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ABSTRACT 

The paper presents an algorithm for automatic transcrip-

tion of recordings of bell-playing clocks. Bell-playing 

clocks are clocks containing a hidden bell-playing me-

chanism that is periodically activated to play a melody. 

Clocks from the eighteenth century give us unique insight 

into the musical taste of their owners, so we are interested 

in studying their repertoire and performances - thus the 

need for automatic transcription. In the paper, we first 

present an analysis of acoustical properties of bells found 

in bell-playing clocks. We propose a model that describes 

positions of bell partials and an algorithm that discovers 

the number of bells and positions of their partials in a 

given recording. To transcribe a recording, we developed 

a probabilistic method that maximizes the joint probabili-

ty of a note sequence given the recording and positions of 

bell partials. Finally, we evaluate our algorithms on a set 

of recordings of bell-playing clocks. 

1. INTRODUCTION 

Bell-playing clocks are clocks containing a hidden bell-

playing mechanism, which is activated every hour, every 

half an hour or even every quarter of an hour to play a 

melody (see Figure 1). To make this happen, the going 

train activates the musical train, which starts the rotation 

of the musical cylinder. The cylinder contains a pattern of 

pins which 'play' a series of keys as the cylinder rotates. 

Through threads these keys are connected to hammers, 

which strike the bells. Such bell-playing mechanisms are 

usually part of longcase- or bracket clocks.  

Bell-playing clocks probably originate from carillons 

which played their melodies already in the thirteenth cen-

tury in the towns of the Low Countries. From the end of 

the fifteenth century these instruments were also made for 

domestic use, but they were unique pieces, only afforda-

ble for the very rich. From the end of the seventeenth 

century, bell-playing clocks became more and more pop-

ular, although they still remained a status symbol, only 

affordable for the rich elite. Many eighteenth-century 

bell-playing clocks have been preserved. Clock restorer 

Melgert Spaander from Zutphen (Netherlands) restored 

and recorded over 150 of these clocks and made these re-

cordings available for our researches. The collection con-

sists of approximately 1500 melodies, which offer us, in a 

way, recordings from the eighteenth century. We are 

studying the repertoire of these clocks and also the per-

formances of melodies with the aim of gaining more in-

sight into the musical taste of the eighteenth-century elite. 

In order to study the repertoire of clocks, we need to tran-

scribe all of the recorded melodies, so that they can be 

analyzed. Transcribing these melodies by hand requires a 

lot of practice and is made even more difficult by the in-

harmonicity and long decay times of bell sounds.  

 

Figure 1. Melodies of a bell-playing clock. 

In this paper, we present an algorithm for automatic 

transcription of recordings of bell-playing clocks. Auto-

matic music transcription is a difficult problem to solve, 

although methods are improving constantly; Klapuri and 

Davy provide an extensive overview of the current state 

of the art [1]. Because we know little of the acoustical 

properties of clock bells, we could use unsupervised 

learning techniques for transcription. Such techniques 

have been used previously by several authors: Abdallah 

and Plumbley [2] used sparse coding for transcription of 

synthesized harpsichord music, while Virtanen used it to 

transcribe drums [3]. A number of authors use variants of 

non-negative matrix factorization to transcribe polyphon-

ic music [4-7]. Their methods, however, were devised for 

music composed of harmonic sounds and are thus diffi-

cult to apply to our domain. Recently, Marolt [8] pro-

posed to use non-negative matrix factorization with selec-

tive sparsity constraints to transcribe recordings of church 

bells. 
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While we initially experimented with unsupervised 

learning techniques, we obtained better results with the 

method proposed in this paper. We propose a two step 

approach to transcription: first, we present an analysis of 

acoustical properties of bell sounds and derive an algo-

rithm that discovers the number of bells and positions of 

their partials in a given recording. A probabilistic method 

that relies on analysis of the recorded signal, the found 

bell partials, and on some higher-level musical know-

ledge is used to perform the transcription. We evaluate 

our approach on a collection of recordings of bell-playing 

clocks.  

2. IDENTIFYING BELLS IN A RECORDING 

2.1 Modeling Positions of Bell Partials 

The shape or profile of a bell determines the relative fre-

quencies of its vibrations. Bells have distinct but inhar-

monic partials – a partial being a frequency of vibration 

present in the sound of a bell. Little is known of the 

acoustical properties of bells used in clocks, so we first 

conducted a study to determine whether we can model the 

positions of bell partials. To estimate the properties of 

clock bells, we analyzed a set of 10 recordings of differ-

ent clocks, containing a total of 88 bell sounds and ma-

nually annotated positions of their partials. Bells were 

found to have six strong partials; their positions relative 

to the perceived pitch (in cents) are listed in Table 1.  

