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Abstract— In this paper, we present a connectionist approach 

to automatic transcription of polyphonic piano music. We first 
compare the performance of several neural network models on 
the task of recognizing tones from time-frequency representation 
of a musical signal. We then propose a new partial tracking 
technique, based on a combination of an auditory model and 
adaptive oscillator networks. We show how synchronization of 
adaptive oscillators can be exploited to track partials in a musical 
signal. We also present an extension of our technique for tracking 
individual partials to a method for tracking groups of partials by 
joining adaptive oscillators into networks. We show that oscillator 
networks improve the accuracy of transcription with neural 
networks. We also provide a short overview our entire 
transcription system and present its performance on 
transcriptions of several synthesized and real piano recordings. 
Results show that our approach represents a viable alternative to 
existing transcription systems. 
 

Index Terms—adaptive oscillators, music transcription, neural 
networks 
 

I. INTRODUCTION 

USIC transcription could be defined as an act of 
listening to a piece of music and writing down music 

notation for the piece. If we look at the traditional way of 
making music, we can imagine a performer reading a score, 
playing an instrument and thus producing music. Transcription 
of polyphonic music (polyphonic pitch recognition) is the 
reverse process; an acoustical waveform is converted into a 
parametric representation, where notes, their pitches, starting 
times and durations are extracted from the signal. 
Transcription is a difficult cognitive task and is not inherent in 
human perception of music, although it can be learned. It is 
also a very difficult problem for current computer systems. 
Separating notes from a mixture of other sounds, which may 
include notes played by the same or different instruments or 
simply background noise, requires robust algorithms with 
performance that should degrade gracefully when noise 
increases.  

Applications of a music transcription system are versatile. 
Transcription produces a compact and standardized parametric 
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representation of music. Such representation is needed for 
content-based retrieval of music in most current musical 
databases. It is useful in music analysis systems for tasks such 
as melody extraction, music segmentation and rhythm tracking. 
Transcription aids musicologists in analyzing music that has 
never been written down, such as improvised or ethnical 
music. The conversion of an acoustical waveform into a 
parametric description is also useful in the process of making 
music, as well as in newer coding standards, such as MPEG-4, 
which may include such descriptions. 

First attempts of transcribing polyphonic music have been 
made by Moorer [1]. His system was limited to two voices of 
different timbres and frequency ranges and had limits on 
allowable intervals. In recent years, several systems have been 
developed. Some of them are targeted to transcription of music 
played on specific instruments [2-4], while others are general 
transcription systems [5-6]. All of them share several common 
characteristics. In the beginning, they calculate a time-
frequency representation of the musical signal. Authors use 
various representations ranging from Fourier analysis to 
bilinear distributions. In the next step, the time-frequency 
representation is refined by locating partials in the signal. To 
track partials, most systems use ad hoc algorithms such as peak 
picking and peak connecting. Partial tracks are then grouped 
into notes with different algorithms relying on cues such as 
common onset time and harmonicity. Some authors use 
templates of instrument tones in this process [3-6], as well as 
higher-level knowledge of music, such as probabilities of 
chord transitions [6].  

Recognizing notes in a signal is a typical pattern recognition 
task and we were surprised to that few current systems use 
machine learning algorithms in the transcription process. 
Therefore, our motivation was to develop a transcription 
system based on connectionist algorithms, such as neural 
networks, which have proved to be useful in a variety of 
pattern recognition tasks. We tried to avoid using explicit 
symbolic algorithms, and employed connectionist approaches 
in different parts of our system instead. 

Music transcription is a difficult task, and we therefore put 
one major constraint on our transcription system: it only 
transcribes piano music, so piano should be the only 
instrument in the analyzed musical signal. We didn't make any 
other assumptions about the signal, such as maximal 
polyphony, minimal note length, style of transcribed music or 
the type of piano used. The system takes an acoustical 

A Connectionist Approach to Automatic 
Transcription of Polyphonic Piano Music 

Matija Marolt, Member, IEEE 

M 



 2 

waveform of a piano recording (44.1 kHz sampling rate, 16 bit 
resolution) as its input. Stereo recordings are converted to 
mono. The output of the system is a MIDI file containing the 
transcription. Notes, their starting times, durations and 
loudness' are extracted from the signal. 

The organization of this paper is as follows. In Section II we 
propose a new model for tracking partials in a polyphonic 
audio signal, based on networks of adaptive oscillators. 
Section III presents a comparison of several neural network 
models for recognizing piano notes in outputs of the partial 
tracking model. Section IV presents a quick overview of our 
complete transcription system and in section V we present 
performance statistics of the system on transcriptions of 
several synthesized and real recordings of piano music. We 
also provide a comparison of our results to results of some 
other authors. Section VI concludes this paper. 

 

II. PARTIAL TRACKING WITH NETWORKS OF ADAPTIVE 
OSCILLATORS 

Most current transcription systems (including ours) are 
composed of two main parts: a partial tracking module, which 
calculates a clear and compact time-frequency representation 
of the input audio signal, and a note recognition module, which 
groups the found partials into notes. In contrast to most other 
current transcription approaches, we use connectionist 
methods for solving both problems. In this section, we propose 
a new model for tracking groups of partials in an audio signal 
with networks of adaptive oscillators. We describe how neural 
networks can be used for note recognition in section III, where 
we also provide a comparison of several neural network 
models for this task. 

