Web-based visualization of real-time LADAR data
with support for collaboration

Technical report [DRAFT]

Ciril Bohak *!, Byeonghak Kim ™2, and Min Young Kim *2

Faculty of Computer and Information Science, University of Ljubljana
2School of Electronics Engineering, Kyungpook National University

September 2017

Abstract

In this report, we present a web-based visualization system developed for visualizing real-time point
cloud data obtained from LADAR (or other) sensors. The system allows direct visualization of
captured data, visualization of data from database or visualization of preprocessed data (e.g. labeled
or. classified data). The system allows the concurrent visualization from same or different data-
sources on multiple clients in the web browser. Due to the use of modern web technologies the client
can be also used on mobile devices. The system is developed using Bootstrap, Angular, NodeJS
and PostgreSQL. The system allows connection with existing LADAR sensor grabber application
developed in C++ through use of UDP sockets. Both server- and client-side parts of the system are
modular and allow the integration of newly developed modules and designing the specific workflow
scenarios for end-users. The system allows the interactive visualization of datasets with millions of
points as well as streaming visualization with high throughput speeds.

This technical report presents a research and development work performed between July 8th and October
8th 2017 — during the research exchange visit of Ciril Bohak at Optomechatronics and Multi-Scale Robotics
Laboratory at School of Engineering, College of IT Engineering, Kyungpook National University, Daegu,
The Republic of Korea.

1 Introduction

There are many different ways of storing and presenting the data describing the world around us. One of
more popular ways in the recent years is use of point cloud representation — a set of points in space which
store different parameters and information regarding the specific spatial location. Such representation is
mostly used for representing the shapes of the objects and surrounding world, but can also be used for
storing other information (e.g. meteorological data, physical measurements, simulation data etc.). In our
case the point cloud data is describing the surrounding world and objects in it.

Point cloud data for shape representation can be acquired using several different sensors (e.g. depth
camera [1], LIDAR [2] or LADAR [8]) or can be even extracted from image data [5]. In our case the
LiDAR and/or LADAR sensors were used to acquire the point cloud data representing the shape of the
world (terrain, vegetation, buildings, etc.). While the LiDAR data is acquired from the planes (see Figure
la) the LADAR data is acquired from stationary ground position using gimbal system (see Figure 1b).

Real-time visualization of large point cloud data sets with up to tens or hundreds of millions of points
poses a challenge even with today’s GPU hardware. This is even more true if we want to display real-time
streaming data with lots of newly added points per time frame (e.g. hundreds of thousands of points per
second). To achieve such performance even on consumer accessible hardware (or even on mobile devices)
several limitations have to be defined.

A very important aspect for fast real-time visualization of large point cloud data sets is also the ability
to provide such large amount of data fast enough to the visualization system. For streamed data this

*ciril.bohak@fri.uni-lj.si
Tbyg0630Q@knu.ac.kr
fminykim@knu.ac.kr

(b)

Figure 1: Figure shows the acquisition process for LIDAR terrain data by plane (a) and an example of
LADAR sensor structure (b)

speed is defined by speed of input sensors, but providing the already stored data at high speed is also
important [7].

While the data visualization for as single user is the main goal it is often appreciated if the same
data visualization can bee seen by multiple users at the same time or even if those users have an option
of mutual interaction with the data. Such collaborative approach is well known in online productivity
tools (e.g. Google Docs) and even in some specialized scientific tools. Such example for collaborative
annotation of medical data with use of modern web technologies [3] does not only allow the collaboration
between user at a distance but also allows replacement of specialized software and hardware with a
modern web browser. A similar concept is exploited in the presented system.

In the following section we present the developed system for real-time visualization of 3D point cloud
data with support for real-time data streaming, collaborative viewing and labeling of the data. In the
final Section 3 we present the conclusions and give the pointers for possible future work.

2 Developed System

The main goal of the research was to determine whether it is possible to develop a real-time massive
point cloud visualization system with support for visualization or real-time streamed data with support
for multi-user viewing and labeling of the visualized data. Figure 2 shows the basic structure of the
system: (1) Data Sender! is a standalone application for reading raw sensor data and sending it to
desired application, (2) Data Preparation Module is a server based application for acquiring the data,
packaging the data into desired form and sending the data to (3) Data Storage module or (4) Data
Visualization Module — a web application with support for WebGL for real-time visualization of point
cloud data. The developed modules (2-4) are presented in more detail in the following subsections.

Data
Storage
Module

(PostgreSQL)

Data Data
Visualization Preparation
Module Module
(web browser) (NodelS)

Figure 2: The basic system structure.

