4, 6, 8), the sizes of these filters (4, 6, 
8, with or without stacked dilated convolutions of the same 
size), the number of resnet blocks (3, 4, 5) and the activa-
tion function (ReLU vs ELU). Table 2 lists the key results. 

The networks are not very sensitive to the size of input 
filters. When the number of layer one filters 𝑚 increases 



  
 

up to 6 filters, performance improves, while higher num-
bers do not have a large effect. Adding an additional set of 
dilated filters (rate=2) helps, although this also increases 
the number of network parameters. The optimal number of 
resnet blocks was determined to be 4, an additional block 
does not add much to accuracy, but increases the number 
of network parameters substantially. The ELU activation 
function seems to improve training (consistently higher ac-
curacy by approx. 1%) over ReLU.  

 
activa-

tion 
dilated 

nxn L1 
size 

m L1  
filters 

p resnet 
blocks 

accuracy 

elu yes 4 6 5 0.893 
    4 0.890 
    3 0.882 
   2 4 0.874 
   4 4 0.881 
 no 4 6 4 0.883 

relu yes 4 6 4 0.882 

Table 2. Comparison of network architectures. 

Based on the evaluation, our final network architecture 
uses ELU activations, 6 4x4 convolutions stacked with 6 
dilated 4x4 convolutions (rate=2) on the first layer, fol-
lowed by 4 resnet blocks. The final fully connected layer 
is small (24x4) and has no hidden layer, but directly maps 
into the four outputs. The entire network is not very deep, 
as we have a limited amount of training data, and contains 
172,936 trainable parameters. 

4.3 Comparison to other approaches 
To put the obtained results into perspective, Table 3 lists 
the performance of three other approaches on the same da-
taset (also using 3-fold cross-validation):  
 a standard deep convolutional network with two 3x3 

convolutions (one with stride 2) in place of each resnet 
block (no shortcut links), trained on the same mel-spec-
trogram input data representation;  

 a multilayer perceptron with one hidden layer of 16 
neurons trained on VGGish (Hershey et al., 2017) fea-
tures extracted from the data. VGGish are audio classi-
fication features extracted from a VGG-like deep 
model trained on a large YouTube dataset and made 
available by Google. Input to the MLP consisted of two 
consecutive 128-dimensional VGGish vectors, each 
summarizing 1 second of audio; 

 a simple logistic regression model trained on hand-
crafted features, as described in (Marolt, 2009). 
 

model 
number of  
parameters 

accuracy 

proposed resnet 172,936 0.890 
standard deep 166,556 0.862 
MLP on VGGish 4,180 0.881 
logistic regression 51 0.837 

Table 3. A comparison to other approaches. 

                                                           
1 http://lgm.fri.uni-lj.si/portfolio-view/sefire/ 

The proposed model outperforms the others. It has the 
highest number of trainable parameters, however care has 
been taken to avoid overfitting by including batch normal-
ization and l2 regularization during training, as well as us-
ing 1/3 of the dataset for testing at each run, so it is safe to 
assume that its performance is realistic for a wide variety 
of materials. VGGish features come close second. 

An analysis of errors showed many logical mistakes, 
which can be attributed to several factors. First, some of 
the recordings are very noisy and even a human listener 
can have some difficulty to discern the contents. Such re-
cordings were often mistakenly classified as instrumentals, 
as the noise was considered part of the performance.  

The confusion matrix in Table 4 shows that many mis-
takes are made between neighboring classes: solo singing 
is misclassified as choir singing or speech, choir mostly as 
solo, instrumentals as choir or speech as solo. Some con-
fusions may be due to the particularity of the contents, e.g. 
some short excerpts of dialectal speech may sound very 
much like singing. Some mistakes are not really mistakes 
– an excerpt may be correctly classified, and wrongly la-
belled. Namely each five second audio clip in our dataset 
is only labelled with a single class, even though parts of it 
may contain another class. An example is a choir record-
ing, where some parts are sung solo and then evolve into 
choirs. As the network only classifies short 2 second ex-
cerpts, it may correctly label the solo part as solo, however 
the entire example is labelled as choir, so this is considered 
a misclassification. Choir parts sung in unison are another 
case that is difficult to classify – they are labelled as choir 
singing in our dataset, but may sound very similar to solo 
singing. 

The final trained network is integrated into the publicly 
available SeFiRe tool for segmentation of field record-
ings1. 

 predicted 
solo choir instr. speech 

tr
u

e 

solo 0.87 0.07 0.01 0.05 
choir 0.06 0.89 0.02 0.03 
instr. 0.02 0.04 0.92 0.02 
speech 0.06 0.01 0.01 0.92 

Table 4. The confusion matrix. 

 

5. CONCLUSION 

In the paper, we demonstrated the performance of a me-
dium sized deep convolutional network applied to classifi-
cation of field recordings into four classes. We also pro-
vide a comparison of different input representations and 
network architectures for the task. The database used and 
the final trained model will be made available to the com-
munity.  

In our future work, we will aim to enhance the dataset 
with additional sources of field recordings. We will also 



  
 

make use of the Audio Set, currently the largest annotated 
audio classification dataset, to enlarge our training data. 
Our second goal is to increase the number of target cate-
gories into typical instrument categories and introduce 
non-exclusive categories (e.g. singing over instrumental), 
which are currently labeled as instrumentals.  
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