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ABSTRACT 

The paper presents our approach to the problem of finding melodic 
line(s) in polyphonic audio recordings. The approach is composed 
of two different stages, partially rooted in psychoacoustic theories 
of music perception: the first stage is dedicated to finding regions 
with strong and stable pitch (melodic fragments), while in the sec-
ond stage, these fragments are grouped according to their properties 
(pitch, loudness...) into clusters which represent melodic lines of the 
piece. Expectation Maximization algorithm is used in both stages to 
find the dominant pitch in a region, and to train Gaussian Mixture 
Models that group fragments into melodies. The paper presents the 
entire process in more detail and provides some initial results. 

1. INTRODUCTION 

With the recent explosion of researches in computer music and 
especially in the field of music information retrieval, one of the 
problems that remain largely unsolved is the extraction of perceptu-
ally meaningful features from audio signals. By perceptually mean-
ingful, we denote features that a typical listener can perceive while 
listening to a piece of music, and these include tempo and rhythm, 
melody, some form of harmonic structure, as well as the overall 
organisation of a piece.  
It is clear that a set of tools that could handle these tasks well would 
be useful in a variety of applications that currently rely on symbolic 
(i.e. MIDI) as opposed to audio data. Such tools would bridge the 
gap between a large number of researches made on parametric 
(MIDI) data that amongst other include similarity measures, estima-
tion of rhythm, GTTM decomposition and also query by example 
searching systems, where large musical databases could be made 
available, tagged with information extracted from audio. Audio 
analysis, learning and compositional systems could also make use 
of such information.  
An overview of past researches shows that techniques for tempo 
tracking in audio signals are quite mature; several tools (i.e. [1]) are 
available for use, some of them work in real-time. Most have little 
problems with modern pop styles with small variations in tempo, 
while tracking an expressive piano performance usually still causes 
headaches to algorithms or their authors. Rhythmic organisation is 
already a harder problem, as it has more to do with higher level 
musical concepts, which are harder to represent [2]. A promising 
approach to finding harmonic structure in audio signals has been 
presented by Sheh and Ellis [3]. 
Our paper deals with extraction of melodic lines from audio re-
cordings. The field has been extensively studied for monophonic 
signals, where many approaches exist (i.e. [4, 5]). For polyphonic 
signals, the work of several groups is dedicated to complete tran-
scription of audio signals, with the final result being a score that 

represents the original audio ([6, 7, 8]). Algorithms for simplified 
transcriptions, like extraction of melody, have been studied by few, 
with the notable exception of the work done by Goto [9].  
Our work builds on ideas proposed by Goto with the goal of pro-
ducing a tool for extraction of melodic lines from audio recordings. 
The approach includes extraction of sinusoidal components from 
the original audio signal, EM estimation of predominant pitches, 
their grouping into melodic fragments and final clustering of me-
lodic fragments into melodic lines. The paper briefly describes each 
of these stages and presents some preliminary results. 

2. DISCOVERING MELODIC FRAGMENTS 

Our approach to finding melodic lines begins with discovery of 
fragments that a melodic line is composed of – melodic fragments. 
Melodic fragments are defined as regions of the signal, that exhibit 
a strong and stable pitch. Pitch is the main attribute according to 
which fragments are discovered; other features, such as loudness or 
timbre, are not taken into consideration. They come into picture 
when fragments are merged into melodic lines according to their 
similarity.  

2.1. SMS analysis 

To locate melodic fragments, we initially need to estimate the 
predominant pitch(es) in the input signal. To achieve that, we first 
separate the slowly-varying sinusoidal components (partials) of the 
signal from the rest (transients and noise) by the well known spec-
tral modelling synthesis approach (SMS, [10]). SMS analysis trans-
forms the signal into a set of sinusoidal components with time-
varying frequencies and amplitudes, and a residual signal, obtained 
by subtracting the sines from the original signal. We used the pub-
licly available SMSTools software (http://www.iua.upf.es/mtg 
/clam) to analyse our songs with a 100 ms Blackman-Harris win-
dow, 10 ms hop size. Non-harmonic style of analysis was chosen, as 
our signals are generally polyphonic and not necessary harmonic 
(drums...). 