Tones of melodic music instruments can be roughly 
described as a sum of frequency components (sinusoids) with 
time-varying amplitudes and almost constant frequencies. 
These frequency components are called partials and can be 
recognized as prominent horizontal structures in the time-
frequency representation of a musical signal. By finding 
partials, one can obtain a clearer and more compact 
representation of the signal, and partial tracking is therefore 
used in all current transcription systems. Although partial 
tracking algorithms play an important role in transcription 
systems, because they provide data to the note recognition 
module, little attention has been paid to the development of 
these algorithms. Most systems use a procedure similar to that 
of a tracking phase vocoder [13]. After the calculation of a 
time-frequency representation, peaks are computed in each 
frequency image. Only peaks with amplitude that is larger than 
a chosen (possibly adaptive) threshold are kept as candidate 
partials. Detected peaks are then linked over time according to 
intuitive criteria such as proximity in frequency and amplitude, 
and partial tracks are formed in the process. Such approach is 
quite susceptible to errors in the peak peaking procedure, 
where missed or spurious peaks can lead to fragmented or 
spurious partial tracks. Some systems therefore use additional 

heuristics for merging fragmented partial tracks. The second 
main shortcoming of the “peak picking-peak connecting” 
approach is detection of frequency modulated partials. Here, 
the peak connecting algorithm can fail if it is not designed to 
tolerate frequency modulation. An innovative approach to 
partial tracking has been proposed by Sterian [3], who still 
uses a peak picking procedure in the first phase of his system, 
but later uses Kalman filters, trained on examples of 
instrument tones, to link peaks into partial tracks. His system 
still suffers due to errors in the peak picking stage, but its main 
drawback is that partials have to be at least 150 ms long to be 
discovered. For our system, this is a very serious limitation, 
because tones in piano music are frequently shorter than 100 
ms. 

The shortcomings of most current partial tracking 
approaches have led us to the development of a new partial 
tracking model. In this section, we propose a partial tracking 
model based on a connectionist paradigm. It is composed of 
two parts: an auditory model, which emulates the functionality 
of human ear, and adaptive oscillators that extract partials 
from outputs of the auditory model. We also present an 
extension of the model for tracking individual partials to a 
model for tracking groups of harmonically related partials by 
joining adaptive oscillators into networks. 

A. Auditory Model 
The first stage of our partial tracking algorithm transforms 

the acoustical waveform into time-frequency space with an 
auditory model, which emulates the functionality of human 
ear. The auditory model consists of two parts. A filterbank is 
first used to split the signal into several frequency channels, 
modeling the movement of basilar membrane in the inner ear. 
The filterbank consists of an array of bandpass IIR filters, 
called gammatone filters. The implementation we use is 
described in [14-16]. We are using 200 filters with center 
frequencies logarithmically spaced between 70 and 6000 Hz. 

 

 
Fig. 1.  Analysis of three partials of piano tone F3 with the auditory model. 

 
Subsequently, the output of each gammatone filter is 

processed by the Meddis’ model of hair cell transduction [17]. 
The hair cell model converts each gammatone filter output into 
a probabilistic representation of firing activity in the auditory 
nerve. Its operations are based on a biological model of the 
hair cell and it simulates several of the cell's characteristics, 
most notably half-wave rectification, saturation and adaptation. 
Saturation and adaptation are very important to our model, as 
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they reduce the dynamic range of the signal, and in turn enable 
our partial tracking system to track partials with low 
amplitude. These characteristics can be observed in Fig. 1, 
displaying outputs of three gammatone filters and the hair cell 
model on the 1., 2., and 4. partial of piano tone F3 (pitch 174 
Hz). 

B. Partial Tracking with Adaptive Oscillators 
The auditory model outputs a set of frequency channels 

containing quasi-periodic firing activities of inner hair cells 
(see Fig. 1). Temporal models of pitch perception are based on 
the assumption that periodicity detection in these channels 
forms the basis of human pitch perception. Periodicity is 
usually calculated with autocorrelation. This produces a three-
dimensional time-frequency representation of the signal 
(autocorrelogram), with time, channel center frequency and 
autocorrelation lag represented on orthogonal axes. A 
summary autocorrelogram (summed across frequency 
channels) can be computed to give a total estimate of 
periodicity of the signal at a given time. Meddis and Hewitt 
[18] have demonstrated that the summary autocorrelogram 
explains the perception of pitch in a wide variety of stimuli.  

We decided to use a different approach for calculating 
periodicity in frequency channels. It is based on adaptive 
oscillators that try to synchronize to signals in output 
frequency channels of the auditory model. A synchronized 
oscillator indicates that the signal in a channel is periodic, 
which in turn indicates that a partial with frequency similar to 
that of the oscillator is present in the analyzed signal.  

An oscillator is a system with periodic behavior. It oscillates 
in time according to its two internal parameters: phase and 
frequency. An adaptive oscillator adapts its phase and 
frequency in response to its input (driving) signal. When a 
periodic signal is presented to an adaptive oscillator, it 
synchronizes to the signal by adjusting its phase and frequency 
to match that of the driving signal. By observing the frequency 
of a synchronized oscillator, we can make an accurate estimate 
of the frequency its driving signal.  

