Maya - Uvod

1. Vsebina

Obravnavali bomo:

- uporabniški vmesnik
- projekti in datoteke
- pogledi na prizor
- predmeti in komponente (objects and components)
- primitivna telesa
- osnovne transformacije in pivoti

2. Uporabniški vmesnik

2.1. Menujska vrstica

Preko menujev dostopamo do orodij in izvajamo potrebne akcije pri modeliranju, upodabljanju, animaciji ... Prvih šest menujev v glavni menujski vrstici se ne spreminja. Ostali menuji pa so odvisni od izbire aktivne množice menujev preko statusne vrstice.

2.2. Statusna vrstica

Statusna vrstica vsebuje množico bljižnic do ukazov ter orodja za način izbire predmetov in komponent. Poleg tega lahko v statusni vrstici izberemo aktivno množico menujev.

2.3. Polica

Polica omogoča hiter in enostaven dostop do orodij po lastni želji. Uporabnik si lahko omisli več polic za različne vrste opravil.

2.4. Orodjarna

Orodjarna vsebuje osnovna orodja ter zadnje izbrano orodje. Poleg tega lahko preko orodjarne spreminjamo izgled delovnega prostora.

2.5. Delovni prostor

Delovni prostor je osrednji del uporabniškega vmesnika, ki je namenjen predvsem pogledu na prizor. Poleg tega pa lahko prikazuje raznovrstne urejevalnike, ki jih potrebujemo pri delovnem procesu.

2.6. Okno za kanale

Okno za kanale omogoča dostop do atributov predmetov in vozlišč. Atribute lahko v tem oknu nastavljamo ter vključimo v definicijo ključnih točk.

2.7. Urejevalnik plasti

Plasti omogočajo, da nekatere predmete združimo v skupino, ki jo obravnavamo ločeno od drugih. Posamezne plasti lahko na primer skrijemo iz prizora ali jih ločeno upodabljamo.

2.8. Časovni trak

Časovni trak omogoča premikanje po časovni dimenziji prizora. Na ta način lahko definiramo zaporedje ključnih točk ali si interaktivno predogledamo animirani prizor.

2.9. Trak časovnega obsega

Trak časovnega obsega omogoča vpogled in spreminjanje začetka in konca celotne animacije ter določanje obsega prikazane animacije.

2.10. Ukazna vrstica

V ukazni vrstici lahko neposredno izvajamo MEL ukaze.

2.11. Vrstica pomoči

V vrstici pomoči je prikazana hitra kontekstna pomoč pri delu z uporabniškim vmesnikom.

3. Projekti in datoteke

3.1. Projekti

V Mayi je delo zasnovano projektno. Najbolje je, da za vsako projektno celoto ustvarite svoj projekt, v katerem bodo shranjene vaše datoteke ter nastavitve programa. Ko začnete z delom, je tako najbolje, da si najprej ustvarite svoj projekt in s tem določite, kam se bodo shranjevale vaše datoteke. Nov projekt v Mayi ustvarite s menujsko izbiro "File|Project|New". Pri tem morate podati ime projekta in imenik, v katerem se bo projekt nahajal (npr. "domači imenik\maya"). Za lokacije posameznih datotek je najbolje, da kliknete kar "Use Defaults". Ko ste vpisali nastavitve za projekt, pritisnite "Accept". S tem ste določili, kam se bodo shranjevale vaše datoteke (scene se shranjujejo v podimenik scenes, slike v images,...). Priporočljivo je, da imeniki v poti do vašega projekta v imenih ne vsebujejo presledkov.

Če delate na več projektih, lahko med njimi preklapljate s menijsko izbiro "File|Project|Set".

V kolikor projekta niste definirali, se bodo vaše datoteke shranjevale v

"user_profile_path\maya\projects\default", kjer je user_profile_path pot do imenika, ki vsebuje profil posameznega uporabnika (ponavadi se ta nahaja v imeniku "C:\documents and settings\username").

3.2. Vrste datotek Maye

Maya ima nekaj svojih vrst datotek v katere shranjuje podatke o prizorih, slikah, skriptah ... Najpomembnejše vrste datotek pri Mayi so:

3.2.1. Maya Binary (.mb)

Tovrstne datoteke vsebujejo opis prizora v binarni obliki. V opis so vključeni predmeti, teksture, animacije ...

