
Real-Time Interactive Platform-Agnostic Volumetric Path
Tracing in WebGL 2.0

Žiga Lesar
Faculty of Computer and
Information Science,

University of Ljubljana
Ljubljana, Slovenia

lesar.ziga@gmail.com

Ciril Bohak
Faculty of Computer and
Information Science,

University of Ljubljana
Ljubljana, Slovenia

ciril.bohak@fri.uni-lj.si

Matija Marolt
Faculty of Computer and
Information Science,

University of Ljubljana
Ljubljana, Slovenia

matija.marolt@fri.uni-lj.si

Figure 1: Progressive reinement of a rendering of the bonsai dataset. The resolution of the dataset was 512×512×182, and the

resolution of the internal frame bufers was 512×512. At 20 frames per second the irst image appeared on the screen in a

fraction of a second, showing a recognizable shape. The last and most accurate image took 10 seconds to generate.

ABSTRACT

Path tracing has become a de facto standard for photo-realistic ren-
dering due to its conceptual and algorithmic simplicity. Over the
last few years, it has been successfully applied to the rendering of
participating media, although it has not seen widespread adoption.
Most implementations are targeted at speciic platforms or hard-
ware, which makes them diicult to deploy or extend. However,
recent advancements in web technologies enable us to access graph-
ics hardware from a web browser in a platform-agnostic manner.
Therefore, in this paper, we present an implementation of a state-of-
the-art volumetric path tracer developed in JavaScript usingWebGL
2.0. The presented solution supports the use of arbitrary 2D transfer
functions and heterogeneous volumetric data, aims to be interac-
tive, platform-agnostic, easily extensible, and runs in real-time -
both on desktop and mobile devices.

CCS CONCEPTS

· Computing methodologies→ Ray tracing;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.
Web3D ’18, June 20–22, 2018, Poznan, Poland

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5800-2/18/06. . . $15.00
https://doi.org/10.1145/3208806.3208814

KEYWORDS

path tracing, WebGL, volume rendering

ACM Reference Format:

Žiga Lesar, Ciril Bohak, and Matija Marolt. 2018. Real-Time Interactive
Platform-Agnostic Volumetric Path Tracing in WebGL 2.0. In Web3D ’18:

The 23rd International Conference on Web3D Technology, June 20–22, 2018,

Poznan, Poland. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3208806.3208814

1 INTRODUCTION

Direct volume rendering (DVR) and ray casting have come a long
way since their conception in the 1980s [Kajiya 1986; Levoy 1990].
Early models, such as maximum intensity projection (MIP) and
the emission-absorption model (EAM), have received numerous
improvements, extensions, and adaptations for use on the GPU.
Majority of those improvements aim to improve visual realism by
simulating or approximating certain global illumination efects,
such as shadows, scattering, and ambient occlusion. Some efects to
simulate the behavior of a camera lens have also been introduced,
such as depth of ield and adjustable exposure [Barsky et al. 2003;
Kolb et al. 1995]. These have been proven to aid in perception of
size, depth and shapes in images, leading to the research being
focused on improving the quality and performance of these efects.
Various approximate and fast solutions have been proposed, but
producing high-quality renderings is inevitably computationally
expensive. Modern graphics hardware has successfully been used
to aid in computing the tasks that are easy to parallelize, but certain
peculiarities that arise from the vastly diferent architecture and
programmingmodel force the methods to abide by their restrictions,

https://doi.org/10.1145/3208806.3208814
https://doi.org/10.1145/3208806.3208814
https://doi.org/10.1145/3208806.3208814

Web3D ’18, June 20–22, 2018, Poznan, Poland Ž. Lesar et al.

ultimately leading to solutions that only work in a speciic setting,
e.g. with a constant transfer function or a constant light setting.

Moreover, the usual approximate methods that work for solid
surfaces often cannot be used to render participating media, or have
to be heavily adjusted (e.g. adaptation of bidirectional path racing
by Lafortune and Willems [1996]). The adaptations are in fact often
prohibitively slow. A general solution that works with both solid
surfaces and participating media is to use stochastic methods that
quickly produce a recognizable image and improve on it over time,
as shown in Figure 1. This family of methods is known as Monte
Carlo ray tracing (MCRT).

MCRT has long been the de facto standard for photo-realistic
rendering. It is simple to formulate, implement, and parallelize. If
used in conjunction with physically based light transport, it can
simulate realistic light behavior in a progressive manner, resulting
in realistic renderings and an interactive user experience. There
exist numerous implementations tailored to run on the GPU - with
certain hardware limitations [Davidovič et al. 2014; Hachisuka 2015;
Hadwiger et al. 2009; Kroes et al. 2012].