Various models of adaptive oscillators have been proposed, 
some have also found use in computer music researches for 
modeling rhythm perception [19-20] and for simulation of 
various psychoacoustic phenomena [21]. After reviewing 
several models, we decided to use a modified version of the 
Large-Kolen adaptive oscillator [19] in our system.  

The Large-Kolen oscillator oscillates in time according to 
its period (frequency) and phase. The input of the oscillator 
consists of a series of discrete impulses, representing events. 
After each oscillation cycle, the oscillator adjusts its phase and 
period, trying to match its oscillations to events in the input 
signal. If input events occur in regular intervals (are periodic), 
the final effect of synchronization is alignment of oscillations 
with input events. Phase and period of the Large-Kolen 
oscillator are updated according to the modified gradient 
descent rule, minimizing an error function that describes the 
difference between input events and beginnings of oscillation 
cycles. The speed of synchronization can be controlled by two 

oscillator parameters. 
Our partial tracking model uses adaptive oscillators to 

detect periodicity in output channels of the auditory model. 
Each output channel is routed to the input of one adaptive 
oscillator. The initial frequency of the oscillator is equal to the 
center frequency of its input channel. When an oscillator 
synchronizes to its input, this indicates that the input signal is 
periodic and consequently that a partial with frequency similar 
to that of the oscillator is present in the input signal. A 
synchronized oscillator therefore represents (tracks) a partial 
in the input signal.  

To improve partial tracking, we made a few minor changes 
to the Large-Kolen oscillator model. Most notably, we added a 
new measure of successfulness of synchronization that is used 
as the oscillator's output value. The measure is related to the 
amount of phase corrections made in the synchronization 
process; less phase corrections signify better synchronization. 
Oscillator's output therefore indicates how successfully the 
oscillator managed to synchronize to its input signal.  

 

 
Fig. 2.  Partial tracking with adaptive oscillators. 

 
The modified Large-Kolen oscillator can successfully track 

partials with diverse characteristics. Four examples are given 
in Fig. 2. Example A presents a simple case of tracking a 440 
Hz sinusoid. The oscillator (initial frequency 440 Hz) 
synchronizes successfully, as can be seen from its output, and 
after an initial 1 Hz rise, its frequency settles at 440 Hz. 
Example B shows how two oscillators with initial frequencies 
set to 440 and 445 Hz synchronize to a sum of 440 and 445 Hz 
sinusoids (5 Hz beating). Both oscillators synchronize 
successfully at 442.5 Hz, as can be seen from their outputs and 
frequencies. The behavior is consistent to human perception of 
the signal. Example C is shows the tracking of a frequency 
modulated 440 Hz sinusoid. The oscillator synchronizes 
successfully, its frequency follows that of the sinusoid. The 
last example (D) shows how two oscillators track two 
frequency components that rise/fall from 440 to 880 Hz. 
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Tracking is successful; each oscillator tracks the component 
closest to its input frequency channel. 

C. Tracking Groups of Partials with Networks of Adaptive 
Oscillators 
In the previous section we demonstrated how adaptive 

oscillators can be used to track partials in a musical signal. We 
extended the model of tracking individual partials to a model 
of tracking groups of harmonically related partials by joining 
adaptive oscillators into networks.  

Networks consist of up to ten interconnected oscillators. 
Their initial frequencies are set to integer multiples of the 
frequency of the first oscillator (see Fig. 3). As each oscillator 
in the network tracks a single partial close to its initial 
frequency, a network of oscillators tracks a group of up to ten 
harmonically related partials, which may belong to one tone 
with pitch equal to the frequency of the first oscillator. Output 
of the network is related to the number of partials found by its 
oscillators and therefore represents the strength of a group of 
partials that may belong to tone with pitch f (Fig. 3). 

 

 
Fig. 3.  A network of adaptive oscillators. 
 

Our system uses 88 oscillator networks to track partial 
groups corresponding to all 88 piano tones (A0-C8). The 
initial frequency of the first oscillator in each network is set to 
the pitch of one of 88 piano tones. Initial frequencies of other 
oscillators are integer multiples of the first oscillator's 
frequency (see Fig. 3). Networks consist of up to ten 
oscillators. This number decreases as the frequency of the first 
oscillator in the network increases, because the highest tracked 
partial lies at 6000 Hz; i.e. network corresponding to tone A6 
only has three oscillators with initial frequencies set to 1760 
Hz, 3520 Hz and 5280 Hz. 

Within a network, each oscillator is connected to all other 
oscillators with excitatory connections. These connections are 
used to adjust the frequencies and outputs of non-synchronized 
oscillators in the network with the goal of speeding up their 
synchronization. Only a synchronized oscillator can change 
frequencies and outputs of other oscillators in the network. 
Adjustments are made according to the following rules: 

 
2 2 2exp( 1000( /( ) 1) ) exp( 2.3 / )

( ) /
p d s c d s

d d p c sd s d d d d p c sd

r dp sp r c c

p p r r w sp dp d c c c r r w

= − − = −

= + − = +
 (1) 

d is the number of the destination (non-synchronized) 
oscillator in the network (1 to 10), while s represents the 
number of the source (synchronized) oscillator. The period of 
the destination oscillator pd and its output value cd change 
according to two factors: rp and rc (Fig. 4). These are two 
gaussians, representing the ratio of periods of the two 
oscillators (pd - period of the destination oscillator, ps - period 
of the source oscillator) and the ratio of outputs of the two 
oscillators (cd - output of the destination oscillator, cs output of 
the source oscillator). Factor rp is a gaussian with maximum 
value, when periods of both oscillators are in a perfect 
harmonic relationship (dpd/sps = 1). The value falls as periods 
drift away from this perfect ratio and approaches zero, when 
the ratio is larger than a semitone. rc has the largest value, 
when a synchronized oscillator influences the behavior of a 
non-synchronized oscillator (cs is large, cd is small) and falls as 
cd increases. Connection weights wsd are calculated according 
to amplitudes of partials in piano tones; the first few partials 
are considered to be more important and consequently the 
influence of lower-numbered oscillators in the network is 
stronger than the influence of higher-numbered oscillators 
(w1n>wn1). 

