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This paper presents a novel method for transcription of folk music that exploits its specifics to
improve transcription accuracy. In contrast to most commercial music, folk music recordings
may contain various inaccuracies as they are usually performed by amateur musicians and
recorded in the field. If we use standard approaches for transcription, these inaccuracies are
reflected in erroneous pitch estimates. On the other hand, the structure of western folk music
is usually simple as songs are often composed of repeated melodic parts. In our approach we
make use of these repetitions to increase transcription robustness and improve its accuracy. The
proposed method fuses three sources of information: (1) frame-based multiple FO estimates,
(2) song structure, and (3) pitch drift estimates. It first selects a representative segment of the
analyzed song and aligns all the other segments to it considering temporal as well as frequency
deviations. Information from all segments is summarized and used in a two-layer probabilistic
model based on explicit duration HMMs, to segment frame-based information into notes. The
method is evaluated with state-of-the-art transcription methods where we show that significant

improvement in accuracy can be achieved.

1 INTRODUCTION

Automatic music transcription is a process of transform-
ing an acoustic music signal into some kind of symbolic
music notation [1]. It typically involves the detection of
multiple concurrent pitches in a musical signal (multi-pitch
detection), the detection of note onsets and offsets, as well
as recognition of the instruments present in the audio sig-
nal. The problem is considered to be an open problem,
even more so for high degree of polyphony and presence
of multiple instruments in the musical signal. Automatic
music transcription is part of the broader field of music
information retrieval and can be considered an example of
intelligent audio processing as it extracts a high level se-
mantic description from a music recording. A recent review
of automatic music transcription approaches can be found
in [2] and the challenges and future directions in [3].

Most transcription approaches are based on estimation of
fundamental (FO) frequencies of notes present in the signal.
To do so, authors in [4] use probability density functions to
estimate the relative dominance of every possible FO and
the shape of harmonic-structure tone models by maximum
a-posteriori probability estimation considering their prior
distribution. Klapuri [5] presented an iterative method for
multiple fundamental frequency estimation that is based
on harmonicity and spectral smoothness. The method esti-
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mates FO of the most prominent sound, subtracts the sound
from the mixture and repeats the process for the residual
signal. A transcription method presented in [6] uses a note
event modeling technique for estimating individual note
events with a hidden Markov model (HMM). The model
uses extracted acoustic features for calculating the like-
lihood of different notes and a musicological model for
modeling note transitions.

Many recent approaches to transcription rely on decom-
position of a time-frequency representation of the audio
signal with methods such as non-negative matrix factoriza-
tion (NMF) [7-9], non-negative matrix approximation [10],
or probabilistic latent component analysis (PLCA) [11-13].
A state-of-the-art method is presented in [14], which cou-
ples PLCA with explicit duration hidden Markov models
(EDHMMs). Authors have also presented several adapta-
tions of the method presented in [15-17]. Their most re-
cent method is based on shift-invariant probabilistic latent
component analysis (SI-PLCA) with support for spectral
templates for individual sound states trained on several or-
chestral instruments.

According to the Music Information Retrieval Evalua-
tion Exchange (MIREX) [18], current state-of-the-art al-
gorithms are reaching the accuracy of 0.65 on a collection
of (mostly synthesized) instrumental music and 0.35 on
real-world instrumental music. To improve on transcription
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results, many authors limit the domain to transcription of
specific instruments, e.g., [19, 20] for piano music or [21]
for bell chiming.

With ongoing digitization of ethnomusicological
archives, the demand for methods for automatic extraction
of metadata from folk music field recordings is growing
[22-24]. While the aforementioned transcription methods
can be applied to folk music recordings, we show in this
paper that their accuracy can be improved by considering
folk music specifics. In contrast to commercially recorded
popular or classical music, field recordings can contain a
significant amount of noise, either due to poor recording
equipment and noisy environment or due to amateur mu-
sicians who make mistakes, sing individual tones inaccu-
rately, or change intonation during a song (pitch drift). On
the other hand, in many western folk music traditions songs
usually have a simple structure, with several repetitions of
the same melodic part (stanza) and with simple harmonic
content.

The main contribution of this paper is a novel method that
improves transcription of folk song recordings by taking
into account folk music specifics. It first analyzes folk song
structure and estimates boundaries of melodic repetitions
as well as pitch drift. It combines this knowledge with
output of a conventional multiple FO estimation method
and processes the combined estimates with a musicological
model based on explicit duration HMMs, which yields the
final note-based transcription. We show that results of the
original FO estimates are significantly improved with our
approach.