2.2. Masking 

The obtained sinusoidal components are subjected to a psycho-
acoustic masking model that eliminates the components masked by 
other, stronger ones. Only simultaneous masking within critical 
bands is taken into consideration – temporal masking is ignored. 
Tonal and noise maskers are calculated from the set of sinusoidal 
components and the residual signal, as described in [11], and com-
ponents that fall below the global masking threshold removed. The 
masking procedure is mainly used to reduce the computational load 



Proc. of the 7th Int. Conference on Digital Audio Effects (DAFX-04), Naples, Italy, October 5-8, 2004 
 

 DAFX-2 

of predominant pitch estimation, as it on average halves the maxi-
mal number of sinusoidal components (to approx. 60 per frame). 

2.3. Predominant pitch estimation 

After the sinusoid components have been extracted, and masking 
applied, we estimate the predominant pitch(es) in short (50 ms) 
segments of the signal. Our pitch estimating procedure is based on 
the PreFEst approach introduced by Goto [9], with some modifica-
tions.  
The method is based on the Expectation-Maximisation (EM) algo-
rithm, which treats the set of sinusoidal components at each time 
instant as a probability density function (observed PDF), which is 
considered to be generated from a weighted mixture of tone models 
of all possible pitches at this time instant. A tone model is defined 
as a PDF, corresponding to a typical structure of a harmonic tone 
(fundamental frequency + overtones). The EM algorithm iteratively 
estimates the weights of all tone models, while searching for one 
that maximizes the observed PDF. Consequently, each tone model 
weight represents the dominance of the tone model and thereby the 
dominance of the tone model’s pitch in the observed PDF. 
Our modified iterative EM procedure is summarized as follows. At 
a given time instant t SMS provides us with a set of sinusoidal 
components with frequencies ( )tF and amplitudes ( )tA .  
Our observed state O(t,n) is represented by a set of sinusoids in the 
time interval [t,t+n]:  
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The observed state O(t,n) is considered to be generated by a model 
p(t) , which is a weighted sum of tone models M of all possible 
pitches G(t): 

 ( ) ( )
( )

( ) ( , ) ( ) ( , ) ( )( ) , , ( )
t

t t n t t n t

g G

p F w g M F g C g
∈

= �  (2) 

The set of possible tone model pitches G(t) is derived from frequen-
cies of sinusoidal components F(t,n), by encompassing all frequen-
cies below 4200 Hz, and adding the frequencies of the first and 
second subharmonic components of each pitch, to account for 
missing fundamentals. 
A tone model M with pitch f can be described as: 
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C(g) represents a set of relative amplitudes c(h,g) of individual 
harmonics (1..h) in the tone model with frequency g and G(x,µ,σ) 
Gaussian distribution with mean µ and variance σ. The idea behind 

the normalization function norm lies in psychoacoustic models of 
loudness perception. The function serves as a limiter that limits the 
contribution of closely-spaced sinusoidal components, occurring 
when several strong components fall within the width of a Gaus-
sian, representing a tone model component. In this case, the func-
tion limits the sum of contributions of all components, which in a 
simplified way mimics the effects that distance between frequency 
components plays in the perception of loudness [12]. 
The process is illustrated in Fig. 1, where a tone model with pitch 
329 Hz is applied to a series of partials found by the SMS algo-
rithm. The model acts as a sieve, picking and summing up contribu-
tions of individual partials that would fit into a tone with a pitch of 
329 Hz. Only the first six tone model partials are shown. 
 

