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ABSTRACT

This paper presents a biologically-inspired composit-
ional hierarchical model for MIR. The model can be treated
as a deep learning model, and poses an alternative to deep
architectures based on neural networks. Its main features
are generativeness and transparency that allow clear in-
sight into concepts learned from the input music signals.
The model consists of multiple layers, each is composed
of a number of parts. The hierarchical nature of the model
corresponds well with the hierarchical structures in music.
Parts in lower layers correspond to low-level concepts (e.g.
tone partials), while parts in higher layers combine lower-
level representations into more complex concepts (tones,
chords). The layers are unsupervisedly learned one-by-
one from music signals. Parts in each layer are compo-
sitions of parts from previous layers based on statistical
co-occurrences as the driving force of the learning pro-
cess. We present the model’s structure and compare it
to other deep architectures. A preliminary evaluation of
the model’s usefulness for automated chord estimation and
multiple fundamental frequency estimation tasks is pro-
vided. Additionally, we show how the model can be ex-
tended to event-based music processing, which is our final
goal.

1. INTRODUCTION

The field of music information retrieval (MIR) has reached
a significant expansion in tasks and solutions in the short
timespan of its existence [3, 10]. The tasks include ex-
traction of high-level music descriptors from music, such
as melody, chords and rhythm, as well as highly percep-
tual tasks involving mood estimation, genre recognition
and artist influence. Solutions have not come to a per-
fect one for any of the described tasks yet; however, nu-
merous approaches proposed each year are improving the
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state-of-the-art rapidly. Recently, deep belief networks as
an alternative single model for a variety of tasks, have been
successfully introduced to the field.

This paper presents a biologically-inspired composit-
ional hierarchical model for music information retrieval.
The proposed model poses an alternative to recent deep
learning architecture approaches [6,9]. Its main difference
from the latter is in its transparent structure, thus allowing
representation and interpretation of the signal’s informa-
tion extracted on different levels. We show the usefulness
of our proposed approach in a preliminary evaluation of
the model for the tasks of automated chord estimation and
multiple fundamental frequency estimation. We also show
how the model can be extended to event-based music pro-
cessing, and point out how the model’s transparency en-
ables other applications of the model, e.g. for music anal-
ysis, synthesis and visualization.

2. DEEP ARCHITECTURES FOR MIR

The concept of deep learning has grown in popularity in
the fields of signal processing [15], audio processing [9]
and MIR. Lee [7] presented one of the first attempts of us-
ing deep belief networks (DBNs) on audio signals, where
convolutional DBNs were applied to the speaker identifi-
cation task. A DBN was used as a feature extractor, and a
support vector machine for classification.

Later, Hamel and Eck [5], evaluated DBNs for genre
recognition using a five-layer DBN with three hidden lay-
ers for feature extraction. The support vector machine was
used for classification, where as raw spectral data was used
as input to the DBN. DBNs show great potential for many
tasks that involve high-level feature extraction, such as emo-
tion recognition, since there is usually no trivial spectral or
temporal feature that could be used to model the high-level
representation in question. Schmidt and Kim [13] showed
promising results by using a 5-layer DBN for extraction of
emotion-based acoustic features. Other approaches mod-
eled temporal aspects of the audio signal. Conditional DBN-
s were used by Battenberg and Wessel [1] for drum pat-
tern analysis. Schmidt [12] took a step further and showed
that DBNs can be trained for discriminating rhythm and
melody.

Overall, recent research has shown great interest and



success in using features learned from music signals, in
contrast to previously used hand-crafted features. The re-
search reviewed in this subsection took place only in the
last few years; thus, there is a vast expansion of deep learn-
ing in MIR to be expected, as anticipated by Humphrey [6].

3. THE COMPOSITIONAL HIERARCHICAL
MODEL

3.1 Motivation and concept

DBNs brought an improvement to many MIR tasks with
their unsupervised learning of features and generative mod-
eling. However, they require a large set of hidden units
per layer, and consequently, large training sets. Also, the
hidden nature of units offers no clear explanation of the
undergoing feature extraction process and the meaning of
extracted features. It is our goal to overcome these lim-
itations by developing a white-box compositional hierar-
chical model with shareable parts, thus reducing the num-
ber of parts and learning data needed, as well as reaching
transparency in terms of interpretable internal structure of
the model.

