
Fast segmentation, conversion and rendering of
volumetric data using GPU

Ciril Bohak, Anže Sodja, Matija Marolt
Faculty of Computer and Information Science,

University of Ljubljana,
Tržaška 25, 1000, Ljubljana,

Slovenia.
Email: {ciril.bohak, matija.marolt}@fri.uni-lj.si

Uroš Mitrović, Franjo Pernuš
Faculty of Electrical Engineering,

University of Ljubljana,
Tržaška 25, 1000, Ljubljana,

Slovenia.
Email: {uros.mitrovic, franjo.pernus}@fe.uni-lj.si

Abstract—In this paper we present a proof-of-concept im-
plementation of fast volumetric data segmentation, conversion
to polygonal mesh geometry and rendering. All parts of the
method are implemented on the graphical processing unit,
which allows high degree of parallelization. Implementations of
presented algorithms are done in the OpenCL framework and
are integrated in blood vessel visualisation software Neck Veins.
This paper presents where and to what degree parts of method
can be parallelized. In results we also show to what degree we
can speed-up the implementation by using parallel computing
power of the graphical processing units.

Keywords—volume data segmentation, GPU computation,
medical visualisation, 3D visualisation.

I. INTRODUCTION

With development of imaging techniques more data is
available for supporting physicians decisions with diagnosis
as well as for support during the medical procedures such
as surgeries. A very popular and useful method is also 3D
imaging which allows physicians to get a volumetric scope
to the inner structure of the human body. The volumetric CT
scanning [1], [2] was introduced in 1991 and is widely used
now as support in making diagnoses. In the following years
many improvements of the volumetric CT scanning techniques
were presented that allow marking the specific tissue, and
thus extracting it from the rest. This also allows use of min-
imally invasive endovascular image-guided interventions for
treating different cerebrovascular conditions, where detailed
knowledge of the structure of the target and surrounding tissue
is needed for achieving the expected results. While the 3D
imaging can not be used for real-time monitoring during the
surgical procedures the surgeons have to obtain and memorise
the structure of the tissue, in our case the blood vessels, as
precisely as possible.

Modern technology also allows us better visualisation. Even
though we have 3D data available we still had to use 2D
displays for presenting the data to the user. This still means
that users loses some part of spatial information. To get
better idea on how an object is placed in the space a 3D
visualization devices such as stereoscopic displays that give
better representation of 3D models with depth feeling.

There are many aspects that one has to take into account
when visualising the 3D data. Since the original data is volu-
metric we have to decide what method to use for rendering the
final image on screen. There are different rendering techniques
one can use, such as volumetric rendering [3], [4], or we can
first create the geometric model from the volume data and use
conventional real-time rendering techniques such as scanline
rendering [5] or ray tracing [6]. To obtain the geometry for
rendering with conventional techniques the data needs to be
converted from volumetric form into geometric - polygonal
form. This is more thoroughly discussed in following section.

Goal of our method is to show that fast conversion from
volumetric data to mesh geometry and rendering are possible
with use of computational power of modern graphics cards. We
have created an example realisation using simple techniques,
which could later be replaced with more complex ones for
obtaining better final result as well as performance.

In next section we present the related work and it’s connec-
tion with presented approach, next we present our method for
fast background extraction and volume to mesh conversion in
Section III. At the end we give the future work guidelines and
conclusions.

II. RELATED WORK

Creating fast segmentation, polygonization and visualisation
of the volumetric data is computationally hard problem. For
bigger volumes it can not be done on everyday hardware.
To speed-up the process one can use the high computa-
tional power of today’s graphical processing units (GPUs)
[7]. Modern GPUs are capable of performing general purpose
computation as presented in [8]. Use of GPUs where high
degree of parallelization is possible, can result in great increase
of speed. To use GPU’s capabilities one has to program in
specific way. There are several possible ways for developers
to use GPU’s computational power. While some frameworks
are dedicated for specific hardware (e.g. Nvidia Cuda), we use
Open Computing Language (OpenCL) [9], which is supported
by most common graphics card manufacturers. This is an
important feature in development of platform independent
software.



First step in our approach is segmenting the vascular tis-
sue from the background in the volumetric data. There are
many segmentation methods that give good results for such
problems. Since we are only creating proof of concept imple-
mentation we have selected a simple method for background
extraction - thresholding. One example of such method is
Otsu’s method presented in [10], where the threshold is auto-
matically selected by the discriminant criterion, to maximize
the separability of the final classes in gray levels. The method
allows high level of parallelism, thus it is appropriate for
implementation on GPU.