 

 
Fig. 4.  Plot of factors used for updating periods and output values of 
oscillators in a network. 

 
Adjustments push the period (frequency) of a non-

synchronized oscillator closer to frequency of the partial it 
should track and also increase its output value. This results in 
faster synchronization of all oscillators in the network and 
consequently in faster discovery of a group of partials. The 
output of a network is calculated as a weighted sum of outputs 
of individual oscillators in the network and represents the 
strength of a group of partials tracked by oscillators in the 
network. Outputs of individual oscillators are weighted 
according to their importance and deviation of their frequency 
(fi) from ideal frequency if0; an oscillator with large deviation 
has little influence on output of the network, as it probably 
tracks a partial that does not belong to the network's group of 
partials. Larger deviations are tolerated for higher-numbered 
oscillators to account for frequency stretching. Because the 
network's output only depends on outputs of its oscillators, it is 
virtually independent of the amplitude of the tracked partials.  

Connecting oscillators into networks has several advantages 
for our transcription system. Output of a network represents 
the strength of a group of harmonically related partials tracked 
by oscillators in the network, which may belong to one tone. 
Such output provides a better indication of presence of the 



 5 

tone in the input signal than do outputs of individual 
oscillators. Noise doesn't usually appear in the form of 
harmonically related frequency components, so networks of 
oscillators are more resistant to noise and provide a clearer 
time-frequency representation of the signal. Within the 
network, each oscillator is connected to all other oscillators 
with excitatory connections. Connections are used by 
synchronized oscillators to speed up synchronization of non-
synchronized oscillators, leading to a faster network response 
and faster discovery of a group of partials. 

Fig. 5 displays slices taken from three time-frequency 
representations of piano tone A3 (pitch 220 Hz –A-D) and 
piano chord C3E3B4 (E-H), calculated 100 ms after the onset: 
representation with uncoupled oscillators, representation with 
networks of adaptive oscillators and short-time Fourier 
transform. The representation with uncoupled oscillators was 
calculated with 88 oscillators tuned to fundamental frequencies 
of piano tones A0-C8. For tone A3, oscillator outputs 
(independent of partial amplitudes) are presented in Fig. 5A. 
Fig. 5B shows outputs of 88 oscillator networks, the 
combination of these outputs with amplitudes of partials is 
shown in Fig. 5C. Fig. 5D displays 440 frequency bins of the 
Fourier transform calculated with a 100 ms Hamming window. 

Individual oscillators have no difficulty in finding the first 
eight partials of tone A3 (A). Not all of the higher partials are 
found, because they are spaced too close together (we use only 
one oscillator per semitone). Noisy partials found below 220 
Hz are the consequence of noise caused by the hammer hitting 
the strings. Oscillator networks (B) produce a clearer 
representation of the signal; most notably the noisy partials 
below 220 Hz are almost completely eliminated. Networks 
coinciding with tones A3 and A4 produce the highest outputs, 
because all partials in the networks are found. The output of 
the network at 3154 Hz, representing the 14th partial, is also 
very high, because it only has one oscillator that synchronizes 
with the partial. The combination of outputs of networks with 

partial amplitudes (C) produces the clearest representation, 
with the first three A3 partials standing out.  

For piano chord C3E3B4 (Figs. 5E-5H), oscillator networks 
also produce the clearest representation. When amplitudes are 
combined with networks' outputs (Fig. 5G), only four partials 
stand out: first partials of all three tones (C3, E3, B4) and the 
second partial of tone E3 (C2). 

Both examples show that oscillator networks produce a 
compact and clear representation of partial groups in a musical 
signal. The main problem of this representation lies in 
occasional slow synchronization of oscillators in networks, 
which can lead to delayed discovery of partial groups. This is 
especially true at lower frequencies, where delays of 40-50 ms 
are quite common, because synchronization only occurs once 
per cycle; an oscillator at 100 Hz synchronizes with the signal 
every 10 ms, so several 10s of milliseconds are needed for 
synchronization. Closely spaced partials may also slow down 
synchronization, although it is quite rare for a group of partials 
not to be found. 

 

III. NEURAL NETWORKS FOR NOTE RECOGNITION IN 
POLYPHONIC PIANO MUSIC 

A note recognition module is the central part of every 
transcription system. Its input usually consists of a set of 
partials found by the partial tracking module and its task is to 
associate the found partials with notes. Statistical methods are 
frequently used to group partials into notes [3,5,6]; in our 
transcription system the task is performed by neural networks.  