The proposed model provides a hierarchical representa-
tion of the audio signal, from the signal components on the
lowest level, up to individual musical events on the highest
levels. It is built on the assumption that a complex signal
can be decomposed into a hierarchy of building blocks -
parts. These parts exist at various levels of granularity and
represent sets of entities describing the signal. According
to their complexity, parts can be structured across several
layers from less to the more complex. Parts on higher lay-
ers are expressed as compositions of parts on lower layers
(e.g.: a chord is composed of several pitches, each pitch of
several harmonics etc.). A part can therefore describe indi-
vidual frequencies in a signal, their combinations, as well
as pitches, chords and temporal patterns, such as chord
progressions.

The structure of our model is inspired by work in com-
puter vision, specifically the hierarchical compositional
model presented by Leonardis and Fidler [8]. Their model
represents objects in images in a hierarchical manner, struc-
tured in layers from simple to complex image parts. The
model is learned from the statistics of natural images and
can be employed as a robust statistical engine for object
categorization and other computer vision tasks. We believe
that such approach can also be used for music representa-
tion and analysis, however the transformation of the model
to a different domain is not trivial.

3.2 Model structure

The compositional hierarchical model consists of several
layers. Each layer contains a set of parts. A part is a com-
position of two or more parts from a lower layer and may
itself be part of any number of compositions on a higher
layer. Thus, the compositional model forms a hierarchy of
parts, where each part represents a composition of lower-
layer parts, as seen in Figure 1. Connections in the figure
represent compositions of parts.

3.2.1 Input layer

The input layer of the model is derived from the time-
frequency representation of the music signal. We denote
this layer as layer L0. It contains a single atomic part,
which is activated (produces output) at locations of all fre-
quency components in the signal at a given time instance.
An example is given in Figure 1, although not all activa-
tions are shown for clarity. More formally, a part’s activa-
tion is defined by two values: location LP that corresponds
to frequency, and magnitude AP , that corresponds to mag-
nitude of the frequency component.

Figure 1. Compositional hierarchical model. Parts on the
input layer correspond to signal components in the time-
frequency representation. Parts on higher layers are com-
positions of lower-layer parts (denoted as links in the fig-
ure). A part may be contained in several compositions, e.g.
P11 on the first layer is part of compositions P21, P22 and
P2m on the second layer. Several depictions of the same
part (e.g. part instances P11 and P ′11) denote several acti-
vations of the part on different locations (all instances of a
part on a layer are marked with the same outlined color).
Parts activated in t1 are shown filled with color.

Any time-frequency representation can be used for the
input layer, although logarithmic frequency spacing pro-
duces more compact models due to the relative nature of
part compositions on higher layers (as described further
on).

3.2.2 Subsequent layers

Higher layers of the modelLn contain sets of compositions
- parts composed of parts from lower layers. Each compo-
sition can contain any number of parts from the lower lay-
ers (for clarity we only use two-part compositions to ex-
plain the model). A composition can be part of any num-
ber of compositions on higher layers. Compositions are
denoted as links between parts in Figure 1.

Composition i on layer Ln can be formally defined as
a structure containing parts from a layer below: a central
part C, and a secondary part S. We name the parts forming



a composition subparts. A composition can be defined as:

Pn,i = {Cn−1,j , Sn−1,k, (µn,i, σn,i)}, (1)

where Cn−1,j and Sn−1,k are the central and secondary
subparts from layer n − 1, while µn,i and σn,i define a
Gaussian limiting the difference between locations of sub-
part activations (see definition of activation below). For
clarity, we shall omit subscripts in the following equations
and use P , C, S, µ and σ to denote a part and its compo-
nents.