Next in line is conversion of the volumetric data into the
polygonal geometry which is used in rendering. We are again
using a simple method called the Marching cubes [11]. A good
thing about the Marching cubes algorithm is that it allows high
level of parallelism and is thus good for implementation on
GPU. There are many other methods that could be used, such
as methods described in [12]–[14]. We have used the simple
method which still gives good results on our data.

After the conversion we also have to find the connected
components of our model. Main reason for this is that we do
not want to show the components that are too small or are
too far from the main model and are not connected to it. This
step could be done even before conversion of models with
methods such as [15]. In our case we are excluding isolated
components after conversion process with own implementation
of discovering such components.

In next section we are presenting the implementation details
of our method, we show the obtained results and present
the application with integrated implementation of method for
computations on GPU.

III. METHOD

Our method for fast segmentation and rendering of the volu-
metric data was designed as proof of concept that such method
can be developed with the use of current graphics hardware
and implementation of parallel algorithms for individual parts
of the process. The method consists of several steps presented
in following subsections; segmentation of the data, conversion
from the volumetric data to the polygonal geometry and search
for the connected components.

A. Segmentation

The volumetric data, in our case data of blood vessels,
consists of two parts. The vessels and the background. Since
we only want to display the vessels we first have to segment
them from the background. In volumetric data the vessel tissue
has a greater value than the surroundings. For obtaining only
the vessel tissue we use a simple thresholding approach -
Otsu’s method [10] for selection of the optimal threshold in
the grayscale images. The method can be described with the
following steps:

1) calculation of model’s histogram;
2) calculate the frequency of each histogram value;
3) calculate the distribution function and average value of

both classes for each histogram value;

4) search for the histogram value that maximizes the dis-
persion between classes of background and foreground,
the obtained value is our threshold value;

5) binarization of the data according to the threshold into
values 0 and 1.

We leave out the last step (5) of presented method -
binarization, due to later use of Marching cubes algorithm
which also takes into account the values of individual voxels
in the volumetric data for better approximation of the produced
mesh.

In parallelisation we have to take into account that some
steps have to be done with splitting the data into separate parts,
calculating the step on part of the data and back propagate the
results to the previous stages repeating the calculation at the
higher level and calculating the result at top level. An example
of such problem is searching for the maximum in the data.
Same is true for searching the appropriate threshold, where
only parts can be well parallelized.

As part of the segmentation step we also apply Gauss
smoothing. Mostly we are used to use Gauss smoothing in one
or two dimensions. In our case we use three dimensional Gauss
function for smoothing the volumetric data before conversion
into the polygonal mesh geometry.

Due to good separability of the Gauss function, it can be
well parallelized and thus well implemented on GPU. We can
split the calculation of smoothing into next steps:

1) calculation of window for single dimension for selected
value;

2) averaging over data values in first dimension;
3) averaging over data values in second dimension;
4) averaging over data values in third dimension.
The calculation of the smoothing could be performed even

faster with use of FFT implementation of the Gauss filter
function.

B. Volume to geometry conversion

Conversion from the volumetric to the polygonal mesh
geometry was done using Marching cubes algorithm [11].
The algorithm takes into account values of individual and
neighbouring voxels.

The Marching cube algorithm determines for each voxel
how to approximate it with polygonal mesh. For each voxel
there are 256 different possibilities of geometry according
to the neighbouring values. This possibility can be presented
with 14 different examples discarding rotations as shown in
Figure 1.

For our purposes we have implemented an array of of 256
possible output geometries of algorithm. Next we calculate
which output geometry is used for individual voxel. For better
precision of geometry we use the values in individual vertices
in linear approximation of surface, thus obtaining smoother
polygonal output geometry.

The Marching cube algorithm is used for calculating the
polygonal geometry as well as the surface normals used for
accurate rendering. We calculate the normals for every vertex



Fig. 1. Figure shows all possible examples of polygonal approximation of
voxel values discarding rotations (image source: Wikipedia).

of geometry using the gradient approach with neighbouring
vertices, thus obtaining smoother interpolation.

The algorithm can be well parallelised and thus allows
good implementation on GPU. We can use the degree of
parallelisation for each individual voxel for best utilisation of
GPU.

C. Finding connected components

Finding the connected geometry presents an important role
in finding the model that represents the main vessel tissue and
parts of tissue that are not directly connected with the main
model. There are different approaches that can be used for
finding such components. First approach could be used on the
volumetric data, however we have decided to use the approach
after conversion to the polygonal geometry.