3.2.2. Maya IFF (.iff)

Ta vrsta datotek je namenjena zapisu "bitmap" slik.. IFF format lahko shrani tako podatke o barvi, kakor tudi nekatere druge podatke (maska, globina). Tovrstne datoteke se največkrat uporabljajo kot rezultat upodabljanja prizora.

3.2.3. Skripte MEL (.mel)

Skripte MEL so ASCII datoteke v katerih so zapisani ukazi Mayinega jezika MEL s katerim lahko dopolnimo možnosti, ki nam jih daje na voljo Mayin uporabniški vmesnik.

4. Pogledi na prizor

Pri modeliranju prizora delamo v tridimenzionalnem (3D) prostoru. Kamere z ortografskim in perspektivnim pogledom nam nudijo različne možnosti pri gledanju prizora.

Privzeti pogledi:

Perspektivni pogled omogoča poljubno premikanje gledišča v vseh treh dimenzijah prostora ter obračanje gledišča okoli vertikalne in horizontalne osi.

4.1. Premikanje kamere (gledišča)

Pogled na prizor lahko prilagajamo potrebam tako, da spreminjamo položaj in smer kamere na katerem temelji posamezen pogled.

4.1.1. Obračanje (tumble)

S pritiskom na tipko **Alt** ter pritiskom na levi gumb miške i lahko obračamo kamero okoli vertikalne in horizontalne osi.

4.1.2. Vertikalno in horizontalno premikanje (track)

S pritiskom na tipko **Alt** ter pritiskom na srednji gumb na miški lahko premikamo kamero levi/desno ter gor/dol.

4.1.3. Premikanje naprej in nazaj (dolly)

S pritiskom na tipko **Alt** ter pritiskom na levi in srednji gumb na miški lahko premikamo kamero naprej in nazaj.

4.2. Prikaz predmetov

Posamezni predmeti so lahko znotraj prizora prikazani različno natančno. Tipke **1**, **2** in **3** preklapljajo med različnimi načini prikazovanja predmetov, od najbolj grobega do najbolj natančnega (zaobljenega).

Prav tako lahko spreminjamo način senčenja pri prikazu predmetov. S tipkami 4, 5, 6 in 7 preklapljamo med različnimi prikazi:

4	5	6	7
žičnat model (wireframe)	senčen	senčen s teksturami	senčen s teksturami in osvetljen

5. Predmeti in komponente (objects and components)

Prizor je sestavljen iz predmetov. Med predmete štejemo na primer:

- krivulje
- ploskve
- kamere
- luči
- deformacije
- ...

Predmeti so sestavljeni iz komponent, kot so na primer kontrolne točke, poligoni, pivoti in podobno. Predmete, ki so prisotni v prizoru si lahko ogledamo v oknu Outliner (**Window | Outliner...**)

5.1. Način dela

Ko v Mayi delamo z predmeti lahko to počnemo v predmetnem načinu ali v komponentnem načinu.

V predmetnem načinu delamo z predmeti kot celoto.

V komponentnem načinu so vidne komponente, ki sestavljajo predmete. V tem načinu delamo • s komponentami. Privzete komponente s katerimi delamo v komponentnem načinu dela so kontrolne točke (CVs).

Char test Tran Tran Tran Ri Ri S

SHA ter NPU Ma Star End

Heig Mino

Način dela s predmeti lahko spremenimo z izbiro ene od treh ikon v statusni vrstici.

Prva ikona pomeni, da delamo v predmetnem načinu, druga ikona pa vklopi komponentni način dela. Med načini dela lahko preklapljamo tudi z tipko F8.

5.2. Atributi in vozlišča

5.2.1. Atributi

Vse lastnosti predmetov in komponent so shranjene kot atributi. Kadar modeliramo, animiramo in kako drugače manipuliramo s predmeti posredno ali neposredno spreminjamo atribute. Atribute lahko vidimo ali jih neposredno spreminjamo v oknu za kanale ali v urejevalniku atributov (tipka Ctrl-A).

