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ABSTRACT 

In this paper, we present a technique for tracking partials in musical signals, based on networks of 

adaptive oscillators. We show how synchronization of adaptive oscillators can be utilized to detect 

periodic patterns in outputs of a human auditory model and thus track stable frequency components 

(partials) in musical signals. The model is further extended to track groups of harmonically related 

partials by grouping oscillators into networks. We present the integration of the partial tracking model 

into a system for transcription of polyphonic piano music. The transcription system is based on a 

connectionist architecture that employs networks of adaptive oscillators for partial tracking and feed 

forward neural networks for associating partial groups with notes. We provide a short overview of our 

entire transcription system and present its performance on transcriptions of several synthesized and 

real piano recordings.  

 

1 INTRODUCTION 

Most human listeners would agree that music conveys some sort of meaning. While listening to a 

piece of music, a series of cues can be perceived, ranging from emotional characterizations (sad, 

happy…) to more objective elements, such as melody or types of instruments appearing in the piece. 

Although human listeners find it natural to extract, memorize and recreate the melody of a piece of 

music, transcription of polyphonic music is not a task inherent to human perception and can only be 

performed by experienced or trained musicians. 



Transcription could be defined as a process of converting an audio signal into a note-level 

(parametric) representation, where notes (pitches), their starting times and durations are extracted 

from the signal. Transcription is a very challenging problem for current computer systems; separating 

notes from a mixture of other sounds, which may include other notes played by the same or different 

instruments or simply background noise, requires robust algorithms with performance that should 

degrade gracefully when noise increases.  

A tool for transcription of polyphonic music would be useful in a wide range of applications. Even if 

we disregard the common desire of amateur musicians to have transcriptions of their favorite pieces 

available for reinterpretation, the compact and standardized parametric representation of music that 

transcription produces is useful in applications ranging from content-based retrieval of music (i.e. 

query by example systems) and music analysis systems to accompaniment systems. Transcription aids 

musicologists in analyzing music that has never been written down, such as improvised or ethnical 

music, it is useful in the process of making music, as well as in newer coding standards, such as 

MPEG-4, which may include note-level descriptions of music. 

First researches into polyphonic music transcription have been made by Moorer (1977); he was 

experimenting with transcription of melodic lines of two voices of different timbres and frequency 

ranges. In recent years, several systems have been developed. Some of them are targeted to 

transcription of music played on specific instruments (Rossi, 1998; Sterian, 1999; Dixon, 2000; Bello, 

Daudet & Sandler, 2002; Ortiz-Berenguer & Casajus-Quiros, 2002; Monti & Sandler, 2002), while 

others are general transcription systems (Kashino et al, 1995; Klapuri, 2001). All authors, except for 

(Bello, et al., 2002), base their systems on frequency domain analysis of the musical signal. Cues, 

such as local energy maxima, are extracted from the time-frequency representation of the signal and 

used in subsequent processing stages to find notes that are present in the input signal. Various 

techniques, such as statistical frameworks (Kashino et al, 1995; Klapuri, 2001), blackboard 

architectures (Monti & Sandler, 2002), distance metrics (Rossi, 1998)... are used in the process of 

grouping the found cues into notes, relying on information such as harmonicity, common onset/offset 

times... Prior knowledge of tone sources is sometimes taken into account (Kashino, 1995; Rossi, 



1998; Sterian, 1999; Ortiz-Berenguer & Casajus-Quiros, 2002), as well as higher-level knowledge of 

music, such as probabilities of chord transitions (Kashino, 1995). Good recognition rates have been 

achieved in identifying notes from individual frames of time-frequency representations (ignoring 

temporal features) (Klapuri, 2001; Ortiz-Berenguer & Casajus-Quiros, 2002); the downside of such 

approaches is that they do not scale well to transcription of continuous musical signals and may 

exhibit problems with noisy sounds (drums, percussive onsets) appearing in the signal. To reduce the 

complexity of the time-frequency representation, to reduce noise and to incorporate some kind of 

temporal processing, partial tracking has been used in some systems to locate stable frequency 

components in the input signal (Sterian, 1999; Dixon, 2000). 

In this paper, we present a connectionist approach to music transcription. Connectionist methods, such 

as neural networks, have been successfully applied in many pattern recognition domains and our 

incentive was to build a transcription system that would be based on connectionist principles. 