In the following sections we first present our method,
then evaluate it and discuss its performance. We conclude
the paper with suggestions for future improvements.

2 THE PROPOSED METHOD

The goal of the proposed method is to obtain a note-based
transcription of a single most representative melodic part
(stanza) of a folk song. It is based on the assumption that a
song is composed of repeated stanzas, which may, however,
differ due to performance variations ranging from small to
large tempo deviations, singing inaccuracies, pitch drift, as
well as recording conditions such as environmental noises
and interruptions. Songs can be polyphonic and the method
is especially suited for transcribing vocal songs, although
it is also useful in an instrumental context.

The method takes an audio signal of a song as its input
and produces a list of notes with their pitch, onset, and
offset times as output. In the process it fuses three types
of time-varying information to calculate a robust transcrip-
tion: (1) multiple FO estimates, which can be obtained with
a transcription method, such as methods by Klapuri [5] or
Benetos [17]; (2) segment boundaries that define repeated
melodic segments (stanzas); and (3) pitch drift estimates,
which describe the change in overall intonation during per-
formance. All three sources of information are fused to
obtain a multi-FO transcription of a single melodic part de-
rived from all stanza repetitions. Finally, a note estimation
approach based on musicological knowledge, similar to [6],
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Fig. 1. Figure shows an outline of the proposed method where w;
is a selected representative segment.

is used to estimate individual notes. The approach is out-
lined in Fig. 1 and described in more detail in the following
subsections.

2.1 Segmentation and Pitch Drift Estimation

Segmentation and pitch drift are obtained with a method
presented in [25]. We define segmentation as a set of bound-
aries between repeated segments 2 = {w; }, where w; repre-
sents the beginning time of the i-th segment. Segmentation
is obtained by maximizing segmentation likelihood, defined
as:

P =P) [] Pliloi)P).
Wi E(@\o1)

P(w;|w;—1) is the transition probability between segments
and is calculated from the similarity of segments starting
at w; and w;_1, also taking the expected duration of seg-
ment w;_; into account. Similarity between segments is
calculated with dynamic time warping of chromatic repre-
sentations of the two segments taking tempo variations, as
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well as intonation changes (pitch drift) into consideration.
An integral part of similarity estimation is thus the estima-
tion of pitch drift D = [d,], t = 1...T, where d, represents
the change of intonation in cents relative to beginning of
the song (d; = 0) and T is the length of the analyzed signal.

P(w;) represents the probability that a segment starts at
;. Its calculation is based on the rationale that this value is
larger if the boundary is preceded by a low-amplitude signal
region—for singing, this often corresponds to breathing
pauses before stanza beginnings, while for instrumental
parts, this may also correspond to phrase endings.

The method achieves an F1 score of 0.76 on a collection
of folk music recordings. For more details on the algorithm
and its evaluation, we direct the reader to [25].

2.2 Multiple FO Estimation

To obtain a set of FO estimates, our method relies on a
multiple FO estimator such as presented by Klapuri [5] or
Benetos [17]. An estimator is expected to return at least two
sets of values: per-frame FO estimates F' = [f;;] and their
saliences S = [s;], i = 1...M, t = 1...T, where M is the
maximum number of simultaneously estimated frequencies
and T the length of the analyzed signal. Saliences of FO
estimates represent confidence of the FO estimator in the
found FO values—a higher salience value means a higher
confidence in the found pitch.

2.3 Adjusting for Pitch Drift

In vocal performances, where no explicit stable pitch ref-
erence is available, amateur musicians often tend to change
intonation during performance. This happens in solo as well
as in choir recordings and intonation may change upwards
or downwards at various parts of a song, such as between
stanzas or at large intervals. To be able to compare and align
different parts of a song, we need to adjust the FO estimates
according to the estimated change of intonation. As pitch
drift D is already estimated during segmentation [25], FO
values are adjusted in this step according to the estimated
drift, as in: fi't = fir +d;, where all values are given in
cents.