We use a set of 76 neural networks to perform note 
recognition. Inputs of each network are taken from outputs of 
the partial tracking module presented in the previous section. 
They contain one or more time frames (sampled at every 10 
ms) of output values of oscillator networks, amplitude 
envelopes of signals in frequency channels of the auditory 

 
Fig. 5.  Representations of piano tone A3 and chord C3E3B4. 
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model (calculated by half-wave rectification and smoothing) 
and a combination of amplitude envelopes and oscillator 
networks' outputs.  

Each network is trained to recognize one piano note in its 
input; i.e. one network is trained to recognize note A4, another 
network recognizes note G4... Altogether 76 networks are used 
to recognize notes from A1 to C8. This represents the entire 
range of piano notes, except for the lowest octave from A0 to 
Ab1. We decided to ignore the lowest octave, because of poor 
recognition results. These notes are quite rare in piano pieces, 
so their exclusion doesn't have a large impact on overall 
performance of the system. Because each neural network 
recognizes only one note (we call it the target note) in its input, 
it only has one output neuron; a high output value indicates the 
presence of the target note in the input signal, a low value 
indicates that the note is not present.  

A. Comparison of Neural Network Models for Note 
Recognition 
As we found no previous references to works that use neural 

networks for transcription of polyphonic music, we made a 
comparison of several neural network models for note 
recognition. We tested multilayer perceptrons (MLPs) [8], 
radial basis function (RBF) networks [11], time-delay neural 
networks (TDNN) [10], Elman's partially recurrent networks 
[9] and fuzzy-ARTMAP networks [12]. Supervised learning 
was used to train all of the tested network models. Because no 
standard database of music pieces that could be used to train or 
test transcription systems currently exists, we first constructed 
a database for training and testing our neural networks. 
Supervised learning requires that pairs of input-output patterns 
be presented to the network during training. We therefore 
constructed the database from a set of synthesized piano pieces 
and piano chords, which enabled us to collect pairs of input-
output patterns for training. The database includes patterns 
taken from a set of 120 MIDI piano pieces, rendered with 16 
different piano samples obtained from commercially available 
piano sample CD-ROMs (using a sampler with digital I/O). 
The set contains pieces of various styles, including classical 
from several periods, ragtime, jazz, blues and pop. To 
diversify the distribution of notes in the training set and to 
provide more training patterns for networks that recognize low 
and high notes (these were not very frequent in the chosen 
pieces), we complemented the song set with a set of 
synthesized chords with polyphony from one to six. Notes in 
each chord were chosen randomly. Altogether, the database 
consists of around 300,000 pairs of input-output patterns. 

The database was used to train a set of neural networks for 
each of the tested neural network models. Each network in a 
set recognizes one piano note (its target note) in its input. The 
training set for each network included approx. 30000 patterns 
with 1/3 of them containing the target note. Networks were 
tested on a different database, constructed from 40 new MIDI 
piano pieces and piano chords (not used in the training 
database), rendered with over 20 piano samples. The database 
contains approx. 60000 input-output patterns; each network 

was tested on 6000 patterns. Average performance statistics on 
the test database of the entire set of networks for each neural 
network model are given in Table I. 

 
TABLE I 

PERFORMANCE STATISTICS OF NEURAL NETWORK MODELS FOR NOTE 
RECOGNITION 

neural network model correct spurious 

time-delay NNs 96.8% 13.1% 
Elman's NNs 95.2% 13.5% 
multilayer perceptrons 96.4% 16.0% 
RBF NNs 88.2% 14.6% 
fuzzy-ARTMAP 84.1% 18.9% 

 
The table lists average percentages of correctly found and 

spurious notes (notes found, but not present in the input 
pattern) for each network model. Time-delay neural networks 
showed the best performance on the test set. Networks had a 
single hidden layer with 18 neurons and two time delays. 
Inputs of the network consisted of three consecutive time 
frames (time step 10 ms) of outputs of the partial tracking 
model. We used a modified backpropagation algorithm [9] for 
training. The performance of TDNNs was superior in 
comparison to other network models in the number of 
correctly found notes, as well as in the number of spurious 
notes found (most of them were octave errors). The largest 
increase in performance was observed in networks recognizing 
notes in the C4-A5 interval (261-880 Hz), where time delays 
contributed to more accurate resolution of octave errors that 
frequently occur in this interval, mostly because of a high 
number of partials produced by the lower-pitched notes (A2-
C4). 

B. Impact of Partial Tracking on the Accuracy of Note 
Recognition with Time-Delay Neural Networks 
To assess the impact that the proposed partial tracking 

module has on the accuracy of note recognition (transcription) 
with TDNNs, we compared the performance of TDNNs 
trained on patterns that consisted of outputs of the partial 
tracking module (as described previously) to the performance 
of TDNNs trained on patterns that consisted of outputs of a 
multiresolution time-frequency transform, similar to constant-
Q transform [7] with window sizes from 90 ms to 5 ms at 
frequencies from 60 Hz to 9 kHz.  