Transcription is a challenging task, so we limited the domain of our system to transcription of 

polyphonic piano music. The paper focuses on our approach to partial tracking with networks of 

adaptive oscillators, provides a short description of our entire transcription system, and presents some 

results obtained on transcriptions of synthesized and real piano recordings. 

The organization of this paper is as follows. In Section 2 we propose a model for tracking partials in a 

polyphonic audio signal, based on adaptive oscillators. Section 3 presents an extension of this model 

to a model that tracks groups of harmonically-related partials. Section 4 presents a brief overview of 

our transcription system and in section 5 we present performance statistics of the system on 

transcriptions of synthesized and real recordings of piano music. Section 6 concludes this paper. 

 

2 ADAPTIVE OSCILLATORS FOR PARTIAL TRACKING IN MUSICAL 

SIGNALS 

A melodic sound can be roughly described as a sum of components with stable frequencies and time-

varying amplitudes. These components are also called partials and can be recognized as prominent 



horizontal structures in a time-frequency representation of an audio signal. By finding partials, one 

isolates the stable frequency components most likely belonging to tones, and discards noisy 

components, thus making the representation clearer and more compact. This is especially desirable in 

transcription systems, where the goal is to find all the tones (notes) present in the audio signal at any 

given moment in time. Currently, most partial trackers used in transcription systems are based on a 

procedure similar to the tracking phase vocoder (Roads, 1996). After the calculation of a time-

frequency representation, peaks are computed in each frequency image. Only peaks with amplitude 

that is larger than a chosen (possibly adaptive) threshold are kept as candidate partials. Detected peaks 

are then linked over time according to intuitive criteria such as proximity in frequency and amplitude, 

and partial tracks are formed in the process. Such approach is quite susceptible to errors in the peak 

peaking procedure, where missed or spurious peaks can lead to fragmented or spurious partial tracks. 

Some systems therefore use additional heuristics for merging fragmented partial tracks. Another 

shortcoming of the “peak picking-peak connecting” approach is detection of frequency modulated 

partials. Here, the peak connecting algorithm can fail if it is not designed to tolerate frequency 

modulation. In transcription, where each missed or spurious partial may be important, errors of partial 

tracking algorithms made on signals that include beating, frequency modulation... may lead to a large 

number of missed or spurious notes. An innovative approach to partial tracking has been proposed by 

Sterian (1999), who still uses a peak picking procedure in the first phase of his transcription system, 

but later uses Kalman filters, trained on examples of instrument tones, to form partials from peaks.  

The review of partial tracking methods used in current transcription systems has led us to the 

development of a different partial tracking model that would not be based on the standard peak-

picking/peak connecting paradigm. In this section, we propose a partial tracking model based on 

connectionist principles. It is composed of two parts: an auditory model, which emulates the 

functionality of human ear, and adaptive oscillators that extract partials from outputs of the auditory 

model.  

 



2.1 Auditory Model 

The auditory model emulates the functionality of human ear and transforms the audio signal into a 

probabilistic representation of firing activity in the auditory nerve. Amongst the many auditory 

models currently available, we decided to use a combination of the Patterson-Holdsworth gammatone 

filterbank (Patterson & Holdsworth, 1990; Slaney, 1993) and Meddis’ hair cell model (Meddis, 1986), 

as their implementations are efficient and readily available. 

The first stage of the auditory model emulates the movement of basilar membrane in the inner ear 

with a bank of bandpass IIR filters (gammatone filters). We are using a bank of 200 gammatone filters 

to split the signal into 200 frequency bands with center frequencies logarithmically spaced between 70 

and 6000 Hz. Filter parameters are taken from (Moore & Glasberg, 1983). 

Subsequently, output of the gammatone filterbank is processed by the Meddis’ model of hair cell 

transduction. The hair cell model converts each gammatone filter output into a probabilistic 

representation of firing activity in the auditory nerve. Its operations are based on a biological model of 

the hair cell and it simulates several of the cell's characteristics, most notably half-wave rectification, 

saturation and adaptation. Saturation and adaptation are very important to our model, as they reduce 

the dynamic range of the signal, and in turn enable our partial tracking model to track partials with 

low amplitude. These characteristics can be observed in Fig. 1, displaying outputs of three gammatone 

filters and the hair cell model on the 1., 2., and 4. partial of piano tone F3 (pitch 174 Hz). 

 

 

 

Fig. 1.  Analysis of three partials of piano tone F3 with the auditory model. 