  

Mean and st. dev. of 

partial - pitch freq. (cents) 

Mean magnitude relative to  

the strongest partial (dB) 

 0 ± 0 

  1485 ± 81 

  2433 ± 111 

  3145 ± 124 

  3719 ± 123 

  4236 ± 91 

-21.8 

-11.4 

-4.8 

-8.6 

-13.0 

-17.9 

Table 1. Means and std. deviations of relative partial po-

sitions (in cents) for the analyzed bells. Mean magnitude 

of each partial relative to the strongest partial (in dB) is 

also shown 

We can observe that partials are centered at approx-

imately 2.4, 4, 6, 8.5 and 11.5
 
times the fundamental fre-

quency (in Hz), the 3
th

 and 4
th

 partial being the loudest. 

The fundamental frequency corresponds to the perceived 

pitch. When studying relationships between these par-

tials, we discovered a regularity, not unlike what Hibbert 

[9] discovered for church bells, namely that relationships 

between relative positions of partials (i.e. logarithmic fre-

quency ratios) are linear. Figure 2 shows scatter plots of 

relative positions of partials 2, 4, 5 and 6 versus the rela-

tive position of the third partial - the linearity is obvious. 

This enables us to fit a linear regression model (also 

shown in Figure 2) that can be used to predict the posi-

tions of all six bell partials, if we know the positions of 

two of them, with an average error below 20 cents.  

 

 

Figure 2. Linearity of relative partial positions. 

Formally, a model that defines positions of bell par-

tials given positions of two partials is expressed as a sum 

of Gaussians: 
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where f1 and f2 are positions of any two bell partials, 
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k

f fr  the k-th partial position as calculated by the regres-

sion fit and  the allowed deviation from the regression 

fit. 

 

 
 

Figure 3. Time evolution of the first four partials of a 

clock bell. 

Time evolution of partials follows an exponential de-

cay curve, and is faster for higher partials, which on the 

other hand, are initially louder. Individual partials fre-

quently exhibit beating, also evident in Figure 3. Beating 

is caused by the so-called doublets, which arise when 

bells are not symmetrical about a vertical axis through 



 

 

their centers. This asymmetry causes most of the vibra-

tional modes in bells to split into two distinct modes with 

slightly different frequencies that beat against each other. 

Beating is problematic when we try to estimate the onsets 

and time evolution of partials, so we try to remove its ef-

fect, as described in section 3.  

2.2 Bells? What Bells? 

When analyzing a recording of a bell-playing clock, we 

initially have no information on the number of bells in-

volved, their tuning or positions of their partials. In this 

section, we introduce an algorithm that uses the bell par-

tial model presented in section 2.1 to estimate the number 

of bells in a recording and positions of their partials. The 

algorithm is based on the observation that bells are rarely 

struck at the same time, which is mainly due to the in-

harmonic nature of bell sounds and their imperfect tun-

ing. Therefore, we can use the “common fate” auditory 

grouping principle, especially onset synchrony to find 

groups of partials that belong to individual bells.  

We first calculate a magnitude spectrogram F of a re-

cording. To reduce variance in partial magnitudes in dif-

ferent frequency regions, we multiply the spectrogram 

with a perceptual weighting model, as introduced by Vin-

cent [10]. Weights are calculated on an average spectrum 

and applied globally to yield a flattened time-frequency 

representation Fw. Such flattening “amplifies” partials 

with small magnitudes, which makes it easier for the al-

gorithm to consider those partials in the process of find-

ing partial groups. This is especially important, because 

magnitude of the fundamental frequency of a bell lies 

over 20 dB below its loudest partial (see Table 1). As the 

fundamental corresponds to pitch, we need to accurately 

estimate it, otherwise the pitch of a bell can only be ap-

proximated. 

Bells have sharp onsets and long decay times, so the 

next step of the algorithm accentuates the fast positive 

changes (sharp onsets) in the magnitude spectrogram. 

The dynamics of changes within frequency bins of Fw is 

estimated by calculating first order delta coefficients D of 

the bins with a sliding window of length Nd. Delta coeffi-

cients provide estimates of the gross shape of short time 

segments of the frequency bins. They emphasize fast and 

big changes, such as onsets, and deemphasize slower and 

smaller changes, such as beating. This is illustrated in 

Figure 4 that displays delta coefficients of a bell partial 

calculated on a recording of a bell-playing clock. 