Due to the advancements in graphics hardware and web tech-
nologies, it has lately become possible to program complex graphics-
based applications that run in a web browser. Many of the most
recent contributions and state-of-the art applications focus on the
methodology, rather than the implementation itself, resulting in
non-portability. Examples of that include the use of Microsoft’s
DirectX to access the graphics hardware - working only on Mi-
crosoft’s platforms - or using Nvidia CUDA for parallelization -
working only on Nvidia graphics cards. Although these solutions
are reasonably well supported and in widespread use, it is in many
occasions unreasonable to restrict the software to speciic platforms
of hardware, availability and maintainability being our primary
concerns. Web applications on the other hand focus on delivering
the same capabilities in a platform-agnostic way, for example by
using WebGL for high performance graphics.

Since its introduction in 2011, WebGL has been adopted by many
web developers and web browser developers as a platform-agnostic
way to access the capabilities of modern graphics hardware. It is
based on OpenGL ES 2.0, a standard for high performance graphics
on embedded systems. The ES standard follows a few steps behind
the regular version of the standard, lacking in quite a few impor-
tant features. Additionally, the API is designed with embedded
processors’ capabilities - or rather the lack thereof - in mind, which
poses a unique challenge in developing sophisticated graphical
applications.

Over the last few years, a new version of the WebGL standard
has been in development. Although still in draft form, WebGL 2.0
has recently been enabled by default on some platforms. Since
early 2017, major web browsers (Google Chrome for desktop 56,
Google Chrome for Android 58, Android WebView 58, Opera 43,
and Mozilla Firefox 51) have WebGL 2.0 support enabled by default,
both on desktop and mobile devices. WebGL 2.0 provides signiicant
improvements over WebGL 1.0 both in terms of capabilities and
performance, by providing a more full-featured API to simplify in-
teraction with the hardware. Two notable additions are 3D textures,
which are especially welcome in volume rendering applications,
and numerous new texture formats, which enable us to make use of
high dynamic range (HDR) rendering without using any OpenGL

extensions. Although loating point formats are present out of the
box, rendering to a loating point frame bufer is still available only
through an extension.

WebGL was already used in some experiments to create an ad-
vanced platform-agnostic rendering framework, e.g. by Hachisuka
[2015] and Congote et al. [2011], but these attempts fall short by
only focusing on solid surface rendering or implement only basic
volume rendering methods. Also, to our knowledge, no attempts
have been made so far to deliver such a framework using the mod-
ern WebGL 2.0 standard.

In this work, we combine MCRT and WebGL 2.0 to deliver a
platform-agnostic application for photo-realistic rendering of vol-
umetric datasets. The application is designed to be interactive at
real-time speeds, while providing complete control over the transfer
function, camera, and lighting. It is written modularly to allow for
extensions and adjustments, and works on all desktop and mobile
devices that support WebGL 2.0 with extensions for loating point
frame bufers.

2 RELATED WORK

A comprehensive study by Jönsson et al. [2014] analyzes many
illumination models used in modern volume rendering applications.
A more recent publication by Fong et al. [2017] has been used as a
reference for themost important and promisingmethods used in the
industry nowadays. Recent state-of-the-art reviews on GPU-based
direct volume rendering (by Balsa Rodríguez et al. [2014]) and GPU-
based large-scale volume visualization (by Beyer et al. [2015]) give a
nice insight in recent research in the volume rendering ield. These
sources have served us as primary sources for the work presented
in this paper.

Some of the earliest examples of volume rendering methods
that form the basis for more recent contributions are described
by Max [1995], and are still in widespread use today, mainly due
to their simplicity and ease of implementation. However, these
methods have various drawbacks, both methodological, such as
bias, and perceptual, i.e. providing little or no visual cues to aid in
shape or depth perception. Visual cues provided by illumination
efects, such as shadows and ambient occlusion, greatly improve
the user’s perception (as noted by Lindemann and Ropinski [2011]),
and were the main area of research for many years. Lesar et al. have
considered the same issue in the context of angiogram visualization
in [Lesar et al. 2015].

The simplest attempt to introduce global illumination efects into
volume rendering is to precompute a shadow volume and sample
it during ray propagation along with volume data, as described
by Behrens and Ratering [1998]. This technique is both time- and
memory-consuming, but it laid groundwork for a number of ad-
vanced techniques. A very popular technique, deep shadow maps
by Lokovic and Veach [2000], has been improved and adapted for
many diferent scenarios, including GPU ray casting, as shown
by Hadwiger et al. [2006]. Although deep shadow maps are a fast
and convenient way to display shadows in a volume, their main
weakness is that it is only possible to simulate direct illumination
from a single point light source.

It is often more useful not to consider any single light source by
itself, but rather a point’s shading by its immediate surroundings,

Real-Time Interactive Platform-Agnostic Volumetric Path Tracing in WebGL 2.0 Web3D ’18, June 20–22, 2018, Poznan, Poland

which is efectively global illumination on a more local scale. The
term ambient occlusion (AO) is used for methods that approximate
global illumination by taking into account the local neighborhood
of a point on a surface, as described in the original paper by Zhukov
et al. [1998]. The method has many variants, including screen-space
approximations and GPU-based adaptations.