 



 

2.2 Partial Tracking with Adaptive Oscillators 

Output of the auditory model consists of a set of quasi-periodic functions describing firing activities 

of inner hair cells in different parts of the basilar membrane (see Fig. 1). Temporal models of pitch 

perception are based on the assumption that detection of periodicity in output channels of the auditory 

model forms the basis of human pitch perception. Periodicity is usually calculated with 

autocorrelation, resulting in a three-dimensional time-frequency representation of the signal called 

autocorrelogram, with time, channel center frequency and autocorrelation lag represented on 

orthogonal axes. Meddis and Hewitt (1991) have demonstrated that a summary autocorrelogram 

(autocorrelogram summed across frequency channels) explains the perception of pitch in a wide 

variety of stimuli and autocorrelogram is used in many psychoacoustic models that try to explain the 

mechanisms behind human pitch perception.  

We decided to use a different approach to estimating periodicity in output channels of the auditory 

model. The approach is based on adaptive oscillators and their ability to synchronize with periodic 

input stimuli. 

 

2.2.1 The Large-Kolen Adaptive Oscillator 

An oscillator is a system with periodic behavior. It oscillates in time according to its two internal 

parameters: phase and frequency. An adaptive oscillator adapts its phase and frequency in response to 

its input (driving) signal. When a periodic signal is presented to an adaptive oscillator, it adjusts its 

phase and frequency to match that of the driving signal and thus synchronizes with the signal. By 

observing the frequency and phase of a synchronized oscillator, an accurate estimate of the frequency 

and phase of its driving signal can be made. 

Various models of adaptive oscillators have been proposed, some have also found use in computer 

music researches for modeling rhythm perception (Large & Kolen, 1994; McAuley, 1995) and for 

simulation of various psychoacoustic phenomena (Wang, 1996). After reviewing several models, we 



decided to use a modified version of the Large-Kolen adaptive oscillator (Large & Kolen, 1994) in 

our partial tracking model.  

The Large-Kolen oscillator oscillates in time according to its period (frequency) and phase. Its input 

consists of a series of discrete impulses, representing events in the input signal. After each oscillation 

cycle, the oscillator adjusts its phase and period, trying to match the phase and period of events in the 

input signal. It also updates its output that reflects the level of synchronization achieved. If events 

occur in regular intervals (are periodic), the final effect of synchronization is alignment of oscillations 

with input events. Phase and period of the Large-Kolen oscillator are updated according to the 

modified gradient descent rule, minimizing an error function that describes the difference between 

input events and beginnings of oscillation cycles: 
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∆tx and ∆p represent the changes in phase and period of the oscillator after each oscillator’s cycle. p 

and φ are the phase and period of the oscillator and s the input signal (stimulus). η1 and η2 are 

parameters that control the strength of synchronization to the stimulus, while χ defines the width of 

the receptive field of the oscillator. An impulse in the stimulus only impacts the oscillator’s period 

and phase if it falls within the width of the receptive field. The receptive field has been introduced to 

facilitate synchronization to simple rhythmical patterns in a rhythmically complex stimulus and its 

width is adapted after each cycle. The receptive field width also provides a measure of the level of 

synchronization achieved. 

 

2.2.2 Modifications of the LK Oscillator   

In our partial tracking model, we use Large-Kolen (LK) adaptive oscillators to detect periodicities in 

output channels of the auditory model. Each output channel of the auditory model is discretized by 

calculating centroids of individual half-waves and routed to the input of an adaptive oscillator. The 

initial frequency of the oscillator is set to the center frequency of its input channel. As in our partial 



tracking model, oscillators are not processing complex polyrhythmic stimuli (oscillator’s stimulus is 

either (quasi) periodic or not periodic at all), we simplified the LK oscillator model by choosing a 

constant width of receptive field χ (χ=1). Since the width of the receptive field is closely tied to the 

measure of level of synchronization, we introduced a new measure of level of synchronization c, 

which is also used as the output value of our oscillator model and is calculated each time an oscillator 

completes its oscillation cycle:  
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s(t) represents the stimulus, composed of a series of discrete impulses. Oscillator’s output c is 

calculated as an exponential function of the centroid of all phase corrections )(tt x∆  that occurred 

during the last oscillator’s cycle ( xx ttpt ≤<− ), weighted with the strength of input impulses s(t). α 

and β are parameters that control the scaling and the impact of phase corrections on the output 

function. After some experimenting, we chose to use the values 4.8 and 10 for the two constants.  c is 

also averaged over time with a first order filter and limited to values between 0 and 1, higher value 

meaning a higher level of synchronization to the stimulus. If we look at equation (2), we can see that c 

is mostly dependant on the amount of phase corrections that occur in each oscillator’s cycle. Large 

phase corrections indicate poor synchronization and consequently reduce the value of c; on the other 

hand, small phase corrections indicate good synchronization and thus increase the output function. If 

an oscillator stays completely out of sync (c<0.03) with the stimulus in over three consecutive cycles, 

its frequency is reset to an initial value.  