2.4 Selecting a Representative Segment

The goal of our transcription method is to obtain the
most representative transcription of a melodic segment in a
song. As all repetitions of segments are different due to non-
mechanical performances, we need to choose a segment that
is representative of a song, which we define to be a segment
that is similar to most other segments. To cast it differently,
we are looking for a segment that is not likely to be an outlier
and that thus has little inaccuracies in performance. The
representative segment will in further steps be aligned to all
others, to obtain the most likely (most often sung) sequences
of pitches in the song and thus the most representative
transcription.

We could calculate an exhaustive alignment and compar-
ison of all segments, however since we are mostly interested
in not picking an outlier, the selection of a representative
segment is simplified as follows. We first convert pitch drift
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corrected FO and salience values into a piano roll represen-
tation P = [py], i = 1...F, t = 1...T, where i represents
frequency bins on a quantized logarithmic frequency scale.
P contains non-negative salience values in all bins that
correspond to estimated FO values. We then calculate the
segment pitch profile pp of each segment w; by summing
the piano roll over time as:

W41

ppi(w)) =Y pui=1...F. (1)

1=w;

A representative segment w, is then calculated as the one
that has the most similar pitch profile to all others and is of
an approximately average length:

|€2]
1
r = argmax | 1 > sim(pp(:), pp(;))
1 J:1
+ Nl Mo 00) | 2)

where sim represents the cosine similarity between two
pitch profiles, N the unnormalized normal distribution, ||
length of segment w;, and ., and o, the average and stan-
dard deviation of lengths of all segments. The segment thus
obtained has a pitch profile that is similar to the profile of
most other segments and an approximately average dura-
tion. This guarantees that we are not dealing with an outlier
in pitch or time domain and that segment w, represents a
good candidate for alignment.

2.5 Segment Alignment and Summarization

Since individual segments w; are not of same length
due to tempo fluctuations during performance, we need
to time-align all segments to the representative segment
w,. Alignment is performed with dynamic time warping
(DTW) over segment pairs represented by respective piano
roll excerpts P,,. We use correlation distance (one minus
correlation coefficient) as our local distance measure, which
has been shown to perform well for this task (as shown in
[25, 26]). To be more robust to individual incorrectly per-
formed notes and other pitch fluctuations, such as vibrato
or pitch changes during onset and offset, we smooth the
piano roll representation with a Gaussian filter over the fre-
quency axis prior to DTW calculation. Calculating correla-
tions between smoothed pitch estimates yields more robust
similarity estimates in places where inaccuracies occur.

Alignment results in a series of optimal alignment paths
between segment w, and all other segments w;: {p;: i =
1...|Q2|}. Each path minimizes:

min Y corr(g(p;), gpi), P; € Pu, APk € Py, (3)
(J,k)Epi

where corr represents the correlation distance and g the
Gaussian filter with kernel size 3.

The final result of alignment is a set of segments aligned
in the time domain, as well as in the frequency domain
due to pitch drift removal. The next step of the algorithm
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Fig. 2. Note estimation model.

summarizes FO and salience information across all aligned
segments to obtain a more robust estimate of pitches and
their saliences in a segment. The rationale is that repetitions
provide additional information on performance, and we are
thus looking for an average performance, where pitches
that are more often repeated will be more salient.

We define F* and S” as a concatenation of FO estimates
and their saliences of all segments w;, time aligned to w,
according to p;. We summarize FO and salience pairs at each
time ¢ with a greedy approach, where in each iteration, FO
with the highest salience ( f;"%*) is selected and then values
across all segments are summarized as:

]_-tmax — [ftmax _ n’ ftmax + n] (4)
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Parameter 1 defines the range of FO values around f;"¢*,
taken to represent the same fundamental frequency—due
to imperfect performances, especially in vocal recordings,
we must allow for some tolerance in summarization. We set
1 to value of 150 cents.

The summarized values f, and s are added to collec-
tions of all summarized values F¢ and S¢, and all values
used for their calculation are removed from F“ and S¢.
Summarization is repeated until all values from F¢ have
been exhausted.

The resulting sets of FO and salience estimates F¢, S¢
represent a more robust frame-based transcription of an av-
erage performance of a segment in comparison to direct es-
timates of transcription algorithms, as segment repetitions
contribute to more stable FO estimates with less inaccura-
cies. Improvements are evaluated in Sec. 3.