Schott et al. [2009] introduce the directional occlusion model,
which is later reined by Šoltészová et al. [2010] by removing the
constraint that requires the view and light directions to coincide.
Ruiz et al. [2010] use separable iltering on the GPU to eiciently
evaluate occlusion at interactive rates. To enhance spatial reasoning
they use the gradient of the volumetric occlusion to modulate the
transfer function. Ancel et al. [2010] point out a problem with
AO methods that tend to over-darken important inter-occluded
features and propose a feature-driven method implemented on a
GPU to overcome these issues. A similar contribution by Hernell
et al. [2010] uses progressive reinement to deliver an interactive
experience and quality visual appearance.

All the above methods, as well as many methods presented in
[Cerezo et al. 2005; Pharr et al. 2016], enhance spatial reasoning
by providing visual cues based on global illumination, though only
being rough approximations. In this paper we emphasize the impor-
tance of photo-realistic rendering based on the paper by Banks and
Beason [2009], which states that adoption of advanced volume visu-
alization methods in practice is near zero. The work of Kroes et al.
[2012] recognized this as a problem and proposed a general solu-
tion that would be easy to integrate into the worklow, stimulating
improvement of their work. Their solution allowed for an arbitrary
lighting setting and worked entirely with volumes, without any
special treatment for isosurfaces. We believe that this helped to
facilitate the ray casting process and thus create an interactive
experience. The MCRT process in their work and in our applica-
tion is using a single scattering model with Woodcock tracking
to determine the scattering point, contributing to the speed of the
simulation. The basic Woodcock tracking method was further im-
proved by Szirmay-Kalos et al. [2011], and later by Novák et al. with
a method called residual ratio tracking [Novák et al. 2014].

The methods presented in this paper have been implemented in
JavaScript and WebGL 2.0. Some research on implementing Monte
Carlo rendering methods and volume rendering methods with We-
bGL has already been done. Congote et al. [2011] demonstrated that
using web technologies is a viable option for real-time interactive
rendering of volumetric data. Their application is platform-agnostic
and runs both on desktop and mobile devices. There were several
attempts of volume rendering implementation on mobile devices
exploiting local [Mobeen and Feng 2012; Schiewe et al. 2015] as
well as cloud processing power [Lee and Nam 2014]. The solution
uses server-side processing power for rendering. The implemen-
tation is based on WebGL 1.0 and is using an OpenGL extension
for multiple render targets to render the parametric ranges for the
rays. The visualization methods they use are based on the emission-
absorption model described by Max [1995], providing little to no
visual cues to enhance spatial reasoning. Diferent implementa-
tion strategies were proposed for volume rendering implementa-
tion on mobile devices by Noguera and Jiménez [2012] who also
presents an overview of mobile volume rendering approaches in
[Noguera and Jimenez 2016]. Hachisuka [2015] implement a Monte

Figure 2: Our application running on a desktop device in

Google Chrome.

Carlo method using OpenGL shading language (GLSL). Their so-
lution, which they describe as being able to "potentially run on
web browsers via WebGL", is intended to be platform-independent,
but not platform-agnostic. While being a good reference on sto-
chastic methods in GLSL, their renderer is only capable of ren-
dering solid surfaces, but not participating media. A working We-
bGL path tracing implementation by Evan Wallace is available at:
madebyevan.com/webgl-path-tracing/.

3 METHODS

In this paper we combine a state-of-the-art Monte Carlo volume
rendering method with modern web technologies to deliver an
application capable of interactive exploration of volumetric data.
By using a stochastic approach our application is able to render
progressively reined photo-realistic images in interactive frame
rates. The application is developed in JavaScript and HTML5, and
is accessing the graphics hardware through the <canvas> element
and the WebGL 2.0 API. Bootstrap and jQuery libraries are used for
the graphical user interface, and no libraries are used for WebGL,
to have total control over the performance of our application. Fig-
ure 2 shows a screen shot of the application running on a desktop
computer.

The rendering part of our application is handled by a render-
ing context, which holds the WebGL context along with its data
that is independent of any concrete rendering speciics, such as
volume data and transfer functions. These data can be supplied to
the various stages of the rendering pipeline, as described below.
The rendering logic is divided into two stages: volume rendering

and post-processing, producing HDR and LDR images, respectively.
This makes it easy to separate any post-processing into several
steps, leaving the volume rendering stage to work with HDR data
only. It is important to note that WebGL 1.0 did not support loat-
ing point textures in its core proile, but rather as an extension

madebyevan.com/webgl-path-tracing/

Web3D ’18, June 20–22, 2018, Poznan, Poland Ž. Lesar et al.

Generate frame

Render frame

Tone mapping

V
o
lu

m
e
 r

e
n
d
e
ri

n
g

P
o
s
t-

p
ro

c
e
s
s
in

g

Frame bu er

Accumulation bu er

Render bu er

Reset renderer

Integrate frame

Front bu er

HDR RGB image

LDR RGB image

Volume data Transfer functions

Auxiliary data

Figure 3: The rendering pipeline. Volume data and transfer

functions are passed into the volume rendering stage along

with other scene parameters, and the resulting HDR RGB

image is sent to the post-processing stage to produce a LDR

RGB image.