To discover groups of partials with synchronous on-

sets, we calculate covariances of their delta coefficients:  
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where dij represents an element of the delta spectrogram 

D and i the average of the i-th row of D. Because delta 

coefficients emphasize onsets, the value cij represents a 

measure of onset synchrony of partials with frequencies 

corresponding to bins i and j. Bells do not share many 

partials and are rarely struck at the same time, so a bell’s 

partial will have high synchrony with other partials of the 

same bell, but not with partials of other bells.  

 

 

Figure 4. Amplitude envelope and delta coefficients of a 

bell partial from a bell-playing clock recording 

A global covariance matrix C could be calculated on 

the entire delta spectrogram D, but we found that this puts 

too much emphasis on bells that occur frequently in a re-

cording and fails to find partials groups of other less fre-

quent bells. We therefore calculate local covariance ma-

trices on all segments that are obtained by sliding a win-

dow of length n over the delta spectrogram D with a step 

size of n/2. This results in a set of local covariance ma-

trices C
(t)

. The overall measure of onset synchrony of a 

partial i is then calculated by weighting the contributions 

of local covariance matrices with the overall energy of 

the partial in each segment, as approximated by ( )t

iic :  

 
( ) ( )

( ) 1

1

1 m
t t

ij ii ijm
t t

ii

t

s c c

c 



 


 .                    (3) 

 

Figure 5. Onset synchrony of a partial at 6840 cents. 

Four other partials from the same bell (8320, 9240, 9920 

and 10460 cents) are clearly visible. 

Figure 5 displays one row of the resulting matrix S, 

representing onset synchrony of a partial in a bell clock 

recording. A group of five partials belonging to the same 

bell sound clearly stands out.  

To discover groups of synchronous partials, we ana-

lyze each row si of the matrix S, and search for parame-

ters of the bell model presented in section 2.1 that best 



 

 

describe si. Specifically, for each row si we find model 

parameters f1 and f2 that maximize:  

 
1, 2
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where   denotes the dot product operator. Due to the 

sparseness of S (see Figure 5), an exhaustive search for 

optimal parameters can be performed efficiently. If the 

dot product in eq. (4) exceeds a preset threshold T, the 

model Mf1,f2 is considered to represent one of the bells in 

the analyzed recording. The actual positions of bell’s par-

tials may deviate from the model, so we estimate them 

from si by simple component-wise multiplication:   

 
1
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where K is used to compress partial magnitudes.  

The final outcome of the algorithm is a set of vectors 

Bb describing the sounds of bells in a recording. We 

present an evaluation of the algorithm in section 4. 

3. TRANSCRIPTION 

To transcribe a recording of a bell-playing clock, we need 

to find which notes (bells) were played and when they 

were played - their onset times. Although this may seem 

to be an easy task given positions of partials of bell 

sounds, the task is complicated due to several factors. 

First, partials interact; they get amplified, cancelled or 

beat against each other, which makes it difficult to follow 

their amplitude envelopes and find their onsets. Decay 

times of bell sounds are long and although bells are 

usually not played at the same time, the number of con-

currently sounding bells (polyphony) is always high. Par-

tials decay at different rates, so the spectrum of bells 

changes with time. Recordings contain fast passages with 

inter-onset times of less than 100ms, as well as embel-

lishments such as grace notes and arpeggios that further 

complicate transcription. And last, these are not synthetic 

recordings, nor are they very professionally made; they 

contain many noisy artefacts, such as background noise, 

noises coming from the clock mechanism or similar.  

We chose to take a probabilistic approach to transcrip-

tion and search for the most probable sequence of notes 

in a recording. The transcription process starts by calcu-

lating the onset times and onset probabilities of bells. We 

use the complex domain onset detection function and 

peak picking algorithm [11], which performs well with 

bell sounds, because of their sharp percussive onsets. On-

set probabilities are calculated from the value of the onset 

detection function at each onset.  