 

2.2.3 Partial Tracking 

The rationale behind the use of adaptive oscillators for partial tracking is simple. It is well known that 

a periodic output channel of an auditory model points to the presence of a frequency component 

(partial) in the input signal; analysis of periodicity in the channel indicates the exact frequency of the 

partial. In our model, periodicity is detected by a set of adaptive oscillators. If these synchronize with 



their stimuli (outputs of the auditory model), this indicates that the stimuli are periodic, and 

consequently that partials are present in the input signal. Frequencies of partials can be estimated by 

observing the frequencies of synchronized oscillators. Such a model has two advantages: because 

oscillators constantly adapt to their stimuli, partials with slowly changing frequencies (vibrato…) can 

easily be tracked. Since the auditory model reduces the dynamic range of the input signal and thus 

boosts partials with low amplitudes, these can be easily tracked as well.  

Four examples of partial tracking with the modified Large-Kolen oscillator are illustrated in Fig. 2. 

Example A presents a simple case of tracking a 440 Hz sinusoid. The oscillator (initial frequency 440 

Hz) synchronizes successfully, as can be seen from its output, and after an initial 1 Hz rise, its 

frequency settles at 440 Hz. Example B shows how two oscillators with initial frequencies set to 440 

and 445 Hz synchronize to a sum of 440 and 445 Hz sinusoids (5 Hz beating). Both oscillators 

synchronize successfully at 442.5 Hz, as can be seen from their outputs and frequencies. The behavior 

is consistent to human perception of the signal. Example C is shows the tracking of a frequency 

modulated 440 Hz sinusoid. The oscillator synchronizes successfully; its frequency follows that of the 

sinusoid. The last example (D) shows how two oscillators track two frequency components that 

rise/fall from 440 to 880 Hz. Tracking is successful; each oscillator tracks the component closest to its 

input frequency channel. 



 

 

Fig. 2.  Partial tracking with adaptive oscillators. 

 

Example in Fig. 3 shows how oscillators track partials of piano tone A4 (pitch 440 Hz). 88 oscillators 

with initial frequencies logarithmically spaced between 55 and 8372 Hz were used in the example. 

Fig. 3A displays outputs of all 88 oscillators (these are independent on amplitudes of partials). Fig. 3B 

shows amplitude envelopes of frequency channels of the auditory model, calculated from outputs of 

the gammatone filterbank, while Fig. 3C shows the product of oscillator outputs and amplitude 

envelopes. The three bottom figures show a cross section of the upper time-frequency representations 

at 200 ms. In Fig. 3A we can see that oscillators successfully track the first seven and the tenth partial 

of tone A4; the 8th and 9th partial are missed, because their amplitudes were too low. One can also 

notice some noise in lower frequencies, which is mostly due to the sound of the hammer hitting the 

strings. Overall, the obtained representation is very compact and gives a clear picture of how partials 

of tone A4 develop over time. 

 

 



 

Fig. 3.  Tracking of partials of piano tone A4 

 

 

3 PARTIAL TRACKING WITH ADAPTIVE OSCILLATOR NETWORKS  

The partial tracking model presented in the previous section is capable of successfully following 

partials in musical signals without explicit “peak picking/peak connecting” rules. We showed that the 

model is quite robust and that it can follow partials in cases of beating or vibrato. Although finding 

each individual partial in a signal may be useful in some applications, in transcription systems the 

goal is to obtain a representation that is as compact as possible. 

As most tones are harmonic, we extended the presented model of tracking individual partials to a 

model of tracking groups of harmonically related partials by joining adaptive oscillators into 

networks. Networks of oscillators are fully connected, initial frequencies of oscillators in a network 

are set to integer multiples of the frequency of the first oscillator (see Fig. 4). As each oscillator in the 

network tracks a single partial close to its initial frequency, a network of oscillators tracks a group of 

harmonically related partials, which may belong to one tone with pitch equal to the frequency of the 

first oscillator.  