hannels C	Dbject		Transform	Chase	loout	Chadina
estobject		P	Transform	Snape	input	Snading
iranslate X	1	1 1	L uoge l	- node	L upde	L uoge
ranslate Y	1	1				
ranslate Z	1		Attribute Editor: ter	tobiect		
Rotate X	88.127		L Coloriad Conu	onun Allebud		
Rotate Y	0		in Selected copy i	ocus Annour	63	
Rotate Z	0	100	autobiect testobiectSha	ne I makabler	hTorust LinitialChadi	ingGroup Inmhert1
Scale X	1	1	estublect intrototoria	- I makerida	oroider mildioriddi	rigerioup ramberri
Scale Y	1	1 .				5
Scale Z	1	1	nurbsSurface:	testobiectSh	apel	Focus
Visibility	on	1		1		
HAPES testobiec	tShape	5	- NURBS Surface H	listory		-
IPUTS		1 1	Min Max Range U	0.000	4.000	
makeNur	bTorus1		Min May Damas M	0.000	0.000	
Radius	1	1	min max hange v	10.000	18.000	
start Swee	0	1	Spans UV	4	8	
ind Sweep	360	1	Degree UV	3	3	and the second second second second
Degree	Cubic	1		Production 1988	1	
Sections	8	1	Form U	Periodic		
Spans	4	1	Form V	Periodic -		
leight Ratio	0.5	1				
linor Swee	360	1		Attribute	Editor	
Chann	el Box	1				

5.2.2. Vozlišča (nodes)

Vozlišča so osnovni gradniki pri delovanju Maye. Vozlišča so skupine med seboj sorodnih atributov. Na primer atributi, ki določajo transformacijo predmeta so združeni v transformacijkem vozlišču (transform node). Osnovne vrste vozlišč so:

- transformacijska vozlišča (transform nodes), ki določajo položaj predmetov
- vozlišča oblike (shape nodes), ki določajo položaj komponent
- vhodna vozlišča (input nodes), ki določajo kako so predmeti zgrajeni
- vozlišča senčenja (shade nodes), ki določajo materjale za predmete

5.2.3. Graf odvisnosti (dependancy graph)

Graf odvisnosti je zbirka vozlišč, ki so med seboj povezana. Graf odvisnosti nam omogoča ugotavljanje in tudi vzpostavljanje povezav med vozlišči. Graf odvisnosti si lahko ogledamo v oknu Hypergraph (**Window | Hypergraph**).

6. Primitivna telesa

Primitivna telesa so že vnaprej pripravljeni predmeti nekaterih osnovnih oblik. Maya nudi osem osnovnih predmetov (primitivov), ki jih lahko uporabimo za nadaljnje oblikovanje predmetov. Ti primitivi so: krogla (sphere), kocka (cube), valj (cilinder), stožec (cone), ravnina (plane), torus, krog (circle) in kvadrat (square). Primitivi so lahko tipa NURBS ali poligonski, dobimo pa jih z "Create NURBS Primitives |..." oz. "Create Polygon Primitives |..."

Preden nek osnovni predmet naredimo, lahko v menujskem oknu (dobimo ga s pritiskom na kockico poleg imena predmeta) določimo njegove lastnosti, kot so natančnost (število krivulj v U in V smeri), stopnjo krivulj (linearne, kubične,...), pa tudi nekatere druge lastnosti; tako lahko npr. namesto cele krogle napravimo polkroglo, določimo nov center predmeta,...

7. Osnovne transformacije in pivoti

Med osnovne transformacije sodijo sprememba položaja, orientacije in velikosti v prostoru. Osnovne transformacije lahko izvajamo tako nad predmeti, kakor tudi nad komponentami predmetov.

Osnovne transformacije lahko izvajamo z neposrednim spreminjanjem atributov ali pa s pomočjo transformacijskih orodij. Ta orodja so:

• orodje za premikanje (move tool)

• orodje za obračanje (rotate tool)

• orodje za povečevanje (scale tool)

Do orodij za osnovne transformacije lahko pridemo s klikom na ustrezne ikone v orodjarni:

Hitreje pa lahko do orodij pridemo s pritiskom na tipke \mathbf{w} (premikanje), \mathbf{e} (obračanje) in \mathbf{r} (povečevanje).

7.1. Pivoti

Pivoti so točke v prostoru okoli, ki predstavljajo referenčno točka ob izvajanju transformacij (na primer točka okoli se dogaja obračanje predmeta). Vsaka osnovna transformacija ima svojo pivotno točko. Pivotno točko lahko spreminjamo s pritiskom na tipko **Insert**, medtem ko imamo izbrano katero od orodij za osnovne transformacije. Potem ko smo jo premaknili se vrnemo nazaj v normalen način dela s ponovnim pritiskom na tipko **Insert**.