I The application is developed in C++ and does was not developed as part of the presented work

2.1 Data Preparation Module

The Data Preparation Module is a NodeJS? based server side application developed for linking the Data
Visualization Module with data resources. Data resources can be either real-time data provider such as
Data Sender or offline providers such as Data Storage Module. While data from Data Sender is acquired
from sensors and directly sent to Data Visualization Module, it is up to the Data Preparation Module to
request the data from Data Storage Module.

The application supports multiple connections and can simultaneously handle multiple data streams
(live streams and data storage requests) and pipe them to multiple users. This allows multiple users to
request data from diverse data sources. The module will prepare the data and send it to the users who
requested it. Currently the system does not support user management, but distinguishes between clients
using uniquely generated tokens. The layer of security was ignored at this stage of development due to
specific use-cases where such security will not be needed (completely independent computer network or
single computer deployment).

The Data Preparation Module also allows to simultaneously send the data obtained from Data Sender
to data storage module, where the data is stored, and to multiple data visualization modules where the
data is displayed in real-time. The communication between Data Preparation Module and Data Visual-
ization Module is implemented using Socket.IO? — a library for fast and reliable continues communication.
The communication with Data Sender is implemented using standard UTP sockets.

The data from Data Sender is received in form of binary blocks, where each block contains information
from 200 points. Each point is represented with x, y and z position values with 32-bit float precision.
Each package is directly submitted to all the clients (Data Visualization Modules) who are subscribed to
live data streaming.

For preparation of stored data, module allows customization of query commands sent to the Data
Storage Module. Some parameters of for query commands can also be defined by users through settings in
Data Visualization Module. The data obtained from the Data Storage Module is packed and sent in JSON
form to the client which requested it, but can also be packed into binary form for faster transmission.

While the basic functionality of module is to obtain, prepare and send the point cloud data, it can
be easily extended for use with data from other domains as well. Such example might be the use of
ortho-photo data or other GIS data for purposes of better final visualization.

2.2 Data Storage Module

Data Storage Module consists of a NodeJS based server side application for interfacing with PostgreSQL*
relational database with Pointcloud extension®. The extension deals with the variability of point dimen-
sionality by using custom database schema which describes the content of individual point in the database.
This takes care of number of point dimensions and their data types and possible scaling and/or offsets
between the actual values and values stored in database.

The above presented storage is not the fastest possible option for storing large amounts of point cloud
data, but offers a good trade-off between complexity of use, speed and price [7].

2.3 Data Visualization Module

The Data Visualization Module was developed as web application using Angular® and Bootstrap” for
implementing interactive responsive GUI, and ThreeJS® and Potree [6] for implementing fast and reliable
3D visualization using WebGL technology.

The module’s GUIT consists of two parts as can be seen in Figure 3: (1) preferences panel on the left,
where users can select the data source and set the parameters of the visualization and (2) visualization
panel on the right, where users can see and interact with displayed data.

In preference panel users can select data source from one of the existing databases or they can turn
on the live data receiving option. User can set next database point loading parameters:

Number of concurrent loading patches: points in database are stored in patches containing several
number of neighboring points according to their spatial position. This allows faster retrieval of
neighboring points. We can choose how many patches of points we want to load in one call and
thus speeding up the database response time.

2https://nodejs.org/

Shttp://socket.io/
4https://www.postgresql.org/
Shttps://github.com/pgpointcloud /pointcloud
Shttps://angular.io/
"http://getbootstrap.com/
8https://threejs.org

LADAR Visualizator

Loading parameters:

database:

Humber of concurrent loading patches:
Load every n-th point:

[r——— [o]
Sharing:

Figure 3: The Data Visualization Module GUI.

Load every n-th point: in dense point clouds it is not necessary to load all the points to get the idea
of the shape they are representing. For this reason users can choose the density of points they want
to display selecting only every n-th point in the database according to the geolocation sorting. This
also means that client will draw less points which will result in higher frame rate. An example of
visualization of same data with different setting can be seen in Figure 4.

Progressive loading: when the option of loading every n-th point has value higher than 1 this switch
will define whether after every n-th point is loaded the loading will continue with incremented offset
or not.

(a) Every point is loaded. (b) Every 10-th point is loaded. (c) Every 50-th point is loaded.

Figure 4: The comparison of the same data visualization with different setting for loading every n-th
point.

Users can navigate in the visualization scene with use of mouse and keyboard. Mouse is used for
simple view rotation and zooming. The keyboard is used for moving the camera view through the scene,
speed of navigation can be adjusted by changing the velocity multiplier.

When switch for Live data visualization is active the visualization module is waiting for the data to be
piped from Data Sender through Data Preparation Module in real-time. If no Data Sender is connected
to Data Preparation Module or no data is sent, the Data Visualization Module will wait and no data will
be rendered.