Given N onset times and the fact that bells are seldom 

struck at the same time, transcription can be viewed as a 

problem of finding a sequence of notes and rests 

s1,s2,s3...sN that best describes the analyzed signal; s1 

starts at the first found onset, s2 at the second and so on. s 

may represent a note (all notes ni, i=1..M are described by 

their corresponding bell models from the set B); or may 

be a rest (r). Specifically, we wish to find a sequence of 

notes and rests that maximizes the joint probability: 

 
1 2 1 3 2 1( ) ( | ) ( | ) ... ( | )N NP s P s s P s s P s s   . (6) 

To estimate probability of a note P(si=nj), we take two 

factors into consideration: the probability that note nj de-

scribed by the corresponding bell model bj actually oc-

curred in the signal at onset i, and the probability of that 

onset. Note probability is calculated by multiplying the 

bell model with the time-frequency representation D (as 

defined in section 2.1). Onset probability is proportional 

to the value of the onset detection function at the onset. 

We can thus write the probability of a note nj occurring at 

onset i as: 

 1( ) ( )
i

i j i j iC
P s n P o  b d . (7) 

where   denotes dot product, di represents the time-

frequency representation D at time i and P(oi) the proba-

bility of an onset at that time. Ci is a scaling factor used to 

normalize the dot product to a [0-1] range. 

Probability of a rest is defined as: 
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thus if no notes are likely to occur and the onset is also 

not likely, a rest will be likely.  

To define conditional probabilities P(si | si-1), we intro-

duced two changes to the above expressions. First, if note 

nk occurred at time i-1, we subtract the note from the 

time-frequency representation D, thus eliminating its ef-

fect at time i:  

 
1 1( ) max( ( 1, ) , 0)i i k i k is n N i     d d b d . (9) 

Operator  denotes component-wise multiplication 

and N the unscaled normal distribution, which models the 

time evolution of delta coefficients. As we can observe in 

Figure 4, delta coefficients are roughly bell-shaped at on-

sets, so we approximate them with a normal distribution. 

If si-1 is a rest, nothing is subtracted, so di(si-1=r)=di. 

As intervals between adjacent notes in a melody are 

usually small (a phenomenon also known as pitch prox-

imity), we include an additional factor into P(si | si-1). 

Pitch proximity is modeled by a proximity profile R(n), 

which as in [12], is represented by a normal distribution 

centered around a given pitch n, indicating pitch probabil-

ities of the following note. The obtained conditional 

probability of consecutive notes can thus be written as: 

 1
1 1( | ) ( ) ( ) ( )

i
i j i k i i k j i i kC

P s n s n P o R n s n     b d . (10) 

If si is a rest, we can calculate the conditional probability 

with the expression given in eq. (8), whereby we replace 

note probabilities with conditional probabilities and mul-

tiply the expression with a constant representing the prox-

imity profile. 



 

 

The most likely sequence of notes and rests can be ef-

ficiently estimated with dynamic programming; the re-

sulting set of onset times and notes represents the tran-

scription of a recording. 

4. EVALUATION 

In order to evaluate our algorithm, we manually tran-

scribed and annotated positions of partials in a set of 10 

recordings of different bell-playing clocks. Results and 

discussion are given in the following sections. 

4.1 The Bell-finding Algorithm  

We used the following parameters to test the bell-finding 

algoritm: the magnitude spectrogram was calculated with 

the Constant-Q transform [13], using a maximum win-

dow size of 100ms, a step size of 25 ms and 20 cent spac-

ing between adjacent frequency bins. The deltas were 

calculated with a sliding window of Nd=9 frames, the co-

variance matrices on n=100 frames long segments. Final-

ly, the threshold T that determines whether a bell model 

should be included in the final results was set to 1/20
th

 of 

the maximum value of all models and the compression 

coefficient K to 10. 

For comparison, we also developed an alternative ap-

proach for estimating partials in bell sounds. We used 

non-negative matrix factorization (NMF) to factorize the 

delta magnitude spectrogram D into matrices W and H, 

where the basis vectors in W would ideally correspond to 

bell spectra and H would explain how bell magnitudes 

change over time. Several efficient implementations of 

NMF exist in the literature; in our experiments we used 

the SNMF algorithm introduced by Kim and Park [14]. 

The algorithm is based on the alternating non-negativity 

constrained least squares and active set method and al-

lows to impose sparsity constraints on H or W.  

With NFM learning, the number of basis vectors is 

fixed and we need to set it in advance, prior to the actual 

learning. Because in our case basis vectors correspond to 

spectra of individual bells, we need to know the number 

of bells in a recording prior to learning. This is not usual-

ly the case, but to perform the comparison of both ap-

proaches, we give the NMF algorithm a small “advan-

tage” by setting the number of basis vectors to the actual 

number of bells as was manually annotated for each re-

cording.  