 



 

Fig. 4.  A network of adaptive oscillators. 

 

Output of a network is calculated as a weighted sum of outputs of individual oscillators in the network 

and represents the strength of a group of partials tracked by oscillators in the network. Weights are 

related to individual oscillator’s number (lower-numbered oscillators have more influence on the 

overall output) and to individual oscillator’s frequency (as the frequency of an oscillator drifts from 

the average network frequency, the oscillator loses its impact on the network’s output). Larger 

frequency deviations are tolerated for higher-numbered oscillators to account for frequency stretching. 

Because the output of a network only depends on outputs of oscillators in the network, it is virtually 

independent of the amplitude of tracked partials.  

Within a network, each oscillator is connected to all other oscillators with excitatory connections. 

These connections are used to adjust frequencies and outputs of non-synchronized oscillators in the 

network with the goal of speeding up their synchronization. Only a synchronized oscillator can affect 

frequencies and outputs of other oscillators in the network. Adjustments are made according to the 

following rules: 

   

d is the number of the destination (non-synchronized) oscillator in the network (starting from 1), 

while s represents the number of the source (synchronized) oscillator. The period of the destination 

(3) 



oscillator pd and its output value cd change according to two factors: rp and rc. These are two 

gaussians, representing the ratio of periods of the two oscillators (pd - period of the destination 

oscillator, ps - period of the source oscillator) and the ratio of outputs of the two oscillators (cd - 

output of the destination oscillator, cs output of the source oscillator). Factor rp is a gaussian with 

maximum value, when periods of both oscillators are in a perfect harmonic relationship (dpd/sps = 1). 

The value falls as periods drift away from this perfect ratio and approaches zero, when the ratio is 

larger than a semitone. rc has the largest value, when a synchronized oscillator influences the behavior 

of a non-synchronized oscillator (cs is large, cd is small) and falls as cd increases. Connection weights 

wsd are calculated according to the oscillator’s number; the first few partials are considered to be more 

important and consequently the influence of lower-numbered oscillators in the network is stronger 

than the influence of higher-numbered oscillators (w1n>wn1).  

Adjustments (3) push the frequency of a non-synchronized oscillator closer to the frequency of the 

partial it should track and also increase its output value, which results in faster synchronization of all 

oscillators in the network and consequently leads to faster discovery of a group of partials.  

Connecting oscillators into networks has several advantages if the goal is to obtain a compact 

representation of a signal, suitable for transcription. Output of a network represents the strength of a 

group of harmonically related partials tracked by its oscillators. Such output provides a better 

indication of presence of a harmonic tone in the input signal than do outputs of individual oscillators 

(individual partials). Noise usually doesn't appear in the form of harmonically related frequency 

components, so networks of oscillators are more resistant to noise and provide a clearer time-

frequency representation. Within a network, each oscillator is connected to all other oscillators with 

excitatory connections. Connections are used by synchronized oscillators to speed up synchronization 

of non-synchronized oscillators, leading to a faster network response and faster discovery of a group 

of partials. Missing partials (even missing fundamental) are tolerated, if enough partials are found by 

other oscillators in the network.  

Fig. 5 shows an example of tracking groups of partials of piano tone A4. The figure can be compared 

to Fig. 3, which shows partial tracking of tone A4 with individual oscillators. The representation was 



obtained with 88 oscillator networks, each containing up to 10 oscillators. As in Fig. 3, results are 

divided into three parts; in A, we show outputs of all 88 oscillator networks, B shows amplitude 

envelopes of frequency channels of the auditory model, and C the product of network outputs and 

amplitude envelopes. Bottom figures show a cross section of upper figures at 200 ms. Comparison 

with Fig. 3 shows that networks give a clearer TF representation than individual oscillators. In A, we 

can see that three strong partial groups were found, corresponding to the first three partials of tone 

A4. There is less noise in the representation and when network outputs and amplitude envelopes are 

combined, only the three partial groups remain in the representation. 

 

 

Fig. 5.  Tracking groups of partials in piano tone A4 

 

Another example is given in Fig. 6, which displays slices taken from three time-frequency 

representations of piano chord C3E3B4, calculated 100 ms after the onset: representation with 

uncoupled oscillators, representation with networks of adaptive oscillators and short-time Fourier 

transform. The representation with uncoupled oscillators was calculated with 88 oscillators tuned to 

pitches of piano tones A0-C8. Oscillator outputs (independent of partial amplitudes) are presented in 

Fig. 6A. Fig. 6B shows outputs of 88 oscillator networks, tuned to the same pitches. Product of 



networks’ outputs and amplitudes of partials is shown in Fig. 6C. Fig. 6D displays the first 440 

frequency bins of the Fourier transform calculated with a 100 ms Hamming window.   