Colors of visualization display the distance from camera to individual point. A jet colormap is used
to represent distances (red being closest and dark blue being the farthest away). Colormap is scaled for
individual data set and can be adjusted easily. To make distance even more apparent the size of rendered
points decreases with distance.

The visualization module also supports selection of desired points in the point cloud. Because the
interaction with individual point would require too much overhead only selection of point groups is

supported in the current version. The size of groups can be defined as parameter. In our case the size
of few thousands points per group in data set with millions of points proved to be best option for good
performance. To allow faster selection of groups of points we allow two-level point selection: (1) single
group under mouse cursor is selected and (2) all the groups with points under mouse cursor are selected.
The focused points are rendered with pink color while selected points are rendered in white (both colors
are not in jet colormap and are thus easily distinguishable from the rest). An example of focused and
selected point groups can be seen in Figure 5.

Figure 5: The example of focused points (pink) and selected points (white).

To get even better visualization experience, complete Potree visualization pipeline could be integrated,
adding point shadowing and other more advanced visualization features.

2.4 Collaboration

Collaboration allows users to share their view on data with other users in real time similar to [4]. The
user initiates sharing with activating share switch in preferences panel. Once activated other users can
see such users in list of users (as shown in Figure 6a) and connect to a selected user by clicking on button
with his/her name (see Figure 6b). Users that want to join the shared session must do so before the host
user initiates data loading. After the loading is initiated by host other users can not connect anymore.
The initiation of the loading starts loading the data from same database for all the connected users. The
data loading is independent for each user due to the different speeds of the network connections and
request handling speed of individual client.

L Users: 2 Users:

Ladar-User-1 Ladar-User-1
Ladar-User-2 Ladar-User-2

Ladar-User-3 Ladar-User-3

Ladar-User-4 Ladar-User-4

(a) List of users who are sharing their view. (b) Connected to a selected user.

Figure 6: The sharing options.

The synchronization is implemented as presented in the Figure 7. Currently only the following types
of sharing is supported by the system: (1) camera view parameters, (2) loading initiation cancellation
and (3) data selection. While view and loading initialization are only shared in one direction (from host

to connected users) the data selection is supported in both directions and the selection state is kept on
the server. The framework supports simple implementation for sharing other data or parameters as well.

3

Connected
user

i Connected
) point
Point selection) user
cloud Point Camera
data cloud 4 view

Camera
data parameters

view
parameters
+ point
selection

point
selection

Data

Data - pomt; Preparation
Storage < Module

Module

requests

Figure 7: The diagram is showing how the shared data is distributed.

Conclusion

The presented system is still under development and some features are still to be implemented. Still,
it presents a novel approach to collaborative view on large point cloud visualization on consumer-level
hardware.

References

1]

Hao Du, Peter Henry, Xiaofeng Ren, Marvin Cheng, Dan B Goldman, Steven M Seitz, and Dieter
Fox. Interactive 3d modeling of indoor environments with a consumer depth camera. In Proceedings
of the 13th international conference on Ubiquitous computing, pages 75-84. ACM, 2011.

Norbert Haala, Michael Peter, Jens Kremer, and Graham Hunter. Mobile lidar mapping for 3d point
cloud collection in urban areas—a performance test. The international archives of the photogrammetry,
remote sensing and spatial information sciences, 37:1119-1127, 2008.

Primoz Lavri¢, Ciril Bohak, and Matija Marolt. Collaborative view-aligned annotations in web-based
3d medical data visualization. In MIPRO 2017 : 40th Jubilee International Convention, May 22-26,
2017, Opatija, Croatia : proceedings, pages 276-280, 2017.

Charles Marion and Julien Jomier. Real-time collaborative scientific webgl visualization with web-
socket. In Proceedings of the 17th international conference on 3D web technology, pages 47-50. ACM,
2012.

Tomi Rosnell and Eija Honkavaara. Point cloud generation from aerial image data acquired by a
quadrocopter type micro unmanned aerial vehicle and a digital still camera. Sensors, 12(1):453-480,
2012.

Markus Schiitz. Potree: Rendering large point clouds in web browsers. Master’s thesis, Institute
of Computer Graphics and Algorithms, Vienna University of Technology, Favoritenstrasse 9-11/186,
A-1040 Vienna, Austria, September 2016.

Peter van Oosterom, Oscar Martinez-Rubi, Milena Ivanova, Mike Horhammer, Daniel Geringer, Siva
Ravada, Theo Tijssen, Martin Kodde, and Romulo Gongalves. Massive point cloud data management.
Comput. Graph., 49(C):92-125, June 2015.

Ove Steinvall Takao Kobayashi Weibiao Chen Vasyl Molebny, Paul F. McManamon. Laser radar:
historical prospective—from the east to the west. Optical Engineering, 56:56 — 56 — 24, 2016.