 

Figure 1: Applying a tone model on a set of partials 

 
The weights w of all possible tone models  (eq. 2) and amplitudes of 
their harmonics (c), are iteratively calculated by the EM algorithm: 
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When the iterative algorithm converges, the pitch of the tone model 
with the highest weight w is taken to be the predominant pitch. We 
use early stopping to stop the convergence prematurely and take the 
first few highest weights to represent the predominant pitches in the 
time window under consideration. These are later tracked and 
grouped into melodic fragments.  
In the beginning, all tone model weights and amplitudes are initial-
ized to the same value. Tone models contain a maximum of 20 
harmonics, values of σh range between 50 cents (1st harmonic) to 
100 cents (20th harmonic).  After some experiments, the value of n, 
representing the width of the analysis window, was set to 5, thereby 
encompassing a time interval of 50 ms. This significantly reduced 
the effects of “noisy” partials, found by SMS analysis, on estima-
tion of predominant pitch.  
The effect can be seen in Fig. 2, representing the outcome of the 
EM algorithm on a short fragment from Aretha Franklin’s interpre-
tation of song Respect. Both figures show the distribution of tone 
model weights (predominant pitches) through time. The left side of 
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the figure shows results obtained by using individual time frames 
produced by the SMS analysis (10 ms) to calculate tone model 
weights, while in the figure on the right, 5 frames of SMS output 
(50 ms) were taken to calculate the weights. It is clear that by using 
a larger window, melodic fragments in the noisier sections stand out 
much clearer. 
  

 

Figure 2: Effect of window size n on the EM algorithm for 
predominant pitch estimation 

2.4. Forming melodic fragments 

Weights produced by the EM algorithm indicate the pitches that are 
dominant at each time instance. Melodic fragments are formed by 
tracking dominant pitches through time and thereby forming frag-
ments that have continuous pitch contours. The first part of the 
procedure is similar to pitch salience calculation as described by 
Goto [13]. For each pitch with weight greater than a dynamically 
adjusted threshold, salience is calculated according to its dominance 
in a 50 ms look-ahead window. The procedure tolerates pitch devia-
tions of up to 100 cents per 10 ms window and also tolerates indi-
vidual noisy frames that might corrupt pitch tracks by looking at the 
contents of the entire 50 ms window.  
After saliences are calculated, grouping into melodic fragments is 
performed by continuously tracking the top three salient peaks and 
producing fragments along the way as follows: 
-  the procedure ignores all time instances, where total loudness of 

the signal, calculated according to Zwicker's loudness model [12] 
falls below a set threshold; 

-  the initial set of melodic fragments F is empty; the initial set of 
candidate melodic fragments C is empty; 

-  the following operations are repeated:  
-  in each time instance t, select the top three salient peaks that 

differ from each other by more than 200 cents and find their ex-
act frequencies fi, according to the largest weight wi in the 
neighbourhood: 

- in the set of candidate fragments C, find a fragment c with aver-

age frequency closest to fi  
- if the difference in frequencies between c and fi is smaller 

than 200 cents, add fi to the current candidate fragment; 
- otherwise, start a new candidate fragment 

-  after the top three pitches at time t have been processed, find all 
candidate fragments, that have not been extended during the last 
50 ms. If their length exceeds 50 ms, add them to the set of me-
lodic fragments F and remove them from the set of candidates 
C. If their length is shorter than 50 ms, remove them from C. 

-  after the signal has been processed, merge harmonically related 
melodic fragments, appearing at the same time (only 1st and 2nd 
overtones are taken into consideration) and join continuous frag-
ments (in time and frequency). 

The final result of this simple procedure is a set of melodic frag-
ments, which may overlap in time, are at least 50 ms long and may 
have a slowly changing pitch. Parameters of each fragment are its 
start and end time, its time-varying pitch and its time-varying loud-
ness. The fragments obtained provide a reasonable segmentation of 
the input signal into regions with stable dominant pitch. An exam-
ple is given in Fig. 3, which shows segmentation obtained on a 5.5 
seconds excerpt from Aretha Franklin's interpretation of the song 
Respect. 25 fragments were obtained; six belong to the melody sung 
by the singer, while the majority of others belong to different parts 
of the arrangement, which become dominant when lead vocals are 
out of the picture. Additionally, three noisy fragments were found, 
which were either due to consonants or drum parts. These can 
usually be dealt with in the last part of the procedure, where frag-
ments are merged into melodic lines.  
We performed informal subjective listening tests by resynthesizing 
the fragments (on the basis of their pitch and amplitude) and com-
paring these resynthesized versions with the original signal covering 
the same time spans. Most of the fragments perfectly captured the 
dominant pitch in the areas, even if, while listening to the entire 
original signal, some of the fragments found were not immediately 
obvious to the listener (i.e. organ parts in the given example). We 
carried out such tests on a set of excerpts from 10 different songs, 
covering a variety of styles, from jazz, pop/rock to dance, and the 
overall performance of the algorithm for finding melodic fragments 
was found to be satisfying; it discovered a large majority of frag-
ments belonging to the lead melody, which is the main point of 
interest in this study. 