In our case we first merge the obtained geometry that
touches each other by finding vertices that are used in def-
inition of several triangles. Such triangles are representing
same connected geometry. In such way we can obtain the
components and their sizes in number of triangles. With this
we can draw only the components of desired size.

It is not the best solution since we do not check whether
components could present same vessel, but it is good way to
get rid of the noise in the data.

IV. IMPLEMENTATION

All steps of the described method were implemented two
times. First in Java programming language and later in
OpenCL. The Java implementation was intended for testing
whether implementation is done right. For fast usage we have
done implementation in OpenCL for fast computation with use
of GPU.

The basic GPU implementation did not run fast, but with
improvements and reimplementation of individual steps the
method of segmentation, conversion and rendering could be
performed in real-time on high-performance graphics cards
(i.e. Nvidia Quadro series). There were many issues with
creating hardware independent OpenCL code, due to many
differences between different products.

The method was integrated into the Neck Veins application.
The idea of the application is to create the visualization
platform for displaying 3D medical data - in our case the data

represents blood vessel in head of the patient, which would
be used for search of aneurysms. In first step the developed
application allowed the visualization of precomputed patients
data where 3D images were already segmented and only model
of patient’s head vessel was imported and displayed. Later on
many extensions of original application were developed where
different functionalities were implemented such as support for
3D stereoscopic display of 3D data and 3D mouse integration
for more natural interaction with the model of vessels.

The application is developed under open source licence and
is hosted in online repository GitHub under name Neck Veins1.
The application can be downloaded and tested, however the
data is not available due to patient confidentiality. We also
invite new developers to contribute their share in extending
and improving the applications. One can see the application
in Figure 2.

Fig. 2. Figure shows screenshot of application Neck veins.

V. EXPERIMENTS AND RESULTS

Part of our work was also to compare the speed of different
implementation of methods. As described above we have
implemented the method in Java as well as in OpenCL. Testing
system was Intel Core 2 Duo T6600 2.20GHz, 4GB RAM,
Nvidia GT240M 1GB, Windows 8. We have compared the
time needed for completing computation on the CPU and the
GPU. In Tables I - III we present the times needed for
computation as well as speedup with use of GPU for the
individual part of presented method.

TABLE I
TIME NEEDED FOR CALCULATING GAUSS SMOOTHING.

Volume size CPE (Java) GPU (OpenCL) Speedup
512 × 512 × 390 81.652s 2.997s 27.24×
256 × 256 × 195 5.462s 0.595s 9.18×
128 × 128 × 97 0.673s 0.268s 2.51×

One can see that the speedup factor is different for each
individual part of presented method. While speedup factor is
actually less than 1 in case of Otsu’s method due to high

1https://github.com/asodja/Neck Veins

https://github.com/asodja/Neck_Veins


TABLE II
TIME NEEDED FOR CALCULATING OTSU’S METHOD.

Volume size CPE (Java) GPU (OpenCL) Speedup
512 × 512 × 390 0.695s 1.422s 0.49×
256 × 256 × 195 0.111s 0.236s 0.47×
128 × 128 × 97 0.034s 0.127s 0.27×

TABLE III
TIME NEEDED FOR CALCULATING MARCHING CUBES.

Volume size CPE (Java) GPU (OpenCL) Speedup
512 × 512 × 390 22.186s 1.969s 11.27×
256 × 256 × 195 2.295s 0.439s 5.23×
128 × 128 × 97 0.454s 0.158s 2.87×

overhead with allocating memory on GPU, sending data to
GPU and getting data back from it, in most cases where
there is more need of computation we get as high speedup
as 27-times in case of Gauss smoothing, which could be
implemented even faster. In Table IV we show the times
needed for completing the whole method. In final state we get
as high as 30-times increase in the calculation speed which is
very promising.

TABLE IV
TIME NEEDED FOR CALCULATING COMPLETE METHOD.

Volume size CPE (Java) GPU (OpenCL) Speedup
512 × 512 × 390 104.476s 3.561s 29.34×
256 × 256 × 195 7.973s 0.612s 13.02×
128 × 128 × 97 0.907s 0.275s 3.30×

VI. CONCLUSIONS AND FUTURE WORK

There are many possibilities of improving the presented
method as well as speeding it up even more. Since this
is proof-of-concept method, we have selected the basic al-
gorithms as well as their implementations for testing the
method on GPU. Many parts of the method could be even
more optimised. The Gauss smoothing could be performed
with FFT which would increase the speed substantially. Other
possible optimisations could be done in the Marching cube
algorithm implementation where we should take into account
the properties of individual graphics card, since parallelisation
could be used even to higher degree if we would use all
available units on graphic card.