 

 

Fig. 6.  Representations of piano chord C3E3B4. 

Individual oscillators have no difficulty in finding the first few partials of all tones (A). Some of the 

higher partials are not found, as they are masked by louder partials of other tones (we use only one 

oscillator per semitone). Oscillator networks (B) produce a clearer representation of the signal; the 

first two or three partial groups of each tone stand out. Networks coinciding with tones E3 and B4 

produce the highest outputs, because almost all partials in the networks are found. When amplitudes 

are combined with network outputs (Fig. 6C), only four partial groups stand out, corresponding to 

first partials of all three tones (C3, E3, B4) and the second partial of tone E3. If we compare Fig. 6C 

with the Fourier transform in 6D, advantages of partial group tracking for transcription are obvious.  

Overall, examples show that oscillator networks produce a compact and clear representation of partial 

groups in a musical signal. The main problem of this representation lies in occasional slow 

synchronization of oscillators in networks, which can lead to delayed discovery of partial groups. This 

is especially true at lower frequencies, where delays of 40-50 ms are quite common, because 

synchronization only occurs once per oscillator cycle; an oscillator at 100 Hz synchronizes with the 

signal every 10 ms, so several 10s of milliseconds are needed for synchronization. Closely spaced 

partials may also slow down synchronization, although it is quite rare for a group of partials not to be 

found. 

 

4 TRANSCRIPTION OF PIANO MUSIC 



The partial tracking model presented in previous sections has been incorporated into our system for 

transcription of piano music, called SONIC (Marolt, 2001). The overall structure of the system is 

shown in figure 7. Next to partial tracking, the system also includes a note recognition module (briefly 

described in the next section), an onset detector (Marolt, 2002a), a module for resolving repeated 

notes (Marolt, 2002b) and simple algorithms for estimation of tuning, note length and loudness. 

Music transcription is a difficult task, so we put one major constraint on our transcription system: it 

only transcribes piano music, so piano should be the only instrument in the analyzed musical signal. 

We didn't make any other assumptions about the signal, such as maximal polyphony, minimal note 

length, style of transcribed music or the type of piano used. The system takes an acoustical waveform 

of a piano recording (44.1 kHz sampling rate, 16 bit resolution) as its input. Stereo recordings are 

converted to mono. The output of the system is a MIDI file containing the transcription. We present 

performance statistics of the system on several synthesized and real piano recordings in section 5. 

 

 

Fig. 7.  Structure of SONIC. 

 

4.1.1 Note recognition with neural networks 

A note recognition module is the central part of every transcription system. Its input usually consists 

of a set of cues extracted from the time-frequency representation of the input signal and its task is to 

associate the found cues with notes. Statistical methods are frequently used for this task; in our 

transcription system the task is performed by neural networks.  



We use a set of 76 neural networks to perform note recognition. Inputs of each network are taken 

from outputs of the partial tracking module presented in the previous sections. They contain one or 

more time frames (sampled at every 10 ms) of output values of oscillator networks, amplitude 

envelopes of signals in frequency channels of the auditory model (calculated by half-wave 

rectification and smoothing) and the combination of amplitude envelopes and oscillator networks' 

outputs. Each neural network is trained to recognize one piano note in its input; i.e. one network is 

trained to recognize note A4, another network recognizes note G4... Altogether 76 networks are used 

to recognize notes from A1 to C8. This represents the entire range of piano notes, except for the 

lowest octave from A0 to Ab1. We decided to ignore the lowest octave, because of poor recognition 

results. These notes are quite rare in piano pieces, so their exclusion does not have a large impact on 

the overall performance of the system. Because each neural network only recognizes one note (target 

note) in its input, it only has one output neuron; a high output value indicates the presence of the 

target note in the input signal, a low value indicates that the note is not present. After extensive testing 

of several neural network models, we decided to use time-delay neural networks (TDNNs) (Waibel et 

al, 1989) in our system, as they provided the best performance. Networks were trained on a database 

of approx. 120 synthesized piano pieces of various styles, combined with randomly generated chords. 