 
TABLE II 

AVERAGE PERFORMANCE STATISTICS OF SYSTEMS WITH AND WITHOUT 
PARTIAL TRACKING 

 correct spurious oct. err. 
No PT 92.8 27.9 39.5 
With PT 94.4 11.1 77.9 

 
We tested the performance of both sets of TDNNs on 

transcriptions of several synthesized piano pieces. Table II 
lists average performance statistics of both sets of networks on 
seven synthesized piano pieces of different complexities and 
styles, containing over 20000 notes. Percentages of correctly 
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found notes, spurious notes and octave errors are given for 
both sets of networks. The percentage of correctly found notes 
is similar in both systems; partial tracking improves accuracy 
by approximately 1.5%. Partial tracking significantly reduces 
the number of spurious notes, as it more than halves. Just as 
important is the change in the structure of errors. Almost 80% 
of all errors in the system with partial tracking are octave 
errors that occur when the system misses or finds a spurious 
note, because of a note an octave, octave and a half or two 
octaves apart. Octave errors are very hard to remove, but 
because the missed or spurious notes are consonant with other 
notes in the transcribed piece, they aren't very apparent if we 
listen to the resynthesized transcription. Octave errors are 
therefore not as critical as some other types of errors (i.e. 
halftone errors), which make listening to the resynthesized 
transcription unpleasant. We therefore consider the higher 
percentage of octave errors in the system with partial tracking 
to be a significant improvement. Overall, we can conclude that 
the partial tracking model proposed in section II significantly 
improves transcription accuracy with TDNNs. 

 

IV. SYSTEM FOR TRANSCRIPTION OF PIANO MUSIC 

The presented partial tracking model and time-delay neural 
networks were incorporated into a system for transcription of 
piano music, called SONIC. The system also includes an onset 
detector, a module for detecting repeated notes and simple 
algorithms for length and loudness estimation (see Fig. 6), all 
of these parts are briefly presented in this section. 

 

 
 
Fig. 6.  Structure of SONIC. 
 

A. Onset Detection 
We added an onset detector to SONIC to improve the 

accuracy of onset times of notes found by the system. We 
based our onset detection algorithm on a model proposed by 
Smith [22] for segmentation of speech signals. The algorithm 
first splits the signal into several frequency bands with a bank 
of gammatone filters. We are using the same set of filters as in 
our partial tracking system. The signal is split into 22 
overlapping frequency bands, each covering half an octave. 

Channels are full-wave rectified and then processed with the 
following filter: 

 
0

( ) (exp( exp( )) ( )
t

s s s l

t x t x
O t s x dx

f t f t
− −= − − −�  (2) 

s(x) represents the signal in each frequency channel, fs the 
sample rate, ts and tl are two time constants. The filter 
calculates the difference between two amplitude envelopes; 
one calculated with a smoothing filter with short time constant 
ts (6-20 ms), and the other with a smoothing filter with a longer 
time constant (20-40 ms). The output of the filter has positive 
values when the signal rises and negative otherwise. Outputs of 
all 22 filters are fed into a fully connected network of 
integrate-and-fire neurons. Each neuron in the network is 
connected to the output of one filter. It accumulates its input 
over time and if its internal activation exceeds a certain 
threshold, the neuron fires (emits an output impulse). Firing of 
a neuron provides indication of amplitude growth in its input 
frequency channel. After firing, activity of the neuron is reset 
and the neuron is not allowed to respond to its input for a 
period of time (50 ms in our model). Neurons are connected to 
all other neurons in the network with excitatory connections. 
The firing of a neuron raises activations of all other neurons in 
the network and accelerates their firing, if imminent. Such 
mechanism clusters neuron firings, which may otherwise be 
dispersed in time and improves the discovery of weak onsets. 

A network of integrate-and-fire neurons outputs a series of 
impulses indicating the presence of onsets in the signal. Not all 
impulses represent onsets, because various noises and beating 
can also cause amplitude oscillations in the signal. We use a 
MLP neural network to decide which impulses represent 
onsets. We trained the MLP on a set of piano pieces, the same 
as we used for training note recognition networks.  

We tested the algorithm on a mixture of synthesized and 
real piano recordings. It correctly found over 98.5% of all 
onsets and produced around 2% of spurious onsets. Most of 
the missed notes were notes played in very fast passages, or 
notes in ornamentations such as thrills; spurious notes mostly 
occurred because of beating or other noises in the signal. 

B. Repeated Note 
Detecting repeated notes in a musical signal can be a 

difficult problem, even if the played instrument has 
pronounced onsets (such as piano). An illustration of the 
problem is given in Fig. 7. The upper part of Fig. 7 shows 
outputs of the onset detection network and five note 
recognition networks on an unknown piece of music. Four 
onsets and five notes were found; note C4 lasts through the 
entire duration of the piece, while other notes appear for 
shorter periods of time. Four transcription examples show four 
possible interpretations of these outputs. Interpretations differ 
in the way note C4 is handled; we could transcribe it as one 
whole note, four quarter notes... Altogether eight combinations 
are possible, and all of them are consistent with networks' 
outputs.  

It becomes apparent that the system needs an algorithm for 
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detecting repeated notes. At first, we used the most obvious 
solution, which is to track the amplitude of the first harmonic 
of a possible repeated note and produce a repetition if the 
amplitude rises enough. Because of shared partials between 
notes, this approach fails when a note that shares partials with 
the repeated note occurs in the signal. We therefore decided to 
entrust the decision on repeated notes to a MLP neural 
network, trained on a set of piano pieces. Inputs of the MLP 
consist of amplitude changes, as well as several other 
parameters. This solution improves transcription accuracy for 
approximately 2.5% over the "first harmonic" approach. 