A composition is activated (propagates output to higher
layers) when all of its subparts are activated. This strict
condition can be softened with hallucination, as explained
in section 3.3. Part activation is composed of two values:
activation location LP , which represents the location (fre-
quency) at which the part is activated, and activation mag-
nitudeAP , which represents the strength of activation. The
location of part’s activation is defined simply as the loca-
tion of activation of its central subpart:

LP = LC . (2)

Thus, central parts of compositions on different layers prop-
agate their locations upwards through the hierarchy. The
magnitude of activation is defined as:

AP = tanh[G(LC − LS , µ, σ) · (AC +AS)], (3)

where tanh stands for the hyperbolic tangent function that
limits the magnitude to [0,1) and G represent the Gaussian
that limits the difference in locations of the central part and
the subpart according to µ and σ. As an example, P2,2 in
Figure 1 is defined as

P2,2 = {P1,1, P1,3, (1200, 25)}, (4)

where µ and σ are given in cents. Therefore, it will be acti-
vated whenever P1,1 and P1,3 will be activated at locations
approximately one octave (1200 cents) apart. Two such ac-
tivations are shown in the figure, one at 294 Hz and one at
440 Hz.

3.3 Inference

The model can be used as a feature extractor over any de-
sired dataset. An audio signal, transformed into a time-
frequency representation, serves as input for layer L0. Ac-
tivations are then calculated layer-by-layer according to
Equations 2 and 3. Additionally, two biologically-inspired
mechanisms govern the inference process and increase ro-
bustness of the model: hallucination and inhibition.

Before we define both mechanisms, we need to intro-
duce the concept of coverage. Coverage c(P,LP ) of part
P active at location LP represents all signal information
(frequency components) covered by the part and its sub-
tree of parts. It is calculated top-down from an active part
to L0 as:

c(P,LP ) =
⋃
{c(C,LP ), c(S,LP + µ)}. (5)

For the L0 layer, coverage is defined as the set of parts
with positive activations AP > 0, thus representing the

set of covered frequency components. An example from
Figure 1: the coverage of P2,2 active at 294 Hz is the set of
frequencies: {294Hz, 588Hz, 880Hz}.

3.3.1 Hallucination

Hallucination deals with filling-in the missing or damaged
information in the signal and is implemented by enabling
part activation in presence of incomplete input. The miss-
ing information in the signal can be replaced with knowl-
edge encoded in the model during learning by allowing ac-
tivations of parts most fittingly covering the information
present. This allows the model to produce hypotheses in
situations with no straight result. Hallucination also boosts
alternative explanations of input data, thus increasing its
explanation power and robustness.

Hallucination is governed by parameter τ1 which can
be defined per layer and modified during the inference. It
changes the conditions under which a part may be acti-
vated. The default condition, as explained in section 3.2, is
that activation of a part is possible when all of its subparts
are active. With hallucination, a part P may be activated at
location LP , when the number of frequency components it
covers |c(P,LP )|, divided by the maximal number of com-
ponents it may cover is larger than τ1. For example, a τ1
of 0.75 means that 3

4 of all possible frequency components
must be covered by the part for it to be activated. A τ1 of
1 represents the default behavior.

3.3.2 Inhibition

The second biologically-inspired mechanism provides a bal-
ancing factor by reducing redundant activations, similar to
lateral inhibition performed by the human auditory system.
Inhibition refines the set of parts that yield competing hy-
potheses of the same fragments of information in the in-
put signal. Parts with greater activation magnitudes are
retained and weaker activations inhibited. Inhibition also
reduces activations that result from noise in the signal.

Activation of part P at LP is inhibited, when another
part Q with activation LQ on the same layer (or a set of
parts) covers the same fragments of information in the in-
put signal, but with higher activation. The condition can
be expressed as:

∃Q :
|c(P,LP )\c(Q,LQ)|

|c(P,LP )|
< τ2 ∧AQ > AP , (6)

where τ2 defines the amount of inhibition. For example, a
value of 0.5 means that activation of P is inhibited if half
of its coverage is already covered by another, stronger part.