In the future we are planning on implementing more state-
of-the-art methods for the segmentation as well as the conver-
sion for achieving better final results. We are also planning
of implementing the volumetric rendering which would allow
us to skip the conversion part of the method and render the
volumetric data directly. We are also planning on optimising
current approach for real-time use on mid-range graphics
cards.

During the implementation of presented methods we had
several problems. One of biggest was that we had to be very
careful with memory consumption. The volumetric data takes
quite a lot of space which is not a problem when computing
on CPU since allocating up to 2 or more GB of memory is

not problematic, it is much different on GPU, where usually
we do not have more than 1 GB of memory available. The use
of high-performance GPUs would make implementation much
easier. The fact that almost every model of graphics card has
it’s own structure of working groups and cores, it is very hard
to write hardware independant OpenCL code, resulting in need
for debugging on several machines.

We are satisfied with obtained results which can be tested
in an open source software Neck Veins.

ACKNOWLEDGMENT

The product is result of several students as part of their work
on Bachelor thesis. The software will be further developed
with help of new students in the coming years. We would
also like to thank the Laboratory of Imaging Technologies
from Faculty of Electrical Engineering at University of Ljubl-
jana. Software was developed as part of collaboration with
University Medical Centre Ljubljana.

REFERENCES

[1] C. R. Crawford and K. F. King, “Computed tomography scanning with
simultaneous patient translation,” Medical Physics, no. 17, pp. 967 –
982, 1990.

[2] W. A. Kalender, W. Seissler, E. Klotz, and P. Vock, “Spiral volumetric
CT with single-breath-hold technique, continuous transport and contin-
uous scanner rotation,” Radiology, no. 176, pp. 181 – 183, 1990.

[3] R. A. Drebin, L. Carpenter, and P. Hanrahan, “Volume rendering,”
SIGGRAPH Comput. Graph., vol. 22, no. 4, pp. 65–74, Jun. 1988.

[4] M. Levoy, “Display of surfaces from volume data,” Computer Graphics
and Applications, IEEE, vol. 8, no. 3, pp. 29–37, 1988.

[5] W. J. Bouknight, “A procedure for generation of three-dimensional half-
toned computer graphics presentations,” Commun. ACM, vol. 13, no. 9,
pp. 527–536, Sep. 1970.

[6] A. Appel, “Some techniques for shading machine renderings of solids,”
in Proceedings of the April 30–May 2, 1968, Spring Joint Computer
Conference, ser. AFIPS ’68 (Spring). New York, NY, USA: ACM,
1968, pp. 37–45.

[7] A. Sodja, “Segmentation of medical 3D volumes on a GPU,” 2013.
[8] D. Luebke, M. Harris, N. Govindaraju, A. Lefohn, M. Houston,

J. Owens, M. Segal, M. Papakipos, and I. Buck, “Gpgpu: General-
purpose computation on graphics hardware,” in Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, ser. SC ’06. New York,
NY, USA: ACM, 2006.

[9] J. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming
standard for heterogeneous computing systems,” Computing in Science
Engineering, vol. 12, no. 3, pp. 66–73, 2010.

[10] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Transactions on Systems, Man and Cybernetics, vol. 9, no. 1, pp.
62–66, Jan. 1979.

[11] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d
surface construction algorithm,” SIGGRAPH Comput. Graph., vol. 21,
no. 4, pp. 163–169, Aug. 1987.

[12] C. Kirbas and F. Quek, “A review of vessel extraction techniques and
algorithms,” ACM Comput. Surv., vol. 36, no. 2, pp. 81–121, Jun. 2004.

[13] D. Lesage, E. D. Angelini, I. Bloch, and G. Funka-Lea, “A review of 3d
vessel lumen segmentation techniques: Models, features and extraction
schemes,” Medical Image Analysis, vol. 13, no. 6, pp. 819 – 845, 2009.

[14] M. T. Dehkordi, S. Sadri, and A. Doosthoseini, “A review of coronary
vessel segmentation algorithms.” J Med Signals Sens, vol. 1, no. 1, pp.
49–54, 2011.

[15] V. M. A. Olivera and R. A. Lotufo, “A study on connected compo-
nents labeling algorithms using gpus,” Graphics, Patterns and Images
(SIBGRAPI), 2010.


	Introduction
	Related Work
	Method
	Segmentation
	Volume to geometry conversion
	Finding connected components

	Implementation
	Experiments and results
	Conclusions and Future Work
	References