3. FORMING MELODIC LINES 

The goal of our project is to extract one or more melodic lines from 
an audio recording. How is a melodic line, or melody, defined? 
There are many definitions; Levitin describes melody as an auditory 
object that maintains its identity under certain transformations along 

Figure 3: Segmentation into melodic fragments of an excerpt from Otis Redding's song Respect sung by Aretha Franklin 
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the six dimensions of pitch, tempo, timbre, loudness, spatial loca-
tion, and reverberant environment; sometimes with changes in 
rhythm; but rarely with changes in contour [14]. Not only that 
melodies maintain their identity under such transformations, or 
rather because of that, melodies themselves are usually (at least 
locally in time) composed of events that themselves are similar in 
pitch, tempo, timbre, loudness, etc.  
The fact becomes useful when we need to group melodic fragments, 
like the ones obtained by the procedure described before, into me-
lodic lines. In fact, the process of discovering melodic lines be-
comes one of grouping melodic fragments through time into melo-
dies. Fragments are grouped according to their properties. Ideally, 
one would make use of properties, which accurately describe the six 
dimensions mentioned before, especially pitch, timbre, loudness and 
tempo. Out of these, timbre is the most difficult to model; we are 
not aware of studies that would reliably determine the timbre of 
predominant voices in polyphonic audio recordings. Many studies, 
however, make use of timbre related features, when comparing 
pieces according to their similarity, classifying music according to 
genre, identifying the singer, etc. (i.e. [15], [16]). The features used 
in these studies could be applied to our problem, but so far we have 
not yet made such attempts. To group fragments into melodies, we 
currently make use of only four features, which represent:  
- pitch as the centroid of fragment's frequency with regard to its 

dominance; 
- loudness as the mean value of the product of dominance and 

loudness. Loudness is calculated according to Zwicker's loudness 
model [12] for partials belonging to the fragment. The product of 
dominance and loudness seems to give better results than if loud-
ness alone would be taken; 

- pitch stability as the average change of pitch over successive time 
instances. This could be classified as the only timbral feature used 
and mostly separates vocal parts from stable instruments; 

- onset steepness as the steepness of overall loudness change during 
the first 50 ms of the fragment's start. The feature penalizes frag-
ments that come into picture when a louder sound stops.  

 
To group melodic fragments into melodies, we use a modified 
Gaussian mixture model estimation procedure, which makes use of 
equivalence constraints during the EM phase of model estimation 
[17]. Gaussian Mixture Models (GMMs) are one of the more widely 
used methods for unsupervised clustering of data, where clusters are 
approximated by Gaussian distributions, fitted on the provided data. 
Equivalence constraints are prior knowledge concerning pairs of 
data points, indicating if the points arise from the same source 
(belong to the same cluster - positive constraint) or from different 
sources (different clusters - negative constraint). They provide 
additional information to the GMM training algorithm, and are very 
useful in our domain. We use GMMs to cluster melodic fragments 
into melodies according to their properties. Additionally, we make 
use of two facts to automatically construct positive and negative 
equivalence constraints between fragments.  
Fragments may overlap in time, as can be seen in Fig. 2. We treat 
melody as a succession of single notes (pitches). Therefore, we can 
put negative equivalence constraints on all pairs of fragments that 
overlap in time. This forbids the training algorithm to put two over-
lapping fragments into the same cluster and thus the same melodic 
line. We also give special treatment to the bass line, which may 
appear quite often in melodic fragments (Fig. 2). To help the train-
ing algorithm with bass line clustering, we also put positive equiva-
lence constraints on all fragments with pitch lower than 170 Hz. 
This does not mean that the training algorithm will not add addi-