To sum up: inference yields a set of activations on all
model layers by calculating activations considering hallu-
cination and inhibition over all layers in a bottom-up order
and over all time-frames of the input signal. Resulting ac-
tivations represent model features and can be directly in-
terpreted or used as inputs for discriminative tasks.

3.4 Learning

The model is learned in an unsupervised manner on a set
of input signals. It is constructed layer-by-layer, similar



to other deep architectures. The learning process relies on
statistics of part activations, thus signal regularities are the
driving force of the learning process.

When building layer Ln, co-occurrences of activations
of parts on Ln−1 are observed. Compositions are formed
from parts that frequently activate together at similar dis-
tances. All such parts are joined into compositions and
added to the set of candidate compositions P . When form-
ing a composition of two frequently co-occurring parts, the
part at the lower location represents the central part of the
composition, while parameters µ and σ are estimated from
all co-occurring activations of the two parts.

To reduce the number of compositions on each layer and
keep only the most informative ones, the set of candidates
P is refined. The goal of refinement is to reduce the num-
ber of compositions in the learned layer while maintaining
sufficient coverage of information in the learning set.

Refinement is implemented with a greedy approach,
where in each iteration, a part that contributes most to the
coverage of information in the learning set, is selected and
added to the layer. Refinement is concluded when one of
the following two criteria are reached: a sufficient percent-
age of information in the learning set is covered (according
to threshold τ3), or no part remaining in the candidate set
adds to the cumulative coverage of information. Algorithm
1 outlines the described approach.

Algorithm 1 Greedy approach for selection of composi-
tions from the candidate set P . Parts that add most to
the coverage of information in the learning set are pre-
ferred. Function perc calculates the percentage of infor-
mation covered in the learning set by the given set of parts.

1: procedure REFINE(P)
2: prevCov ← 0
3: coverages← ∅
4: Ln ← ∅
5: repeat
6: for P ∈ P do
7: coverages[P ]← perc(Ln ∪ P )
8: Chosen← argmax

P
(coverages)

9: Ln ← Ln ∪ Chosen
10: P ← P \ Chosen
11: if coverages[Chosen] = prevCov then
12: break //No added coverage - finish
13: prevCov ← coverages[Chosen]
14: until prevCov > τ3 ∨ P = ∅

3.5 Time

The model presented so far is time-independent. It oper-
ates on a frame-by-frame basis, where each time frame in
the time-frequency representation is treated independently
from others. Music, however, evolves in time and models
that operate on such bases often fail to reflect the evolution
of sound properly.

The proposed model can be naturally extended to in-
clude the time dimension. Our first step towards extending
the model for time-dependent processing was to implement
a short-time automatic gain control mechanism, similar to
the automatic gain control contrast mechanism in human
and other animal perceptual systems. The mechanism inte-

grates part activations at similar locations over time. When
a new part activation appears and persists, its value is ini-
tially boosted to accentuate the onset and later suppressed
towards a stable value.

The mechanism operates on all layers, and has a short-
term effect on lower layers, and longer-term effect on higher
layers due to the upward propagation of activations. Its end
effect is that it stabilizes activations, reduces noise, pro-
duces smoother model output and boosts event onsets.

3.6 Relation to Deep Architectures

The compositional hierarchical model shares a great deal
of similarities with other deep learning architectures. The
structure of the model is similar in terms of learning a va-
riety of signal abstractions on several layers of granularity.
The model is learned in an unsupervised generative man-
ner, thus, no annotated data is needed. The learning pro-
cedure is similar: the structure is built layer-by-layer. The
proposed model can also be used for discriminative tasks
by observing activations of parts on multiple layers.

We see the biggest advantage of the proposed compo-
sitional hierarchical model over other established deep ar-
chitectures in its transparency. As parts are compositions
of subparts, their activations are directly observable and
interpretable. This opens the model up for a variety of in-
teresting usages, as it not only produces features that can
be used, but features that can be interpreted and explained.
In addition, the inhibition and hallucination mechanisms
make it possible to produce alternative explanations of the
input by suppressing the winning explanation and search
for alternatives. In comparison to DBNs, where the outputs
of each layer can only be interpreted during the evaluation,
the proposed model offers a deeper analysis of results by
tracing the higher layer activations over all layers and in-
vestigating the impact of each subpart.