OES_texture_float, which had to be enabled during runtime. We-
bGL 2.0 provides support for loating textures in its core proile,
although rendering to a loating point frame bufer is still available
only as an extension EXT_color_buffer_float, upon which our
application relies heavily. Both volume data and transfer functions
are stored in loating point format on the GPU.

3.1 The rendering pipeline

The rendering pipeline is shown schematically in Figure 3. The irst
stage of the rendering pipeline is the volume rendering stage, which
is represented by an abstract volume renderer. The steps involved
in the rendering process are designed with interactivity in mind,
so they are especially convenient to use with a MCRT renderer.
The rendering process is expected to be progressive, iteratively
improving the rendered frame. The methods involved are as follows:

(1) Generate frame
(2) Integrate frame
(3) Render frame
(4) (Reset renderer)

In the beginning of each iteration a frame is generated using the
supplied volume data, transfer functions, camera and scene param-
eters. This is where the rays are generated and propagated through
the volume, so it is usually the most computationally expensive
step and has to be carefully implemented to allow for real-time
execution. The generated frame is sent to the integrator, where it is
used to update the accumulated data. The inal step is to render the
accumulated data into the render bufer, which is the output of the
renderer. The reset step in the parentheses is used after changing
the parameters that are passed into the generation step, to reset the
accumulated data and prepare the renderer for a fresh run of the
pipeline.

Each implementation of a volume renderer has to implement all
of the above steps and provide parameters for the creation of the
frame bufers used within the WebGL context. These bufers hold
the generated frame, the accumulated data, and the rendered frame,
corresponding to the irst three of the above steps. It is important
to note that the developer implementing a renderer may decide on
what data to store in the frame and accumulation bufers, but the
inal render bufer has to be a HDR RGB rendering, which is then
passed on to the post-processing stage.

This abstract notion of a volume renderer can be used without
modiication to render MIP images, isosurfaces, or full-featured
MCRT images. For example, a MIP renderer implementation may
store a maximum value for each pixel in the accumulation bufer,
and only sample the volume once per pixel for an estimate, that
is used to update the accumulation bufer in the integration step.
An isosurface renderer implementation may store the nearest inter-
section and the volume gradient at that point in the accumulation
bufer and use it in the rendering step along with other scene pa-
rameters, thus acting as a deferred renderer. A MCRT renderer
implementation may store HDR RGB estimates in the accumula-
tion bufer and use the rendering step for noise reduction or other
iltering. All of these renderers are included in our framework.

The HDR RGB rendering that is the output of the volume render-
ing stage is sent into the post-processing stage. This is essentially a
sequence of any number of post-processing steps, including tone
mapping and gamma correction, which may produce arbitrary in-
termediate images. The inal rendering of this stage has to be a LDR
RGB image, which is ultimately presented to the user on the screen
through an HTML <canvas> element. For example, in our appli-
cation we use this stage to perform tone mapping with a simple
Reinhard tone mapper with adjustable exposure.

3.2 Monte Carlo renderer implementation

In our application we have implemented a MIP renderer and an
isosurface renderer to be able to compare their performance and
output to the MCRT renderer. Both MIP and isosurface renderers
have been implemented in a Monte Carlo fashion as described in
the previous section. MCRT renderer follows the same pattern.
Our implementation of the MCRT renderer works similarly to the
implementation of Kroes et al. [Kroes et al. 2012], in the sense that
it uses Woodcock tracking [Szirmay-Kalos et al. 2011; Woodcock
et al. 1965] to yield a single scattering point to facilitate lighting
calculations. Compared to ray marching it is also unbiased.Multiple

Real-Time Interactive Platform-Agnostic Volumetric Path Tracing in WebGL 2.0 Web3D ’18, June 20–22, 2018, Poznan, Poland

Figure 4: Diferent transfer functions used on the same dataset. The rendering pipeline is designed to be completely interactive,

requiring only a reset of the bufers to take efect. The whole system is designed to encourage dynamic data exploration.

importance sampling (MIS) can be used to direct the scattering paths
towards the light sources.

First, the camera parameters are used to calculate the ray para-
metrization for each pixel. This parametrization is then used along
with the transformation of the volume bounding box to produce a
parametrization range for the ray. Rays that do not intersect the
volume bounding box are only used to sample the environment
map. Other rays are then propagated through the volume with
Woodcock tracking to ind a scattering point and a light source. If
the scattering point is not found, the environment map is sampled,
otherwise the phase function is sampled to produce a scattering
path.Woodcock tracking is used again to estimate the transmittance
of the volume on this path. This method converges over time to a
solution with single scattering. Furthermore, all scene parameters,
including camera position, lighting setup and transfer functions,
are completely interactive, requiring only a restart of the rendering
pipeline to take efect. Figure 4 shows diferent transfer functions
used on the same dataset.