C. Tuning, Note Length and Loudness Estimation 
Before transcription actually starts, a simple tuning 

procedure is used to calculate tuning of the entire piano and 
initialize frequencies of adaptive oscillators accordingly. The 
procedure uses adaptive oscillators to find partials in the piano 
piece and then compares partial frequencies to frequencies of 
an ideally tuned piano. The tuning of the piano is calculated as 
a weighted average of deviations of partial frequencies from 
ideal tuning. Stretching of piano tuning is also taken into 
consideration in the process. The tuning procedure guarantees 
unchangeable transcription accuracy, when the piano is tuned 
differently then the standard A4=440 Hz. The procedure only 
calculates the tuning of the entire piano, not of individual 
piano tones. 
SONIC also calculates the length and loudness of each note. 
Both are needed to produce the final MIDI file containing the 
transcription. The length of a note is calculated by observing 
activations of the note recognition network; note is terminated 
when the network's activation falls below the training 
threshold. Loudness is calculated from the amplitude envelope 
of the note’s first harmonic. 
 

V. PERFORMANCE ANALYSIS  

A. Synthesized and Real Recordings 
In this section, we present the performance of our system on 

transcriptions of three synthesized and three real recordings of 
piano music. Originals and transcriptions of all presented 
pieces (and more) can be heard on http://lgm.fri.uni-
lj.si/SONIC. Table III lists percentages of correctly found and 
spurious notes in transcriptions, as well as the distribution of 

errors into octave, repeated note and other errors. Separate 
error distributions are given for missed and spurious notes. An 
error can fall into several categories, so the sum of error 
percentages may be greater than 100. The total number of 
notes, as well as maximal and average polyphony of each piece 
are also shown. 

The transcribed synthesized recordings are: (1) J.S. Bach, 
Partita no. 4, BWV828, Fazioli piano; (2) A. Dvo�ak, 
Humoresque no. 7, op. 101, Steinway D piano; (3) S. Joplin, 
The Entertainer, Bösendorfer piano. Real recordings are: (4) 
J.S. Bach, English suite no. 5, BWV810, 1st movement, 
performer Murray Perahia, Sony Classical SK 60277; (5) F. 
Chopin, Nocturne no. 2, Op. 9/2, performer Artur Rubinstein, 
RCA 60822; (6) S. Joplin, The Entertainer, performer 
unknown, MCA 11836.  

The average number of correctly found notes in synthesized 
recordings is around 90%. The average number of spurious 
notes is 9%. Most of the missed notes are either octave errors 
or misjudged repeated notes. Notes are also missed in very fast 
passages, such as arpeggios or thrills (most missed notes in 
Partita), when they are masked by louder notes (many notes in 
Humoresque) or due to other factors such as missed onsets and 
high polyphony. A majority of spurious notes are octave 
errors, often combined with misjudged repeated notes. These 
are especially common in pedaled music (Humoresque) or in 
loud chords (The Entertainer). Other reasons for spurious 
notes include missed and spurious onsets and errors due to 
high polyphony. 

Some common errors can be seen in a transcription example 
taken from Humoresque and shown in Fig. 8A (table III/2). 
Missed notes are marked with a - sign, spurious notes are 
marked with a + sign. All three spurious notes are octave 
errors. Out of the two missed notes, A5 was missed, because it 
is masked by the louder E3C4 chord, while note E3 is a missed 
repeated note. 

Results on real recordings are not as good as those on 
synthesized recordings. Poorer transcription accuracy is a 
consequence of several factors. Recordings contain 
reverberation and more noise, while the sound of real pianos 
includes beating and sympathetic resonance. Furthermore, 
performances of piano pieces are much more expressive, they 
contain increased dynamics, more arpeggios and pedaling. All 
of these factors make transcription more difficult. 

 
Fig. 7.  Different interpretations of networks' outputs. 
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The analysis of SONIC's performance on the real recording 
of Bach's English Suite (table III/4, Fig. 8B) showed that 
besides octave and repeated note errors, most of the missed 
notes are either quiet low pitched notes (E3 in measure 2, Fig. 
8B) or notes in arpeggios and thrills. Chopin's Nocturne (table 
III/5) proved to be the greatest challenge for our system. The 
recording is a good example of very expressive playing, where 
a distinctive melody is accompanied by quiet, sometimes 
barely audible left hand chords. The system misses over 30% 
of all notes, but even so the resynthesized transcription sounds 
very similar to the original (listen to the example on the 
aforementioned URL address). We compared transcriptions of 
the real and synthesized version of The Entertainer (table III/3 
and III/6, Fig. 8C) and both turned out to be very similar. 
Transcription of the real recording contains more spurious 
notes, mostly occurring because of pedaling, which was not 
used in the synthesized version. The number of correctly found 
notes is almost the same in both pieces. Octave errors are the 
main cause of both types of errors. 

B. Comparison to Other Approaches 
The lack of a standard set of test examples makes 

comparison of different transcription systems a difficult task, 
at best. The task is further complicated by the fact that systems 
put very different constraints on the type or style of music they 
transcribe. In this section, we present the performance of our 
system on examples other authors used to evaluate their 
systems. Note however, that even though we used the same 
examples as others, comparisons are to be taken with some 
restraint, as the transcribed pieces were recorded or 
synthesized under different conditions.  