 

 precision recall 

proposed algorithm 0.94 0.98 

SNMF 0.87     0.87     

Table 2. Comparison of two bell finding algorithms 

Table 2 shows average precision and recall scores of 

the two algorithms on all recordings. Although both per-

form well, the proposed approach outperforms non-

negative matrix factorization. We contribute the differ-

ence to two main reasons. To find partials of bell sounds, 

the proposed algorithm uses a local approach; namely co-

variance matrices are calculated on short segments of the 

entire recording and then combined based on magnitudes 

of the analyzed partials in these segments. On the other 

hand, NMF works globally by iteratively minimizing the 

factorization error. The difference is important when 

searching for bells that are not frequently played. NMF 

will tend to ignore them and rather focus on minimizing 

the overall error which may lie in varying decay times of 

bell partials or noise. The local nature of our approach 

will not fail for such cases, as the bells will stand out in 

individual local segments and will consequently also 

show in the global matrix S. Another advantage of the 

proposed approach is its use of the knowledge provided 

by the model of bell partial positions, as presented in sec-

tion 2.1. Namely, the search for bell partials is limited by 

the model, so only regions of the signal that correspond 

to predicted partial frequencies are considered. Therefore, 

noise, either background or made by the clock mechan-

ism or other external factors, can largely be ignored. 

NMF uses no such high-level knowledge, so it is affected 

by noise on all levels, as it tries to accommodate it and 

include it into the basis vectors. 

All of the false negative errors (missed bells) made by 

our bell finding algorithm were bells a semitone apart 

from another more dominant bell, with most of their par-

tials overlapping. Such bells are mainly used as embel-

lishments and were ignored because their onsets were 

masked by the more dominant bell. However, since these 

bells are not very frequently played, these errors do not 

have a large influence on overall transcription accuracy, 

as we show in the following section.  

4.2 The Transcription Algorithm 

To evaluate how various choices made when designing 

our transcription algorithm influence its performance, we 

tested several variants of the algorithm: A – the described 

algorithm, B – excluding the pitch proximity profile, thus 

making all note transitions equally probable, C – exclud-

ing note subtraction, thus avoiding conditional note prob-

abilities and D – using annotated onsets instead of the 

calculated ones and E – using annotated bell partials in-

stead of the calculated ones. Average precision and recall 

scores of transcriptions of all recordings are shown in Ta-

ble 3.  

As we can observe, differences between these variants 

are not very big. This is due to the fact that the differenc-

es mostly affect “problematic” parts of recordings that 

include fast passages and embellishments, while else-

where the combination of the delta magnitude spectro-

gram, accurately estimated positions of bell partials, and 

correctly found onsets makes them irrelevant.  

For the problematic parts, the pitch proximity profile 

that favors smaller intervals (B) and especially note sub-

traction (C), which mostly prevents repetitions of predo-



 

 

minant notes, do have a positive effect on performance. 

As (D) shows, approx. half of the missed notes are caused 

by missed onsets and recall is raised by approx. 0.05 if 

perfect onset detection is used. On the other hand, noth-

ing is gained by using the manually annotated bell par-

tials, so the bell finding algorithm seems to be working 

very well and the errors it made seem to be almost irrele-

vant. 

 

 transcription 

 precision recall 

A: proposed algorithm 0.95     0.89     

B: no proximity 0.94 0.87 

C: no conditional prob. 0.91 0.88 

D: perfect onsets 0.94 0.94 

E: perfect bell models 0.95 0.89 

Table 3. Comparison of variants of the transcription algo-

rithm  

Most of the errors, either missed notes (false nega-

tives) or extraneous notes (false positives) are made in 

fast passages, where note repetitions are missed, notes are 

transcribed in an incorrect order or weak onsets ignored. 

Overall, the performance is good enough, so that tran-

scriptions will be used for further analysis and included in 

a searchable database of melodies; in fact when analyzing 

the errors, we discovered that several errors were in the 

ground truth and not in the calculated transcriptions.  

5. CONCLUSION 

The proposed approach to transcription of bell-playing 

clock recordings is a good first step towards analysis of 

these recordings. The bell-finding and transcription algo-

rithms perform well and will be used to transcribe the en-

tire collection of recordings of bell-playing clocks. We 

will add the resulting transcriptions to a searchable data-

base of melodies, thus making them available to interest-

ed researchers for further analysis. There is room for im-

provements of the algorithm; we plan to consider ways of 

allowing for correct treatment of simultaneous notes, as 

well as to test the algorithm on other recordings contain-

ing bell sounds. 
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