All light interactions with the volume are calculated in loating
point format and stored in WebGL frame bufers with the exten-
sion EXT_color_buffer_float enabled. This enables us to use the
equations for radiative transfer directly, without any modiications
and signiicant loss of precision. The transfer function and envi-
ronment map are also stored as loating point textures on the GPU,
but this requires no special treatment in WebGL 2.0, where loating
point texture formats are supported by the core speciication, as
opposed to the extension OES_texture_float needed in WebGL
1.0.

The HDR RGB rendering of the volume renderer’s render step
is passed on by the rendering context to the post-processing step,
where it is further processed and adjusted for better perception.

3.3 Post-processing

Our implementation allows for the post-processing stage to consist
of an arbitrary number of steps, each transforming the image in a
certain way to enhance perception. The input to this stage comes
from the volme renderer as a HDR RGB image. The steps involved
in this stage store the intermediate images in various formats, but
the last step must always output a LDR RGB image, so that it can
be displayed on the screen. This stage may also contain various

iltering or noise-reduction steps to aid in the convergence of the
MCRT renderer.

In our current rendering pipeline we use a single step in this
stage, which is a tone mapper described by Reinhard et al. [2002] to
compress the dynamic range of the output of the volume rendering
stage. The method described in [Kroes et al. 2012] uses an additional
gamma correction step after the tone mapping step, which we don’t
use in our current implementation.

4 EVALUATION AND RESULTS

The developed application (https://github.com/terier/vpt) was eval-
uated regarding browser support, convergence rate and speed of
execution. It should be noted that we have only evaluated the ren-
dering performance with all the required data already stored on the
graphics device, since this work is not concerned with data stream-
ing over a network or from a secondary storage. The evaluation was
run on two diferent devices, a laptop with an Intel HD graphics
530 integrated graphics card, and a smartphone with Adreno 430
chipset.

4.1 Browser support

Browser support was analyzed using the statistical data acquired
from the website https://webglstats.com, which gathers the data
about WebGL implementations on users’ devices from a few popu-
lar websites. While WebGL 1.0 was supported on 97% of devices,
WebGL 2.0 was supported on 66% of devices. Additionally, we
checked the support for two extensions used in our implemen-
tation: EXT_color_buffer_float for storing HDR images, which
was supported on 91% of the devices, and WEBGL_lose_context

for detecting the loss or termination of the context by the browser,
which was supported on almost all devices (∼100%). For evaluat-
ing the speed of execution of a render frame WebGL 2.0 provides
an extension EXT_disjoint_timer_query_webgl2, which is avail-
able on 71% of devices, but since it’s not supported on our test
devices, we had to use a combination of performance.now() and
gl.finish().

4.2 Convergence rate

We evaluated the convergence rate of our implementation of the
radiative transfer equation with single scattering by calculating
the peak signal-to-noise ratio (PSNR) for frames of diferent sizes

https://github.com/terier/vpt
https://webglstats.com

Web3D ’18, June 20–22, 2018, Poznan, Poland Ž. Lesar et al.

depending on the number of method iterations. Three diferent
framebufer sizes were used: 256 × 256, 512 × 512 and 1024 × 1024
pixels. For the purpose of PSNR calculation we took the image after
1000 iterations as the gold standard. The results are presented in
Figure 5. Due to the higher number of pixels, the PSNR values are
comparable between diferent image sizes. The size of the image
frame directly inluences the speed of execution of an individual
iteration. However, we cannot use PSNR to evaluate spatial image
precision, since we calculate it for each pixel independently. The
implemented method converges fast and yields a good result im-
age in 20ś30 iterations, but due to the nature of the Monte Carlo
method our renderer sufers from diminishing returns over time,

theoretically converging at the rate of O(n−
1
2).

25

30

35

40

45

50

0 20 40 60 80 100

P
S

N
R

 (
d

B
)

iteration

256 * 256 512 * 512 1024 * 1024

Figure 5: PSNR values depending on the number of itera-

tions for diferent framebufer sizes: 256 × 256 (left), 512 ×

512 (center) and 1024 × 1024 (right) for a volume of size 128

× 128 × 128.

4.3 Speed

Iterative pipeline execution is based on requestAnimationFrame,
which is synchronized to the refresh rate of the display, meaning
we can only achieve 60 iterations per second with this method.
We improved this by allowing more than one iteration inside a
single render pass. On the other hand, when using a slow device
we cannot avoid stalling the main thread on long running itera-
tions, since there currently exists no generally available method for
creating a WebGL context in a separate thread. We measured the
average execution time of a single pipeline iteration with varying
framebufer and volume sizes. The measurements, performed in
Google Chrome for Linux 56 (Desktop) and Google Chrome for
Android 58 (Smartphone), are shown in table 1. It is evident that our

implementation is fast enough for interactive use even on mobile
devices. For a small enough framebufer and volume we hit the
limit of requestAnimationFrame execution rate, so the numbers
are bottom-clamped at 16ms.

Table 1: Average execution time of a single pipeline iteration

with respect to the volume size at a ixed framebufer size of

512 × 512 (left), and with respect to the framebufer size at a

ixed volume size of 128 × 128 × 128 (right).