 

4.1.2 Impact of Partial Tracking on Accuracy of Note Recognition with TDNNs 

To assess the impact of the proposed partial tracking module on accuracy of note recognition with 

TDNNs, we compared the performance of TDNNs trained on patterns that consisted of outputs of the 

partial tracking module (as described previously) to the performance of TDNNs trained on patterns 

that consisted of outputs of a multiresolution time-frequency transform, similar to the constant-Q 

transform (Brown, 1992) with window sizes from 90 ms to 5 ms at frequencies from 60 Hz to 9 kHz. 

We tested the performance of both sets of TDNNs on transcriptions of several synthesized piano 

pieces. Table 1 lists average performance statistics of both sets of networks on seven synthesized 

piano pieces of different complexities and styles, containing over 20000 notes. Percentages of 



correctly found notes, spurious notes (notes that were found but were not in the original score) and 

octave errors are given for both sets of networks.   

 

Table 1. Average transcription accuracy of systems with and without partial tracking 

 correct spurious oct. err. 

No PT 92.8 27.9 39.5 

With PT 94.4 11.1 77.9 

 

The percentage of correctly found notes is similar in both systems; partial tracking improves accuracy 

by approximately 1.5%. Partial tracking significantly reduces the number of spurious notes, as it more 

than halves. Just as important is the change in the structure of errors. Almost 80% of all errors in the 

system with partial tracking are octave errors that occur when the system misses or finds a spurious 

note, because of a note an octave, octave and a half or two octaves apart. Octave errors are very hard 

to eliminate, but because the missed or spurious notes are consonant with other notes in the 

transcribed piece, they aren't very apparent if we listen to resynthesized transcriptions. Octave errors 

are therefore not as critical as some other types of errors (i.e. halftone errors), which make listening to 

resynthesized transcriptions unpleasant. We therefore consider the higher percentage of octave errors 

in the system with partial tracking to be a significant improvement. Overall, we can conclude that the 

partial tracking model significantly improves transcription accuracy with TDNNs. 

 

5 PERFORMANCE ANALYSIS 

To analyze the performance of our transcription system, we tested it on a number of synthesized 

recordings and on six real recordings that were transcribed by hand with the help of the original score. 

Originals and transcriptions of all presented pieces can be heard on http://lgm.fri.uni-lj.si/SONIC. 

Table 2 lists performance statistics of three synthesized and three real piano pieces: percentages of 

correctly found and spurious notes in transcriptions, as well as the distribution of errors into octave, 

repeated note and other errors are shown. Separate error distributions are given for missed and 



spurious notes. An error can fall into several categories, so the sum of error percentages may be 

greater than 100. The total number of notes, as well as maximal and average polyphony of each piece 

are also shown. 

 

Table 2. Performance Statistics of Transcriptions of 3 Synthesized and 3 Real Piano Recordings 

missed notes spurious notes  corr. 
notes 

spur. 
notes octave repeat. other octave repeat. other 

num. 
notes 

avg. 
poly 

max. 
poly 

1 98.1 7 31.4 23.6 56.4 84.4 22.3 7.9 6680 2.7 6 
2 92.3 10.6 53.2 39.2 29.4 95.3 29.9 0 1008 4.1 12 
3 86 9.5 80.8 25.6 9 96 8.2 5.1 1564 3.4 9 
4 88.5 15.5 35.1 18.2 52.2 80.5 17.6 13.9 1351 2.6 6 
5 68.3 13.6 30.3 2.1 75.3 79 6.4 20.7 457 4.4 11 
6 85.9 15.2 70.3 10.8 27 87.4 7.1 12.3 1564 3.4 9 

 

 

The transcribed synthesized recordings are: (1) J.S. Bach, Partita no. 4, BWV828, Fazioli piano; (2) 

A. Dvo�ak, Humoresque no. 7, op. 101, Steinway D piano; (3) S. Joplin, The Entertainer, Bösendorfer 

piano. Real recordings are: (4) J.S. Bach, English suite no. 5, BWV810, 1st movement, performer 

Murray Perahia, Sony Classical SK 60277; (5) F. Chopin, Nocturne no. 2, Op. 9/2, performer Artur 

Rubinstein, RCA 60822; (6) S. Joplin, The Entertainer, performer unknown, MCA 11836.  