Another difference in comparison to DBNs is the share-
ability and relativeness of parts, which both lead to a small
number of parts needed to represent complex signals. A
part in the proposed model is defined by the relative dis-
tance between its subparts and can thus be activated on dif-
ferent locations along the frequency axis. Thus, the large
amount of layer units that DBNs need to cover the entire
spectrum is not necessary and is replaced by reusing the
available parts. This relativeness is accompanied with the
concept of part shareability: parts on a layer may be shared
by many compositions on higher layers. For example, a
chord is composed of at least three pitches which may be
identical in their representation in our model.

We show the usefulness of the described model’s fea-
tures in the evaluation section, where the model is used as
both feature extractor and a classifier. Other possible appli-
cations exploiting the the model’s structure are presented
in section 5.

4. EVALUATION OF THE MODEL

The presented model is applicable to different MIR tasks.
To present the model’s usefulness, we built a three-layer



model and evaluated it on two tasks: automated chord es-
timation and multiple fundamental frequency estimation.

The input layer was the same for both tasks. A constant-
Q transform was used to transform music signals onto 345
frequency bins between 55 and 8000 Hz, with a step size
of 50 ms and maximal window size of 100 ms. Two layers
of compositions L1 and L2 were learnt as described pre-
viously. Due to the shareability of parts, the they contain
only 23 and 12 parts respectively. The small number of
parts in the model should mean that the model could be
trained on a small learning set. We tested this hypothesis
and trained the model on large and small datasets, and ob-
served few differences. We were therefore able to build the
model by using only a small set of 88 piano key samples
as our learning set. We used the L2 layer for the task of
multiple fundamental frequency estimation. For the task
of automated chord estimation, we provided an additional
L3 octave-invariant layer. The latter consists of 48 parts,
where L3 activations correspond to octave-invariant acti-
vations of the L2.

4.1 Automated Chord Estimation

The time-independent model was tested for the task of au-
tomated chord estimation on the standard Beatles dataset,
kindly provided by C. Harte. We used activations of the
octave-invariant L3 layer as features and made the classi-
fication by using a hidden Markov model (HMM) with 24
states, each representing a chord, as described by [2]. We
used cross-validation for evaluation; one album was used
for HMM training and the rest of the dataset for estimation.

Our per-frame classification accuracy on the given data-
set was 67.14 % with 0.1525 standard deviation. Com-
pared to other per-frame approaches, we find our results
slightly lower than for example [11], which also used per-
frame technique for feature extraction. Nevertheless, we
performed the evaluation as a proof of concept with time-
independent feature extraction and no fine-tuning of the
model, its learning, nor tuning of HMM parameters. We
anticipate significant results increase by extending the mod-
el to time-dependent evaluation, using the whole hierarchy
for classification and parameter tuning.

4.2 Multiple fundamental frequency estimation

The model was also tested for the task of multiple funda-
mental frequency estimation (MFEE) on the two subsets
of MAPS (MIDI Aligned Piano Sounds) dataset, provided
by [4]. Activations of layerL2 were directly used as funda-
mental frequency estimations with no further processing.

The following metrics were used for evaluation: per-
frame precision and recall, precision and recall without
penalising for octave errors, and pitch-class precision and
recall. Results are shown in Table 1. Our results are sig-
nificantly lower when compared to recent approaches, e.g.
[14] which reported 77.1% classification accuracy on the
subsets. However, the mentioned approach differs signif-
icantly from ours, as a severely larger dataset (approx. 4
times larger than the test sets) was used for training the
support vector machine (SVM) classifier. In comparison,

Figure 2. Hypotheses produced by our model for the task
of multiple fundamental frequency estimation (A) and the
ground truth (B). X axis represent time (in frames), and y
midi pitches. Although the model produces many possi-
ble hypotheses per frame, only the ones with the highest
magnitudes are used for comparison. Colors represent the
magnitudes of activations in Fig. A or the MIDI velocity
in Fig. B.

our model was trained only on a small set of piano key
samples, so no parts of the MAPS dataset were used for
training. It is also worth to mention that for this task, our
model was used as a feature extractor and a classifier at the
same time. We expect that accuracy would be improved if
a classifier such as a SVM would be added on top of our
model and would take features extracted on all layers for
inputs. Our intention for this paper, however, is to present
the general applicability of the model for multiple tasks
and to avoid fine-tuning.