Device 643 1283 2563 642 1282 2562

Smartphone 28 ms 65 ms 92 ms 35 ms 65 ms 98 ms
Laptop 16 ms 28 ms 45 ms 16 ms 28 ms 55 ms

5 CONCLUSIONS

In this paperwe present ourwork on a real-time interactive platform-
agnostic DVR application, capable of producing photo-realistic im-
ages. It is based on solving the radiance transport equations with
MCRT and physically based shading. The application runs in any
web browser supporting WebGL 2.0 with loat bufer extensions,
which means it can run on both desktop and mobile devices. To
our knowledge, no other attempts have been made yet to deliver
all of the above in one web application. We present an extensi-
ble JavaScript and WebGL 2.0 framework for developing various
rendering methods in a modular fashion. Our proposed solution
is capable of rendering progressively and interactively, with no
preprocessing needed when changing the lighting scenario or the
transfer functions.

Future improvements may include further optimizations of the
framework itself and the renderers build on top of it. Fong et al.
[2017] provides an exhaustive and up-to-date source for the current
state of the art in production volume rendering, which will serve as
a valuable reference for further development to bring these ideas
into a web-based implementation. Initial improvements may range
from multiple importance sampling, as described by Kroes et al.
[2012], to ray propagation improvements with residual ratio track-
ing, presented by Novák et al. [2014]. Better camera models with
optimizations in the ray generation step would be next in queue.
GUI and UX improvements with other production-level necessities
should also be in place. Currently our framework does not support
bigger volumetric assets, which require dynamic streaming from
disk or network.

We believe that our application represents a step in the right
direction to bring platform-agnostic tools for volumetric data ex-
ploration to end users without any diicult installation procedures
or platform restrictions. We hope that the industry sees this contri-
bution as a viable alternative to native applications.

REFERENCES
Alexandre Ancel, Jean-Michel Dischler, and Catherine Mongenet. 2010. Feature-driven

ambient occlusion for direct volume rendering. In Proceedings of the 8th IEEE/EG
international conference on Volume Graphics. Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 85ś92. https://doi.org/10.2312/VG/VG10/085-092

M. Balsa Rodríguez, E. Gobbetti, J. A. Iglesias Guitián, M. Makhinya, F. Marton, R.
Pajarola, and S. K. Suter. 2014. State-of-the-art in compressed GPU-based direct
volume rendering. Computer Graphics Forum 33, 6 (2014), 77ś100. https://doi.org/
10.1111/cgf.12280

https://doi.org/10.2312/VG/VG10/085-092
https://doi.org/10.1111/cgf.12280
https://doi.org/10.1111/cgf.12280

Real-Time Interactive Platform-Agnostic Volumetric Path Tracing in WebGL 2.0 Web3D ’18, June 20–22, 2018, Poznan, Poland

D.C. Banks and K. Beason. 2009. Decoupling Illumination from Isosurface Generation
Using 4D Light Transport. IEEE Transactions on Visualization and Computer Graphics
15, 6 (11 2009), 1595ś1602. https://doi.org/10.1109/TVCG.2009.137

Brian A. Barsky, Daniel R. Horn, Stanley A. Klein, Jefrey A. Pang, and Meng Yu. 2003.
Camera Models and Optical Systems Used in Computer Graphics: Part II, Image-
Based Techniques. In Computational Science and Its Applications—ICCSA 2003.
Springer, Berlin, Heidelberg, 256ś265. https://doi.org/10.1007/3-540-44842-X{_}27

Uwe Behrens and Ralf Ratering. 1998. Adding shadows to a texture-based volume
renderer. In Proceedings of the 1998 IEEE symposium on Volume visualization - VVS
’98. ACM Press, New York, New York, USA, 39ś46. https://doi.org/10.1145/288126.
288149

Johanna Beyer, Markus Hadwiger, and Hanspeter Pister. 2015. State-of-the-Art in
GPU-Based Large-Scale Volume Visualization. Computer Graphics Forum 34, 8
(2015), 13ś37. https://doi.org/10.1111/cgf.12605

Eva Cerezo, Frederic Pérez, Xavier Pueyo, Francisco J. Seron, and François X. Sillion.
2005. A survey on participating media rendering techniques. The Visual Computer
21, 5 (Jun 2005), 303ś328. https://doi.org/10.1007/s00371-005-0287-1

John Congote, Alvaro Segura, Luis Kabongo, Aitor Moreno, Jorge Posada, and Oscar
Ruiz. 2011. Interactive visualization of volumetric data with WebGL in real-time.
In Proceedings of the 16th International Conference on 3D Web Technology - Web3D
’11. ACM Press, New York, New York, USA, 137. https://doi.org/10.1145/2010425.
2010449

Tomáš Davidovič, Jaroslav Křivánek, Miloš Hašan, and Philipp Slusallek. 2014. Pro-
gressive Light Transport Simulation on the GPU. ACM Transactions on Graphics
33, 3 (6 2014), 1ś19. https://doi.org/10.1145/2602144