The average number of correctly found notes in synthesized recordings is around 90%. The average 

number of spurious notes is 9%. Most of the missed notes are either octave errors or misjudged 

repeated notes. Notes are also missed in very fast passages, such as arpeggios or thrills (most missed 

notes in Partita), when they are masked by louder notes (many notes in Humoresque) or due to other 

factors such as missed onsets and high polyphony. A majority of spurious notes are octave errors, 

often combined with misjudged repeated notes. These are especially common in pedaled music 

(Humoresque) or in loud chords (The Entertainer). Other reasons for spurious notes include missed 

and spurious onsets and errors due to high polyphony. 

Some common errors can be seen in a transcription example taken from Humoresque and shown in 

Fig. 8A (table 2/2). Missed notes are marked with a - sign, spurious notes are marked with a + sign. 



All three spurious notes are octave errors. Out of the two missed notes, A5 was missed, because it is 

masked by the louder E3C4 chord, while note E3 is a missed repeated note. 

 

 

Fig. 8.  Transcription examples: A: Humoresque (2/2), B: BWV810 (2/4), C: The Entertainer (2/6). 

 

Results on real recordings are not as good as those on synthesized recordings. Poorer transcription 

accuracy is a consequence of several factors. Recordings contain reverberation and more noise, while 

the sound of real pianos includes beating and sympathetic resonance. Furthermore, performances of 

piano pieces are much more expressive, they contain increased dynamics, more arpeggios and 

pedaling. All of these factors make transcription more difficult. 

The analysis of SONIC's performance on the real recording of Bach's English Suite (table 2/4, Fig. 

8B) showed that besides octave and repeated note errors, most of the missed notes are either quiet low 

pitched notes (E3 in measure 2, Fig. 8B) or notes in arpeggios and thrills. Chopin's Nocturne (table 

2/5) proved to be the greatest challenge for our system. The recording is a good example of very 

expressive playing, where a distinctive melody is accompanied by quiet, sometimes barely audible left 

hand chords. The system misses over 30% of all notes, but even so the resynthesized transcription 

sounds quite similar to the original (listen to the example on the aforementioned URL address). We 

compared transcriptions of the real and synthesized version of The Entertainer (table 2/3 and 2/6, Fig. 

8C) and both turned out to be very similar. Transcription of the real recording contains more spurious 

notes, mostly occurring because of pedaling, which was not used in the synthesized version. The 

number of correctly found notes is almost the same in both pieces. Octave errors are the main cause of 

both types of errors (see Fig. 8C). 



When we set out to make a comparison of our results to results of other systems, we found that the 

task is not an easy one. The lack of a standard set of test examples makes comparison of different 

transcription systems a difficult task, at best. It is further complicated by the fact that systems put very 

different constraints on the type or style of music they transcribe. Some authors have published 

performance statistics of their systems on piano pieces, but as we were unable to obtain the same 

recordings, we chose to avoid direct comparison, as our belief is that results would not be very 

relevant. 

 

6 CONCLUSION 

In this paper, we presented a connectionist approach to partial tracking in musical signals. Our 

approach is based on a human auditory model and on adaptive oscillators for discovery and tracking 

of partials. By using a connectionist approach, we avoided some of the pitfalls of classical partial 

tracking approaches and showed that our model successfully tracks partials in cases of beating and 

frequency modulation. An additional advantage of the presented partial tracking model is that it can 

be easily extended to a model for tracking groups of harmonically related partials by joining 

oscillators into networks. Oscillator networks provide a clearer time-frequency representation of a 

signal that is especially suitable for transcription purposes and we showed that partial tracking with 

networks of adaptive oscillators significantly improves the accuracy of transcription with time-delay 

neural networks. We presented an overview of our transcription system called SONIC and presented 

performance statistics on transcriptions of several synthesized and real piano recordings. Overall, 

results are very promising and we believe that connectionist approaches to transcription should be 

further studied.  

We are currently extending our partial tracking model to include an algorithm for dynamic self-

organizing grouping of oscillators into networks (as opposed to the current static structure of 

networks), based on competition between various oscillator groups. This will hopefully reduce the 

number of octave-related partial groups and lead to a smaller number of errors in the transcription 



process. Since results of the system on transcriptions of non-piano music (some examples are given on 

http://lgm.fri.uni-lj.si/SONIC) are also quite promising, even though the system was not intended to 

be used on non-piano music, we plan to extend the system to partial transcription of any kind of 

melodic music, where our goal is to extract only the melody and the basic harmonic structure of a 

piece. 
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