2.6 Note Estimation

To segment the series of FO estimates into notes, we use
a probabilistic model similar to Ryynanen [6], who based
his ideas on connected word models in speech recognition
[27]. The model (outlined in Fig. 2) is based on three sub-
models: a note event model for modeling individual notes,
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Fig. 3. Distributions used in modeling occupational probabilities
for individual note model states (onset, sustain, and offset).

a rest model for modeling rests, and a musicological model
that ties both together and models transitions between notes.
Transcription is obtained by repeatedly calculating the most
likely sequence of states of the model over the entire signal,
as described in Sec. 2.6.4.

2.6.1 Note Event Model

Individual notes are modeled with a three state hidden
Markov model (HMM), where states represent the onset,
sustain, and offset of a note. Unlike Ryynanen, and similar
to other recent models (e.g., [14]), we use explicit duration
HMMs (EDHMMs) to model notes, as they offer a more
flexible way of expressing state durations in comparison to
regular HMMs. The entire model has one note model for
each note we wish to transcribe—the number of models is
dynamically set according to the range of FOs detected in
the previous steps.

The parameters of EDHMMs are set as follows. The
initial state is always the onset state and the final state
is always the offset state. Transitions are trivial, as we
only allow forward transitions and thus their probabil-
ities are equal to 1 (EDHMMs do not allow for self
transitions).

Occupational probabilities dj(u) = P(Si4us1 #
Js Sfig = j|1S;41 = J, S; # j) for onset and offset states
are geometric distributions (as in regular HMMs), which
tend to keep state occupancy short. For the sustain state,
we use the log-normal probability distribution (as in
[28]), which does not favor very short durations, however
it has a longer tail, thus allowing for longer durations.
Parameters of all distributions were set by hand accord-
ing to musicological knowledge and are presented in
Fig. 3.

Emission probabilities are based on three features: FO
distance from ideal note pitch, salience, and delta salience,
which models note dynamics. Each feature is modeled with
a separate probability distribution for each state, so in total
nine distributions are defined, as shown in Fig. 4. Their
parameters were estimated on a small validation set. FO
distance from the ideal note pitch is modeled with a nor-
mal distribution and has more tolerance in onset and offset
states and less in the sustain state. This is especially true in
vocal music, where pitch may fluctuate a lot during onset
and offset of a note, while it remains relatively stable in
the sustain state (although tolerance is still needed due to
vibrato and inaccurate singing). Salience is usually lower
at the onset, where pitch fluctuations are large and should
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Fig. 4. Distributions used in modeling emission probabilities for
individual note model states (onset, sustain, and offset) for each
feature (FO distance, salience, and A salience).

be relatively stable in the sustain and offset states, so we
model it with an exponential distribution. Dynamics should
be positive at the onset, negative at the offset, and fluctuate
around zero in the sustain state, which is also reflected in
the chosen distributions.

The final emission probability of each state is modeled
by multiplying probabilities of individual features given the
observed values.

2.6.2 Rest Model

The rest model is used for parts of the signal where note
likelihood is low. Rests are modeled with a single HMM
state, but unlike Ryynanen, we use one rest state per note
model, as this gives us the flexibility of maintaining the
melodic context over rests in a melodic line. The observa-
tion likelihood is defined as in [6] to be the negation of
the greatest observation likelihood in any state of any note
model; thus if observation likelihood of a note is high, the
likelihood of a rest is low, and vice versa.

2.6.3 Musicological Model

The musicological model governs transition probabilities
between note and rest models. We use an approach similar
to [6], where transition probabilities are calculated on a
corpus of folk song melodies.

The first step in applying the musicological model is to
estimate the key of the song, which is needed to apply appro-
priate transition probabilities. We use a simple approach for
key estimation: the transcribed FOs are summed and quan-
tized into one octave range according to their salience (only
pitch class is retained, octave information is ignored). The
pitch profile thus obtained is correlated with the well-known
Krumhansl-Kessler key profiles [29, 30] in all possible
keys and the maximum correlation value taken as the song
key.

Note transition probabilities given key are estimated from
bigram probabilities on a corpus of folk song melodies [31]

J. Audio Eng. Soc., Vol. 64, No. 09, 2016 September

TRANSCRIPTION OF POLYPHONIC VOCAL MUSIC WITH A REPETITIVE MELODIC STRUCTURE

as described in [32]. As we use one rest state per note model,
note-to-rest and rest-to-note probabilities are the same as
the corresponding note-to-note probabilities. Rest-to-rest
transitions are not allowed.