Julian Fong, Magnus Wrenninge, Christopher Kulla, and Ralf Habel. 2017. Production
volume rendering. In ACM SIGGRAPH 2017 Courses on - SIGGRAPH ’17. ACM Press,
New York, New York, USA, 1ś79. https://doi.org/10.1145/3084873.3084907

Toshiya Hachisuka. 2015. Implementing a Photorealistic Rendering System using
GLSL. arXiv abs/1505.06022 (5 2015), 1ś4. http://arxiv.org/abs/1505.06022

Markus Hadwiger, Andrea Kratz, Christian Sigg, and Katja Bühler. 2006. GPU-
accelerated deep shadow maps for direct volume rendering. In Proceedings of the
21st ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware - GH ’06.
ACM Press, New York, New York, USA, 49. https://doi.org/10.1145/1283900.1283908

Markus Hadwiger, Patric Ljung, Christof Rezk Salama, and Timo Ropinski. 2009.
Advanced illumination techniques for GPU-based volume raycasting. In ACM
SIGGRAPH 2009 Courses on - SIGGRAPH ’09. ACM Press, New York, New York, USA,
1ś166. https://doi.org/10.1145/1667239.1667241

Frida Hernell, Patric Ljung, and Anders Ynnerman. 2010. Local ambient occlusion in
direct volume rendering. IEEE Transactions on Visualization and Computer Graphics
16, 4 (2010), 548ś559.

Daniel Jönsson, Erik Sundén, Anders Ynnerman, and Timo Ropinski. 2014. A Survey of
Volumetric Illumination Techniques for Interactive Volume Rendering. Computer
Graphics Forum 33, 1 (2 2014), 27ś51. https://doi.org/10.1111/cgf.12252

James T. Kajiya. 1986. The rendering equation. ACM SIGGRAPH Computer Graphics
20, 4 (aug 1986), 143ś150.

Craig Kolb, Don Mitchell, and Pat Hanrahan. 1995. A Realistic Camera Model for
Computer Graphics. In Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques. ACM, New York, NY, USA, 317ś324. https:
//doi.org/10.1145218380.218463

Thomas Kroes, Frits H. Post, and Charl P. Botha. 2012. Exposure Render: An Interactive
Photo-Realistic Volume Rendering Framework. PLoS ONE 7, 7 (7 2012), e38586.
https://doi.org/10.1371/journal.pone.0038586

Eric P. Lafortune and Yves D. Willems. 1996. Rendering Participating Media with
Bidirectional Path Tracing. In Proceedings of the EurographicsWorkshop on Rendering
Techniques ’96. Springer-Verlag, London, UK, UK, 91ś100.

Woongkyu Lee and Doohee Nam. 2014. Volume Rendering Architecture of Mobile
Medical Image using Cloud Computing. The Journal of The Institute of Internet,
Broadcasting and Communication 14, 4 (2014), 101ś106.

Žiga Lesar, Ciril Bohak, and Matija Marolt. 2015. Evaluation of angiogram visualization
methods for fast and reliable aneurysm diagnosis. In Progress in Biomedical Optics
and Imaging - Proceedings of SPIE, Claudia R. Mello-Thoms andMatthewA. Kupinski
(Eds.), Vol. 9416. SPIE, Orlando, Florida, United States, 9416. https://doi.org/10.
1117/12.2082179

Marc Levoy. 1990. A hybrid ray tracer for rendering polygon and volume data. IEEE
Computer Graphics and Applications 10, 2 (1990), 33ś40.

Florian Lindemann and Timo Ropinski. 2011. About the Inluence of Illumination
Models on Image Comprehension in Direct Volume Rendering. IEEE Transactions
on Visualization and Computer Graphics 17, 12 (12 2011), 1922ś1931. https://doi.
org/10.1109/TVCG.2011.161

Tom Lokovic and Eric Veach. 2000. Deep shadow maps. In Proceedings of the 27th
annual conference on Computer graphics and interactive techniques. ACM Press, New
York, New York, USA, 385ś392. https://doi.org/10.1145/344779.344958

Nelson Max. 1995. Optical models for direct volume rendering. IEEE Transactions on
Visualization and Computer Graphics 1, 2 (6 1995), 99ś108. https://doi.org/10.1109/
2945.468400

Movania Muhammad Mobeen and Lin Feng. 2012. Ubiquitous Medical Volume Render-
ing on Mobile Devices. In International Conference on Information Society (i-Society
2012). IEEE, London, UK, 93ś98.

José M. Noguera and Juan-roberto Jiménez. 2012. Visualization of very large 3D
volumes on mobile devices and WebGL. In WSCG Communication Proceedings.
Václav Skala-UNION Agency, Plzen, Czech Republic, 105ś112.

Jose M. Noguera and J. Roberto Jimenez. 2016. Mobile Volume Rendering: Past, Present
and Future. IEEE Transactions on Visualization and Computer Graphics 22, 2 (feb
2016), 1164ś1178.