Table 1. Classification accuracy (CA) using all hypothe-
ses provided by the model, precision (Pr) and recall (Re)
values over a part of the MAPS dataset. Results without
penalising octave errors and considering only pitch classes
are marked with O and PC subscripts respectively.

Folder name CA Pr Re
AkPnBcht 56.53 % 19.40 % 55.69 %
AkPnBsdf 66.17 % 22.05 % 61.27 %
AkPnBchtO 67.08 % 35.37 % 64.55 %
AkPnBsdfO 71.16 % 46.10 % 68.83 %
AkPnBchtPC 86.20 % 51.83 % 86.59 %
AkPnBsdfPC 88.23 % 58.68 % 70.99 %

5. OTHER APPLICATIONS OF THE MODEL

Our intention with developing the proposed model is to
make an interpretable model that overcomes some of the
limitations of DBNs and can be used for tackling various
MIR tasks. Its transparency, however, also makes other



uses of the model possible.
The hierarchical approach presented in this paper fits

well with the hierarchical structure of music in frequency
as well as in time domains. Each part of the model repre-
sents an explainable entity (e.g. tone partial, pitch, chord).
In contrast to the DBNs, each part of the model can be visu-
alized. Visualization not only exposes the layered structure
of the model, but also discloses information processed by
the observed part and its influence on other parts and their
activations. This insight into the music signal can be used
in several scenarios — music visualization, music analysis
and music synthesis.

We have developed a real-time visualization of the model,
enabling deeper understanding of the processed informa-
tion. When observing an inferred audio signal, the output
of all layers of the model is presented by visualizing acti-
vations of parts. This insight enables detailed analysis of
each event in the music signal and may bring additional
event details to light. For example, a chord inversion can
be observed by looking into the activated subtree of the
chord from top layers to bottom-ones. Thus, visualization
of our model offers an innovative user interface for music
analysis.

The transparency of the model can also be exploited
for music processing and synthesis. Parts across all lay-
ers form a variety of harmonic structures, and can be used
for signal manipulation and synthesis. By activating a set
of parts at different locations, a new spectral representa-
tion is produced. Although the interface may not provide
a sufficient amount of features for a standalone music per-
formance, it can be used as a sound generator in a com-
bination with a music instrument, e.g. a MIDI keyboard.
The interface thus serves as an advanced tool for spectral
modification, while the instrument provides the interface
for performance.

6. CONCLUSION AND FUTURE WORK

This paper presents a compositional hierarchical model as
an alternative to deep learning architectures based on neu-
ral networks. The model shares a great deal of similari-
ties with other deep architectures, including a multi-layer
structure, unsupervised generative learning and suitabil-
ity for discriminative tasks. Furthermore, the white-box
structure of the model offers new utilizations of the model.
We highlighted three possible applications: feature extrac-
tion for MIR tasks, music visualization and music analy-
sis/synthesis.

The model’s internals rely on findings in the fields of
neurobiology and cognitive sciences. By implementing
biologically-inspired mechanisms into the model, we made
an attempt to build a model which partially resembles a
subset of functions of the human auditory system. We in-
tend to retain and further develop this aspect of the model
with an intention to bring the computational modeling
closer to human auditory perception.

The paper presents an initial development of our model.
We plan to further extend it with the focus on temporal
modeling. Parts can namely be extended into the time do-

main, thus bringing their activations closer to event-based
modeling. We also plan to tackle temporal tasks, such as
onset detection, as well as beat tracking and tempo estima-
tion. The proposed model is also going to be evaluated for
pattern analysis of symbolic data, including discovery of
repeated themes, and symbolic melodic similarity.
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