2.6.4 Finding Note Sequences

Transcription is performed by calculating the optimal
path through the model given the observed FOs and
saliences. We use a token-passing algorithm to calculate
the optimal path, as presented by [27], modified to take
EDHMM states into account. The modification is done by
separately keeping track of the probability with which a to-
ken enters an EDHMM state, the duration the token spends
in the state, and the cumulative observation probability of
the token while in the state. Thus, in each step we can cal-
culate the probability that the token stays in the state and
create a new token leaving the state.

A single run of the token-passing algorithm will yield
an optimal monophonic note sequence given the observed
values. Since we are dealing with polyphonic music, we
need to apply the algorithm iteratively, where after each
iteration, the found notes are removed from observations
and a new melodic line searched for in the next iteration.
We can limit the number of iterations and thus maximal
transcribed polyphony or let the algorithm run until all
possibilities are exhausted and the model returns only the
rest state as result.

3 EVALUATION

We evaluated the presented method on a collection of
37 Slovenian vocal polyphonic folk songs (107.7 min-
utes in total) from field recordings in the EthnoMuse
archive [33]. The collection is available at http://Igm.fri.uni-
lj.si/ciril/jaes-dataset/. Transcriptions of all songs were
made manually by ethnomusicologists and were semi-
automatically time-aligned to audio recordings. Songs were
chosen so that they reflect the range of problems en-
countered in folk music field recordings, from inaccurate
singing, pitch drifting, to poor recording quality. The av-
erage polyphony of the dataset is 2.3, one song contains
vocals and instruments, others are vocal only.

The method has a small set of parameters (width of the
smoothing kernel, summarization tolerance, parameters of
EDHMM distributions), which were set to values estimated
on a small validation set. We tested the sensitivity of the
method to moderate changes of the parameters and con-
cluded that sensitivity of the method to such changes is low.
In case of small changes on the width of the smoothing ker-
nel the method still returns the correct number of pitches
per frame, while for much smaller width the method fails to
blend corresponding pitch lines from different stanza rep-
etitions into one, and for much bigger width the method
joins the non-corresponding pitch lines. The same is true
for changes in summarization tolerance. Small changes on
the EDHMM distribution parameters also did not affect the
results significantly.
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Table 1. Evaluation results (mean values)

Method P R F1
Sonic 0.39 0.50 0.43
Klapuri 0.26 0.59 0.36
Benetos 2015 0.21 0.47 0.29
proposed (Klapuri) 0.50 0.68 0.58
proposed (Benetos 2015) 0.51 0.55 0.52
T T T T T T T
Sonic B
Klapuri | 4
Benetos | B
proposed (Benetos) — B
proposed (Klapuri) —_— 4
1 1 1 1 1 1 1
0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

F1 Measure

Fig. 5. Performance comparison of transcription methods accord-
ing to F1 measure.

We tested the performance of three transcription meth-
ods on our dataset: Klapuri [5], Sonic [19], and Benetos-
2015 [17]. Since Klapuri’s and Benetos’ approaches return
per-frame FOs and saliences, we used both as underlying
methods for our algorithm and evaluated the improvement
obtained by using our method. Evaluation was performed
frame-wise with up to half a semitone tolerance in pitch.
Mean values of precision (P), recall (R), and F1 scores (F1)
for all methods are presented in Table 1 and a multiple com-
parison analysis in Fig. 5. Precision represents the fraction
of correctly found pitches over all found pitches, recall the
fraction of correctly found pitches over all ground truth
pitches, and F1 measure the harmonic mean of precision
and recall values. Each evaluation was conducted on a sin-
gle representative stanza selected from the ground truth, its
transcription by the selected methods (Benetos-2015 and
Klapuri) and its improved transcription by the presented
method.

3.1 Performance of Transcription Algorithms

It is interesting to see that from the compared transcrip-
tion approaches, Benetos’s approach, which achieves good
results in MIREX evaluations, performs the worst (F1 score
0.29). A possible explanation would be that the method re-
lies on a factorization approach that assumes that the timbre
of instruments is stable during performance, which is not
true for vocal performances, and, thus, factorization into
different instrument sources does not succeed. Klapuri’s
iterative algorithm performs somewhat better, although it
seems that iterative subtraction removes too little energy
from the signal and thus the algorithm finds too many notes,
so precision is low. Surprisingly, Sonic, which is tuned to
transcription of piano music, performs the best of the three.
This could be attributed to the partial tracking approach

6
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with oscillator networks, which diminish the effect of tim-
bre, so note recognition with neural networks still performs
well.