Jan Novák, Andrew Selle, and Wojciech Jarosz. 2014. Residual ratio tracking for
estimating attenuation in participating media. ACM Transactions on Graphics 33, 6
(11 2014), 1ś11. https://doi.org/10.1145/2661229.2661292

Matt Pharr, Jakob Wenzel, and Greg Humphreys. 2016. Physically based rendering (3
ed.). Morgan Kaufmann, San Francisco, CA, USA. 1266 pages.

Erik Reinhard, Michael Stark, Peter Shirley, and James Ferwerda. 2002. Photographic
tone reproduction for digital images. ACM Transactions on Graphics 21, 3 (7 2002),
267ś276. https://doi.org/10.1145/566654.566575

Marc Ruiz, Lázló Szirmay-Kalos, Tamás Umenhofer, Imma Boada, Miquel Feixas, and
Mateu Sbert. 2010. Volumetric ambient occlusion for volumetric models. The Visual
Computer 26, 6-8 (6 2010), 687ś695. https://doi.org/10.1007/s00371-010-0497-z

Alexander Schiewe, Mario Anstoots, and Jens Krüger. 2015. State of the Art in Mobile
Volume Rendering on iOS Devices. In Eurographics Conference on Visualization
(EuroVis) - Short Papers, E. Bertini, J. Kennedy, and E. Puppo (Eds.). The Eurographics
Association, Cagliari, Italia, 139ś143.

Mathias Schott, Vincent Pegoraro, Charles Hansen, Kévin Boulanger, and Kadi Boua-
touch. 2009. A Directional Occlusion Shading Model for Interactive Direct Vol-
ume Rendering. Computer Graphics Forum 28, 3 (6 2009), 855ś862. https:
//doi.org/10.1111/j.1467-8659.2009.01464.x

Veronika Šoltészová, Daniel Patel, Stefan Bruckner, and Ivan Viola. 2010. A multidi-
rectional occlusion shading model for direct volume rendering. Computer Graphics
Forum 29, 3 (8 2010), 883ś891. https://doi.org/10.1111/j.1467-8659.2009.01695.x

László Szirmay-Kalos, Balázs Tóth, and Milán Magdics. 2011. Free Path Sampling in
High Resolution Inhomogeneous Participating Media. Computer Graphics Forum
30, 1 (3 2011), 85ś97. https://doi.org/10.1111/j.1467-8659.2010.01831.x

E Woodcock, T Murphy, P Hemmings, and S Longworth. 1965. Techniques used in the
GEM code for Monte Carlo neutronics calculations in reactors and other systems
of complex geometry. In Proc. Conf. Applications of Computing Methods to Reactor
Problems. Argonne, Ill. : Argonne National Laboratory, Physics Division, Springield,
Virginia, USA, 557ś579.

S. Zhukov, A. Iones, and G. Kronin. 1998. An ambient light illumination model. In
Rendering Techniques ’98, George Drettakis and Nelson Max (Eds.). Springer Vienna,
Vienna, 45ś55. https://doi.org/10.1007/978-3-7091-6453-2{_}5

https://doi.org/10.1109/TVCG.2009.137
https://doi.org/10.1007/3-540-44842-X{_}27
https://doi.org/10.1145/288126.288149
https://doi.org/10.1145/288126.288149
https://doi.org/10.1111/cgf.12605
https://doi.org/10.1007/s00371-005-0287-1
https://doi.org/10.1145/2010425.2010449
https://doi.org/10.1145/2010425.2010449
https://doi.org/10.1145/2602144
https://doi.org/10.1145/3084873.3084907
http://arxiv.org/abs/1505.06022
https://doi.org/10.1145/1283900.1283908
https://doi.org/10.1145/1667239.1667241
https://doi.org/10.1111/cgf.12252
https://doi.org/10.1145218380.218463
https://doi.org/10.1145218380.218463
https://doi.org/10.1371/journal.pone.0038586
https://doi.org/10.1117/12.2082179
https://doi.org/10.1117/12.2082179
https://doi.org/10.1109/TVCG.2011.161
https://doi.org/10.1109/TVCG.2011.161
https://doi.org/10.1145/344779.344958
https://doi.org/10.1109/2945.468400
https://doi.org/10.1109/2945.468400
https://doi.org/10.1145/2661229.2661292
https://doi.org/10.1145/566654.566575
https://doi.org/10.1007/s00371-010-0497-z
https://doi.org/10.1111/j.1467-8659.2009.01464.x
https://doi.org/10.1111/j.1467-8659.2009.01464.x
https://doi.org/10.1111/j.1467-8659.2009.01695.x
https://doi.org/10.1111/j.1467-8659.2010.01831.x
https://doi.org/10.1007/978-3-7091-6453-2{_}5

	Abstract
	1 Introduction
	2 Related work
	3 Methods
	3.1 The rendering pipeline
	3.2 Monte Carlo renderer implementation
	3.3 Post-processing

	4 Evaluation and Results
	4.1 Browser support
	4.2 Convergence rate
	4.3 Speed

	5 Conclusions
	References