Klapuri [5] developed a system for transcription of 
polyphonic music. He tested his system on three short passages 
taken from two piano pieces: J.S. Bach, Inventio 8 and L.V. 
Beethoven, Fur Elise. Both pieces were recorded on a real 

piano in a controlled studio environment. Tones of the same 
piano were previously analyzed and their spectral templates 
were used in the transcription process. We compared Klapuri's 
results to the performance of our system on synthesized 
passages of the same pieces. Results were similar; our system 
correctly found approximately 2% more notes, but also 
produced approximately 4% more spurious notes. Most 
spurious notes were octave errors, which Klapuri managed to 
reduce by using spectral templates of piano tones in the 
transcription process. Unfortunately, no results of 
transcriptions of real piano recordings were published, which 
would make the comparison of more valid. His system has 
lately been improved [23], but as to our knowledge it has not 
yet been evaluated on transcriptions of piano pieces.  

Rossi [4] developed a system for transcription of polyphonic 
piano music. Like Klapuri, Rossi first analyzed the tones of a 
piano, and then used spectral templates of these tones for 
transcribing music played on the same piano. She tested her 
system on three 17th century chorales. SONIC's transcriptions 
of these pieces contain more spurious notes, all of them octave 
errors, and a similar number of correctly found notes. Octave 
errors were removed effectively in Rossi's system by using 
spectral templates of piano tones. No evaluations of 
transcriptions of real piano recordings were published to make 
the comparison more valid. 

Sterian [3] developed a system for transcription of music 
played on brass and woodwind instruments. He published 
performance statistics of transcriptions of parts of a 
synthesized and real recording of Bach's Contrapunctus I from 
The Art of Fugue. Sterian used Kashino's recognition factor R 
[6] to evaluate the performance of his system; 
R=100*(0.5*(correct-spurious)/all_notes+0.5). The accuracy 
of his system ranged from R=1 to R=0.8 on one to four-voice 
parts of the synthesized version of Contrapunctus I and from 
0.8 to 0.5 on the same parts of the real recording. SONIC's 

TABLE III 
PERFORMANCE STATISTICS OF TRANSCRIPTIONS OF 3 SYNTHESIZED AND 3 REAL PIANO RECORDINGS 

missed notes spurious notes  corr. 
notes 

spur. 
notes octave repeat. other octave repeat. other 

num. 
notes 

avg. poly max. 
poly 

1 98.1 7 31.4 23.6 56.4 84.4 22.3 7.9 6680 2.7 6 
2 92.3 10.6 53.2 39.2 29.4 95.3 29.9 0 1008 4.1 12 
3 86 9.5 80.8 25.6 9 96 8.2 5.1 1564 3.4 9 
4 88.5 15.5 35.1 18.2 52.2 80.5 17.6 13.9 1351 2.6 6 
5 68.3 13.6 30.3 2.1 75.3 79 6.4 20.7 457 4.4 11 
6 85.9 15.2 70.3 10.8 27 87.4 7.1 12.3 1564 3.4 9 

 

 
Fig. 8.  Transcription examples: A: Humoresque (III/2), B: BWV810 (III/4), C: The Entertainer (III/6). 
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accuracy is better; R ranges from 1 to 0.95 on the synthesized 
recording and from 0.9 to 0.8 on the real recording of 
Contrapunctus I (performer V. Feltsman, MusicMasters 
67173).  

Dixon published preliminary results of his system for 
transcription of piano music [2]. He made an extensive 
evaluation of his system on 13 piano sonatas composed by 
W.A. Mozart. Pieces were played by a real performer, but the 
recordings were synthesized with different piano samples. 
When the system was not specifically tuned for the piano 
sample used, it correctly found 90% of all notes and produced 
30% of spurious notes. We were unable to obtain all 13 
Mozart sonatas used by Dixon, but the average score of 
SONIC on seven synthesized Mozart sonatas was significantly 
better; 92% of notes were correctly found, together with 8% of 
spurious notes. 

 

VI. CONCLUSION 

In this paper, we presented a connectionist approach to 
transcription of polyphonic piano music. We first proposed a 
new model for tracking partials in polyphonic musical signals, 
based on an auditory model for time-frequency representation 
and adaptive oscillators for discovery and tracking of partials. 
By using a connectionist approach, we avoided some of the 
problems of classical partial tracking approaches, such as 
missed or spurious peaks, which lead to fragmented or 
spurious partial tracks, and also showed that our model 
successfully tracks partials in the case of beating and 
frequency modulation. An additional advantage of our partial 
tracking model is that it can be extended to a model for 
tracking groups of harmonically related partials by joining 
oscillators into networks. Oscillator networks provide a clearer 
time-frequency representation of a signal and are especially 
suitable for transcription purposes. We showed partial tracking 
with networks of adaptive oscillators significantly improves 
the accuracy of transcription with time-delay neural networks. 
We then presented a comparison of several neural network 
models for note recognition; the best performance was 
obtained by time-delay neural networks. We presented an 
overview of our transcription system called SONIC and 
presented performance statistics of transcriptions of several 
synthesized and real piano recordings. We also provided a 
rough comparison of the performance of our system to several 
others, and showed that it achieves similar or better results. 
Overall, results show that neural networks present a good 
alternative in building transcription systems and should be 
further studied. Further researches will include addition of 
feedback mechanisms to the currently strictly feedforward 
approach, with the intention of reducing some common types 
of errors. Additionally, an extension of the system to 
transcription of other instruments may be considered. 
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