tional fragments to this cluster; it just causes all low pitched frag-
ments to be grouped together.  
The clustering procedure currently only works on entire song frag-
ments (or entire songs), and we are still working on a version that 
will work within an approx. 5 second long sliding window and 
dynamically add new fragments to existing clusters or form new 
clusters as it progresses through a given piece. 
We have not yet made any extensive tests of the accuracy of our 
melody extracting procedure. This is mainly due to the lack of a 
larger annotated collection of songs that could be used to automati-
cally measure the accuracy of the approach. We have tested the 
algorithm on a number of examples and are overall satisfied with 
the performance of the fragment-extracting procedure, and less so 
with the performance of GMM clustering. GMMs may work per-
fectly in some cases, like Aretha Franklin’s example used for this 
paper, while for others, problems may occur mainly because frag-
ments belonging to accompanying instruments, which appear close 
to the lead melodic line are taken to be part of the line. 
Results of clustering on a 30 second excerpt of Otis Redding's song 
Respect, as sung by Aretha Franklin, are given in Table 1.  
 

 lead 
vocal 

back 
vocals 

 
bass 

 
guitar 

 
brass 

 
keys 

 
noise 

C1 0.03 0.24 0.03 0 0.1 0.33 0.35 
C2 0.93 0.29 0 0 0.1 0 0.05 
C3 0.03 0.38 0 0.33 0.3 0 0.3 
C4 0 0 0.97 0 0.05 0.33 0.08 
C5 0 0.1 0 0.67 0.45 0.33 0.22 

Table 1: GMM clustering of fragments from "Respect" 

152 melodic fragments were found by the fragment finding proce-
dure; all lead vocal and backing vocal parts were correctly discov-
ered. All fragments were hand annotated into one of seven catego-
ries (lead vocal, backing vocals, bass, guitar, brass, keyboards, 
noise). Fragments were then clustered by the GMM algorithm into 
five clusters, which would ideally represent the melody (lead vo-
cal), bass line, backing vocals, accompaniment and noise.  
Results of the clustering procedure are given in Table 1. It shows 
percentages of fragments belonging to the seven annotated catego-
ries in the five clusters. Ideally, lead vocal fragments (melody) 
would all be grouped into one cluster with no additional fragments. 
Most (93%) were indeed grouped into cluster 2, but the cluster also 
contains some other fragments, belonging to backing vocals, brass 
and a small amount of noise. The majority of bass fragments were 
put into cluster 4, together with some low pitched keyboard parts, 
while other clusters contain a mixture of accompaniment and back-
ing vocals. As our goal lies mainly in the discovery of the (main) 
melodic line, results are satisfying, especially if we take into con-
sideration that practically no timbre based features were taken into 
consideration when clustering. Most of the melody is represented by 
fragments in cluster 2, with some additional backing vocal frag-
ments, which could actually also be perceived as part of the melody.  
The effect of negative and positive constraints on the clustering 
procedure was also assessed; somewhat surprisingly, constraints did 
not have a large impact on the clustering procedure. Small im-
provements were achieved mostly in separation of accompaniment 
from lead vocal and bass lines.  
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4. CONCLUSIONS 

The presented approach to melody extraction is still in an initial 
phase, but we are satisfied with first obtained results. Currently, we 
are in the process of annotating a larger number of pieces, which 
will be used for improving the feature set used in GMM training, as 
so far, we settled for a very small number of parameters, mainly 
because of the small set of examples we worked with. We plan to 
concentrate on timbral features, which are expected to bring im-
provements, especially with mismatches in parts where accompa-
niment becomes dominant. The larger database will also enable us 
to test and compare several different clustering strategies. 
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