3.2 Improvements with the Proposed Method

Results show that our approach significantly improves
the results of both underlying methods (over 50% increase
in F1 measure). Improvement is higher for precision (it al-
most doubles), although recall is also increased by approx-
imately 15%. If we ignore octave errors, both approaches
achieve the same F1 score of 0.59, meaning that Bene-
tos’s approach produces more octave errors. We must point
out that our results cannot be directly compared to results
achieved by the underlying methods only, as the latter do
not take repetitions into account. The comparison is given
so that the amount of improvement that may be achieved
by our approach can be assessed.

Detailed analysis showed that improvement is achieved
in both main parts of the algorithm: alignment and sum-
marization of FO and salience values, as well as note
estimation. Contribution of both parts is quite balanced,
summarization increases the F1 measure by 25%, and note
estimation by an additional 25%. This shows that our
method gathers a lot of additional information from rep-
etitions but also achieves significant improvement with the
note estimation model.

Repetitions provide additional information that we ex-
ploit to reduce the number of errors, produced by the un-
derlying methods either due to noise, poor timbral modeling
or imperfect singing. As the salience of FO values increases
with the number of segments they were found in, and si-
multaneously, FOs are adapted to an average value over all
segments, false positives that occur due to noise are re-
duced, while false positives and negatives that occur due to
imperfect singing are corrected. The note estimation model
additionally reduces errors due to its musicological model.
The latter is all the more successful as folk song melodies
from our collection are usually simple, so the model, also
estimated on a set of folk song melodies (different to ours),
is very relevant and significantly improves results. In Fig. 6,
which shows a part of song #2 from our dataset, we outline
how the proposed method works.

The input multiple FO estimations (black dots) and
ground truth transcription (gray bars) are presented in
Fig. 6(a), the summarized multiple FO information (black
dots) and ground truth (gray bars) in Fig. 6(b), and note es-
timations (white bars with black outline) and ground truth
(gray bars) in Fig. 6(c). Ground truth represents the eth-
nomusicological transcription of a stanza. The figure also
contains annotations of specific issues addressed by the pre-
sented method such as vibrato, missed tone, or inaccurate
offset and onset times.

Analysis of songs where the underlying methods
achieved the worst results showed that our method can im-
prove transcription accuracy (F1 measure) from 0.18 (the
worst case for Klapuri) to 0.45, or for Benetos-2015 from
0.15 to 0.64. Only in a single case our method returned
worse results, where the difference was —0.01 and —0.04
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Fig. 6. The figure shows: (a) the comparison between input mul-
tiple FO estimations by Benetos-2015 (dots) and ground truth
(gray bars); and (b) summarization of information from multiple
segments (dots) and ground truth (gray bars); and (c) final note
estimations (white bars with black outline) and ground truth (gray
bars). (a) represents a single segment, while in (b) and (c) the
cumulative information from all repeated segments is gathered.

for Klapuri and Benetos-2015 respectively. In both of these
cases precision is improved by 0.06 and 0.03 but recall
decreased by 0.09 and 0.1 for Klapuri and Benetos-2015
respectively, decreasing the final F1 measure values.

4 CONCLUSIONS

The presented method shows that making use of song
structure has potential for improving transcription of poly-
phonic, especially vocal folk music. We presented two
novel contributions: (1) exploiting repetitions, typical of
folk songs, aligned in time and pitch domain for improv-
ing FO estimates and (2) a probabilistic model based on
EDHMMs to estimate notes from FO estimates. In evalua-
tion, we show that both significantly improve transcription
accuracy on a collection of vocal polyphonic folk music
field recordings.

Future work will include the development of a new F0 es-
timation method adapted to transcribe vocal music, as most
current methods do not yield satisfactory results. Also, cur-
rent parameters of the note estimation method were either
manually determined or estimated on a small validation set,
so we plan to gather a larger collection that could be used
to estimate the parameters. Detecting tempo could also im-
prove the duration model and consequently note estimation.
While Krumhansl-Kessler profiles follow the principles of
Western tonality we are also planning on test other key
finding models (e.g., [34]) as part of our future work. Fi-
nally, we plan to test and further develop the method also
on non-vocal folk music recordings.
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